Properties

Label 1600.3.b.n.1151.1
Level $1600$
Weight $3$
Character 1600.1151
Analytic conductor $43.597$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,3,Mod(1151,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1600.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.5968422976\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1151
Dual form 1600.3.b.n.1151.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.23607i q^{3} +10.1803i q^{7} -18.4164 q^{9} -14.4721i q^{11} +11.5279 q^{13} +18.9443 q^{17} +12.0000i q^{19} +53.3050 q^{21} +17.5967i q^{23} +49.3050i q^{27} -8.83282 q^{29} +0.583592i q^{31} -75.7771 q^{33} +32.4721 q^{37} -60.3607i q^{39} +71.3050 q^{41} +4.65248i q^{43} -22.5410i q^{47} -54.6393 q^{49} -99.1935i q^{51} +63.3050 q^{53} +62.8328 q^{57} -30.6099i q^{59} -65.1935 q^{61} -187.485i q^{63} -92.2067i q^{67} +92.1378 q^{69} -41.7508i q^{71} +136.164 q^{73} +147.331 q^{77} -81.1672i q^{79} +92.4164 q^{81} +86.5410i q^{83} +46.2492i q^{87} -30.0000 q^{89} +117.358i q^{91} +3.05573 q^{93} -119.666 q^{97} +266.525i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{9} + 64 q^{13} + 40 q^{17} + 88 q^{21} + 72 q^{29} - 160 q^{33} + 112 q^{37} + 160 q^{41} - 308 q^{49} + 128 q^{53} + 144 q^{57} - 64 q^{61} + 136 q^{69} + 8 q^{73} + 160 q^{77} + 316 q^{81}+ \cdots - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 5.23607i − 1.74536i −0.488296 0.872678i \(-0.662381\pi\)
0.488296 0.872678i \(-0.337619\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 10.1803i 1.45433i 0.686460 + 0.727167i \(0.259163\pi\)
−0.686460 + 0.727167i \(0.740837\pi\)
\(8\) 0 0
\(9\) −18.4164 −2.04627
\(10\) 0 0
\(11\) − 14.4721i − 1.31565i −0.753171 0.657824i \(-0.771477\pi\)
0.753171 0.657824i \(-0.228523\pi\)
\(12\) 0 0
\(13\) 11.5279 0.886759 0.443379 0.896334i \(-0.353779\pi\)
0.443379 + 0.896334i \(0.353779\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.9443 1.11437 0.557184 0.830389i \(-0.311882\pi\)
0.557184 + 0.830389i \(0.311882\pi\)
\(18\) 0 0
\(19\) 12.0000i 0.631579i 0.948829 + 0.315789i \(0.102269\pi\)
−0.948829 + 0.315789i \(0.897731\pi\)
\(20\) 0 0
\(21\) 53.3050 2.53833
\(22\) 0 0
\(23\) 17.5967i 0.765076i 0.923940 + 0.382538i \(0.124950\pi\)
−0.923940 + 0.382538i \(0.875050\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 49.3050i 1.82611i
\(28\) 0 0
\(29\) −8.83282 −0.304580 −0.152290 0.988336i \(-0.548665\pi\)
−0.152290 + 0.988336i \(0.548665\pi\)
\(30\) 0 0
\(31\) 0.583592i 0.0188256i 0.999956 + 0.00941278i \(0.00299622\pi\)
−0.999956 + 0.00941278i \(0.997004\pi\)
\(32\) 0 0
\(33\) −75.7771 −2.29628
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 32.4721 0.877625 0.438813 0.898579i \(-0.355399\pi\)
0.438813 + 0.898579i \(0.355399\pi\)
\(38\) 0 0
\(39\) − 60.3607i − 1.54771i
\(40\) 0 0
\(41\) 71.3050 1.73915 0.869573 0.493805i \(-0.164394\pi\)
0.869573 + 0.493805i \(0.164394\pi\)
\(42\) 0 0
\(43\) 4.65248i 0.108197i 0.998536 + 0.0540986i \(0.0172285\pi\)
−0.998536 + 0.0540986i \(0.982771\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 22.5410i − 0.479596i −0.970823 0.239798i \(-0.922919\pi\)
0.970823 0.239798i \(-0.0770812\pi\)
\(48\) 0 0
\(49\) −54.6393 −1.11509
\(50\) 0 0
\(51\) − 99.1935i − 1.94497i
\(52\) 0 0
\(53\) 63.3050 1.19443 0.597217 0.802080i \(-0.296273\pi\)
0.597217 + 0.802080i \(0.296273\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 62.8328 1.10233
\(58\) 0 0
\(59\) − 30.6099i − 0.518812i −0.965768 0.259406i \(-0.916473\pi\)
0.965768 0.259406i \(-0.0835268\pi\)
\(60\) 0 0
\(61\) −65.1935 −1.06875 −0.534373 0.845249i \(-0.679452\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(62\) 0 0
\(63\) − 187.485i − 2.97596i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 92.2067i − 1.37622i −0.725607 0.688109i \(-0.758441\pi\)
0.725607 0.688109i \(-0.241559\pi\)
\(68\) 0 0
\(69\) 92.1378 1.33533
\(70\) 0 0
\(71\) − 41.7508i − 0.588039i −0.955799 0.294020i \(-0.905007\pi\)
0.955799 0.294020i \(-0.0949931\pi\)
\(72\) 0 0
\(73\) 136.164 1.86526 0.932631 0.360832i \(-0.117507\pi\)
0.932631 + 0.360832i \(0.117507\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 147.331 1.91339
\(78\) 0 0
\(79\) − 81.1672i − 1.02743i −0.857960 0.513716i \(-0.828268\pi\)
0.857960 0.513716i \(-0.171732\pi\)
\(80\) 0 0
\(81\) 92.4164 1.14094
\(82\) 0 0
\(83\) 86.5410i 1.04266i 0.853354 + 0.521331i \(0.174564\pi\)
−0.853354 + 0.521331i \(0.825436\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 46.2492i 0.531600i
\(88\) 0 0
\(89\) −30.0000 −0.337079 −0.168539 0.985695i \(-0.553905\pi\)
−0.168539 + 0.985695i \(0.553905\pi\)
\(90\) 0 0
\(91\) 117.358i 1.28964i
\(92\) 0 0
\(93\) 3.05573 0.0328573
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −119.666 −1.23367 −0.616833 0.787094i \(-0.711585\pi\)
−0.616833 + 0.787094i \(0.711585\pi\)
\(98\) 0 0
\(99\) 266.525i 2.69217i
\(100\) 0 0
\(101\) 37.5542 0.371824 0.185912 0.982566i \(-0.440476\pi\)
0.185912 + 0.982566i \(0.440476\pi\)
\(102\) 0 0
\(103\) − 177.013i − 1.71857i −0.511493 0.859287i \(-0.670908\pi\)
0.511493 0.859287i \(-0.329092\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 63.1246i 0.589950i 0.955505 + 0.294975i \(0.0953113\pi\)
−0.955505 + 0.294975i \(0.904689\pi\)
\(108\) 0 0
\(109\) 44.4721 0.408001 0.204001 0.978971i \(-0.434606\pi\)
0.204001 + 0.978971i \(0.434606\pi\)
\(110\) 0 0
\(111\) − 170.026i − 1.53177i
\(112\) 0 0
\(113\) −18.7214 −0.165676 −0.0828379 0.996563i \(-0.526398\pi\)
−0.0828379 + 0.996563i \(0.526398\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −212.302 −1.81455
\(118\) 0 0
\(119\) 192.859i 1.62066i
\(120\) 0 0
\(121\) −88.4427 −0.730932
\(122\) 0 0
\(123\) − 373.358i − 3.03543i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 81.4590i 0.641409i 0.947179 + 0.320705i \(0.103920\pi\)
−0.947179 + 0.320705i \(0.896080\pi\)
\(128\) 0 0
\(129\) 24.3607 0.188842
\(130\) 0 0
\(131\) − 169.082i − 1.29070i −0.763886 0.645351i \(-0.776711\pi\)
0.763886 0.645351i \(-0.223289\pi\)
\(132\) 0 0
\(133\) −122.164 −0.918527
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 24.6099 0.179634 0.0898172 0.995958i \(-0.471372\pi\)
0.0898172 + 0.995958i \(0.471372\pi\)
\(138\) 0 0
\(139\) − 73.3901i − 0.527986i −0.964525 0.263993i \(-0.914960\pi\)
0.964525 0.263993i \(-0.0850396\pi\)
\(140\) 0 0
\(141\) −118.026 −0.837066
\(142\) 0 0
\(143\) − 166.833i − 1.16666i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 286.095i 1.94623i
\(148\) 0 0
\(149\) 68.9180 0.462537 0.231268 0.972890i \(-0.425712\pi\)
0.231268 + 0.972890i \(0.425712\pi\)
\(150\) 0 0
\(151\) 109.803i 0.727175i 0.931560 + 0.363587i \(0.118448\pi\)
−0.931560 + 0.363587i \(0.881552\pi\)
\(152\) 0 0
\(153\) −348.885 −2.28030
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −279.082 −1.77759 −0.888796 0.458302i \(-0.848458\pi\)
−0.888796 + 0.458302i \(0.848458\pi\)
\(158\) 0 0
\(159\) − 331.469i − 2.08471i
\(160\) 0 0
\(161\) −179.141 −1.11268
\(162\) 0 0
\(163\) − 82.6262i − 0.506909i −0.967347 0.253454i \(-0.918433\pi\)
0.967347 0.253454i \(-0.0815668\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 93.2361i 0.558300i 0.960248 + 0.279150i \(0.0900526\pi\)
−0.960248 + 0.279150i \(0.909947\pi\)
\(168\) 0 0
\(169\) −36.1084 −0.213659
\(170\) 0 0
\(171\) − 220.997i − 1.29238i
\(172\) 0 0
\(173\) 159.580 0.922431 0.461215 0.887288i \(-0.347414\pi\)
0.461215 + 0.887288i \(0.347414\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −160.276 −0.905511
\(178\) 0 0
\(179\) − 171.830i − 0.959943i −0.877284 0.479971i \(-0.840647\pi\)
0.877284 0.479971i \(-0.159353\pi\)
\(180\) 0 0
\(181\) −237.331 −1.31122 −0.655611 0.755099i \(-0.727589\pi\)
−0.655611 + 0.755099i \(0.727589\pi\)
\(182\) 0 0
\(183\) 341.358i 1.86534i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 274.164i − 1.46612i
\(188\) 0 0
\(189\) −501.941 −2.65577
\(190\) 0 0
\(191\) 90.7477i 0.475119i 0.971373 + 0.237559i \(0.0763474\pi\)
−0.971373 + 0.237559i \(0.923653\pi\)
\(192\) 0 0
\(193\) 49.5016 0.256485 0.128242 0.991743i \(-0.459066\pi\)
0.128242 + 0.991743i \(0.459066\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 377.023 1.91382 0.956912 0.290379i \(-0.0937814\pi\)
0.956912 + 0.290379i \(0.0937814\pi\)
\(198\) 0 0
\(199\) 391.108i 1.96537i 0.185288 + 0.982684i \(0.440678\pi\)
−0.185288 + 0.982684i \(0.559322\pi\)
\(200\) 0 0
\(201\) −482.800 −2.40199
\(202\) 0 0
\(203\) − 89.9211i − 0.442961i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 324.069i − 1.56555i
\(208\) 0 0
\(209\) 173.666 0.830936
\(210\) 0 0
\(211\) − 267.416i − 1.26738i −0.773589 0.633688i \(-0.781540\pi\)
0.773589 0.633688i \(-0.218460\pi\)
\(212\) 0 0
\(213\) −218.610 −1.02634
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.94117 −0.0273786
\(218\) 0 0
\(219\) − 712.964i − 3.25555i
\(220\) 0 0
\(221\) 218.387 0.988176
\(222\) 0 0
\(223\) 31.7082i 0.142189i 0.997470 + 0.0710946i \(0.0226492\pi\)
−0.997470 + 0.0710946i \(0.977351\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 162.456i 0.715665i 0.933786 + 0.357832i \(0.116484\pi\)
−0.933786 + 0.357832i \(0.883516\pi\)
\(228\) 0 0
\(229\) 425.161 1.85660 0.928299 0.371834i \(-0.121271\pi\)
0.928299 + 0.371834i \(0.121271\pi\)
\(230\) 0 0
\(231\) − 771.437i − 3.33955i
\(232\) 0 0
\(233\) 177.331 0.761078 0.380539 0.924765i \(-0.375738\pi\)
0.380539 + 0.924765i \(0.375738\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −424.997 −1.79324
\(238\) 0 0
\(239\) − 85.4953i − 0.357721i −0.983874 0.178861i \(-0.942759\pi\)
0.983874 0.178861i \(-0.0572411\pi\)
\(240\) 0 0
\(241\) 50.0851 0.207822 0.103911 0.994587i \(-0.466864\pi\)
0.103911 + 0.994587i \(0.466864\pi\)
\(242\) 0 0
\(243\) − 40.1540i − 0.165243i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 138.334i 0.560058i
\(248\) 0 0
\(249\) 453.135 1.81982
\(250\) 0 0
\(251\) 54.1966i 0.215923i 0.994155 + 0.107961i \(0.0344323\pi\)
−0.994155 + 0.107961i \(0.965568\pi\)
\(252\) 0 0
\(253\) 254.663 1.00657
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −285.502 −1.11090 −0.555450 0.831550i \(-0.687454\pi\)
−0.555450 + 0.831550i \(0.687454\pi\)
\(258\) 0 0
\(259\) 330.577i 1.27636i
\(260\) 0 0
\(261\) 162.669 0.623252
\(262\) 0 0
\(263\) 123.039i 0.467831i 0.972257 + 0.233915i \(0.0751539\pi\)
−0.972257 + 0.233915i \(0.924846\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 157.082i 0.588322i
\(268\) 0 0
\(269\) 184.354 0.685333 0.342666 0.939457i \(-0.388670\pi\)
0.342666 + 0.939457i \(0.388670\pi\)
\(270\) 0 0
\(271\) 184.413i 0.680492i 0.940336 + 0.340246i \(0.110510\pi\)
−0.940336 + 0.340246i \(0.889490\pi\)
\(272\) 0 0
\(273\) 614.492 2.25089
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 20.4195 0.0737167 0.0368583 0.999321i \(-0.488265\pi\)
0.0368583 + 0.999321i \(0.488265\pi\)
\(278\) 0 0
\(279\) − 10.7477i − 0.0385221i
\(280\) 0 0
\(281\) 463.410 1.64915 0.824573 0.565755i \(-0.191415\pi\)
0.824573 + 0.565755i \(0.191415\pi\)
\(282\) 0 0
\(283\) − 316.895i − 1.11977i −0.828570 0.559886i \(-0.810845\pi\)
0.828570 0.559886i \(-0.189155\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 725.909i 2.52930i
\(288\) 0 0
\(289\) 69.8854 0.241818
\(290\) 0 0
\(291\) 626.577i 2.15319i
\(292\) 0 0
\(293\) −407.082 −1.38936 −0.694679 0.719320i \(-0.744454\pi\)
−0.694679 + 0.719320i \(0.744454\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 713.548 2.40252
\(298\) 0 0
\(299\) 202.853i 0.678438i
\(300\) 0 0
\(301\) −47.3638 −0.157355
\(302\) 0 0
\(303\) − 196.636i − 0.648964i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 318.541i − 1.03759i −0.854898 0.518796i \(-0.826380\pi\)
0.854898 0.518796i \(-0.173620\pi\)
\(308\) 0 0
\(309\) −926.853 −2.99952
\(310\) 0 0
\(311\) − 156.912i − 0.504539i −0.967657 0.252270i \(-0.918823\pi\)
0.967657 0.252270i \(-0.0811770\pi\)
\(312\) 0 0
\(313\) 184.780 0.590352 0.295176 0.955443i \(-0.404622\pi\)
0.295176 + 0.955443i \(0.404622\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.5836 0.0460050 0.0230025 0.999735i \(-0.492677\pi\)
0.0230025 + 0.999735i \(0.492677\pi\)
\(318\) 0 0
\(319\) 127.830i 0.400720i
\(320\) 0 0
\(321\) 330.525 1.02967
\(322\) 0 0
\(323\) 227.331i 0.703812i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 232.859i − 0.712107i
\(328\) 0 0
\(329\) 229.475 0.697493
\(330\) 0 0
\(331\) 76.5836i 0.231370i 0.993286 + 0.115685i \(0.0369064\pi\)
−0.993286 + 0.115685i \(0.963094\pi\)
\(332\) 0 0
\(333\) −598.020 −1.79586
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 214.997 0.637973 0.318986 0.947759i \(-0.396658\pi\)
0.318986 + 0.947759i \(0.396658\pi\)
\(338\) 0 0
\(339\) 98.0263i 0.289163i
\(340\) 0 0
\(341\) 8.44582 0.0247678
\(342\) 0 0
\(343\) − 57.4102i − 0.167377i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 86.5735i 0.249491i 0.992189 + 0.124746i \(0.0398115\pi\)
−0.992189 + 0.124746i \(0.960188\pi\)
\(348\) 0 0
\(349\) 116.833 0.334765 0.167382 0.985892i \(-0.446469\pi\)
0.167382 + 0.985892i \(0.446469\pi\)
\(350\) 0 0
\(351\) 568.381i 1.61932i
\(352\) 0 0
\(353\) 330.774 0.937037 0.468518 0.883454i \(-0.344788\pi\)
0.468518 + 0.883454i \(0.344788\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1009.82 2.82864
\(358\) 0 0
\(359\) 432.105i 1.20364i 0.798633 + 0.601818i \(0.205557\pi\)
−0.798633 + 0.601818i \(0.794443\pi\)
\(360\) 0 0
\(361\) 217.000 0.601108
\(362\) 0 0
\(363\) 463.092i 1.27574i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 288.259i − 0.785448i −0.919656 0.392724i \(-0.871533\pi\)
0.919656 0.392724i \(-0.128467\pi\)
\(368\) 0 0
\(369\) −1313.18 −3.55876
\(370\) 0 0
\(371\) 644.466i 1.73710i
\(372\) 0 0
\(373\) 253.076 0.678487 0.339244 0.940699i \(-0.389829\pi\)
0.339244 + 0.940699i \(0.389829\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −101.823 −0.270089
\(378\) 0 0
\(379\) − 42.2167i − 0.111390i −0.998448 0.0556949i \(-0.982263\pi\)
0.998448 0.0556949i \(-0.0177374\pi\)
\(380\) 0 0
\(381\) 426.525 1.11949
\(382\) 0 0
\(383\) − 179.177i − 0.467826i −0.972258 0.233913i \(-0.924847\pi\)
0.972258 0.233913i \(-0.0751530\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 85.6819i − 0.221400i
\(388\) 0 0
\(389\) 75.9211 0.195170 0.0975849 0.995227i \(-0.468888\pi\)
0.0975849 + 0.995227i \(0.468888\pi\)
\(390\) 0 0
\(391\) 333.358i 0.852577i
\(392\) 0 0
\(393\) −885.325 −2.25274
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 480.407 1.21009 0.605047 0.796190i \(-0.293154\pi\)
0.605047 + 0.796190i \(0.293154\pi\)
\(398\) 0 0
\(399\) 639.659i 1.60316i
\(400\) 0 0
\(401\) −514.328 −1.28261 −0.641307 0.767284i \(-0.721607\pi\)
−0.641307 + 0.767284i \(0.721607\pi\)
\(402\) 0 0
\(403\) 6.72757i 0.0166937i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 469.941i − 1.15465i
\(408\) 0 0
\(409\) 610.466 1.49258 0.746291 0.665620i \(-0.231833\pi\)
0.746291 + 0.665620i \(0.231833\pi\)
\(410\) 0 0
\(411\) − 128.859i − 0.313526i
\(412\) 0 0
\(413\) 311.619 0.754526
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −384.276 −0.921524
\(418\) 0 0
\(419\) − 556.381i − 1.32788i −0.747787 0.663939i \(-0.768883\pi\)
0.747787 0.663939i \(-0.231117\pi\)
\(420\) 0 0
\(421\) 201.246 0.478019 0.239010 0.971017i \(-0.423177\pi\)
0.239010 + 0.971017i \(0.423177\pi\)
\(422\) 0 0
\(423\) 415.125i 0.981382i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 663.692i − 1.55431i
\(428\) 0 0
\(429\) −873.548 −2.03624
\(430\) 0 0
\(431\) − 749.909i − 1.73993i −0.493116 0.869964i \(-0.664142\pi\)
0.493116 0.869964i \(-0.335858\pi\)
\(432\) 0 0
\(433\) −663.325 −1.53193 −0.765964 0.642883i \(-0.777738\pi\)
−0.765964 + 0.642883i \(0.777738\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −211.161 −0.483206
\(438\) 0 0
\(439\) − 717.220i − 1.63376i −0.576809 0.816879i \(-0.695702\pi\)
0.576809 0.816879i \(-0.304298\pi\)
\(440\) 0 0
\(441\) 1006.26 2.28177
\(442\) 0 0
\(443\) − 182.508i − 0.411983i −0.978554 0.205992i \(-0.933958\pi\)
0.978554 0.205992i \(-0.0660419\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 360.859i − 0.807291i
\(448\) 0 0
\(449\) −416.971 −0.928665 −0.464332 0.885661i \(-0.653706\pi\)
−0.464332 + 0.885661i \(0.653706\pi\)
\(450\) 0 0
\(451\) − 1031.93i − 2.28810i
\(452\) 0 0
\(453\) 574.938 1.26918
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 550.997 1.20568 0.602841 0.797861i \(-0.294035\pi\)
0.602841 + 0.797861i \(0.294035\pi\)
\(458\) 0 0
\(459\) 934.046i 2.03496i
\(460\) 0 0
\(461\) 330.774 0.717514 0.358757 0.933431i \(-0.383201\pi\)
0.358757 + 0.933431i \(0.383201\pi\)
\(462\) 0 0
\(463\) 789.925i 1.70610i 0.521828 + 0.853051i \(0.325250\pi\)
−0.521828 + 0.853051i \(0.674750\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 30.3707i − 0.0650337i −0.999471 0.0325168i \(-0.989648\pi\)
0.999471 0.0325168i \(-0.0103523\pi\)
\(468\) 0 0
\(469\) 938.695 2.00148
\(470\) 0 0
\(471\) 1461.29i 3.10253i
\(472\) 0 0
\(473\) 67.3313 0.142349
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1165.85 −2.44413
\(478\) 0 0
\(479\) − 774.597i − 1.61711i −0.588418 0.808557i \(-0.700249\pi\)
0.588418 0.808557i \(-0.299751\pi\)
\(480\) 0 0
\(481\) 374.334 0.778242
\(482\) 0 0
\(483\) 937.994i 1.94202i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 578.869i − 1.18864i −0.804228 0.594322i \(-0.797421\pi\)
0.804228 0.594322i \(-0.202579\pi\)
\(488\) 0 0
\(489\) −432.636 −0.884737
\(490\) 0 0
\(491\) 347.416i 0.707569i 0.935327 + 0.353785i \(0.115105\pi\)
−0.935327 + 0.353785i \(0.884895\pi\)
\(492\) 0 0
\(493\) −167.331 −0.339414
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 425.037 0.855205
\(498\) 0 0
\(499\) − 224.774i − 0.450449i −0.974307 0.225224i \(-0.927688\pi\)
0.974307 0.225224i \(-0.0723115\pi\)
\(500\) 0 0
\(501\) 488.190 0.974432
\(502\) 0 0
\(503\) 192.089i 0.381887i 0.981601 + 0.190943i \(0.0611547\pi\)
−0.981601 + 0.190943i \(0.938845\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 189.066i 0.372911i
\(508\) 0 0
\(509\) 367.823 0.722639 0.361320 0.932442i \(-0.382326\pi\)
0.361320 + 0.932442i \(0.382326\pi\)
\(510\) 0 0
\(511\) 1386.20i 2.71271i
\(512\) 0 0
\(513\) −591.659 −1.15333
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −326.217 −0.630980
\(518\) 0 0
\(519\) − 835.574i − 1.60997i
\(520\) 0 0
\(521\) −858.984 −1.64872 −0.824361 0.566064i \(-0.808466\pi\)
−0.824361 + 0.566064i \(0.808466\pi\)
\(522\) 0 0
\(523\) 609.872i 1.16610i 0.812435 + 0.583052i \(0.198142\pi\)
−0.812435 + 0.583052i \(0.801858\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.0557i 0.0209786i
\(528\) 0 0
\(529\) 219.354 0.414659
\(530\) 0 0
\(531\) 563.724i 1.06163i
\(532\) 0 0
\(533\) 821.994 1.54220
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −899.712 −1.67544
\(538\) 0 0
\(539\) 790.748i 1.46706i
\(540\) 0 0
\(541\) −1061.44 −1.96199 −0.980995 0.194033i \(-0.937843\pi\)
−0.980995 + 0.194033i \(0.937843\pi\)
\(542\) 0 0
\(543\) 1242.68i 2.28855i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 235.453i 0.430444i 0.976565 + 0.215222i \(0.0690475\pi\)
−0.976565 + 0.215222i \(0.930953\pi\)
\(548\) 0 0
\(549\) 1200.63 2.18694
\(550\) 0 0
\(551\) − 105.994i − 0.192366i
\(552\) 0 0
\(553\) 826.310 1.49423
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −589.574 −1.05848 −0.529241 0.848472i \(-0.677523\pi\)
−0.529241 + 0.848472i \(0.677523\pi\)
\(558\) 0 0
\(559\) 53.6331i 0.0959447i
\(560\) 0 0
\(561\) −1435.54 −2.55890
\(562\) 0 0
\(563\) − 688.778i − 1.22341i −0.791087 0.611703i \(-0.790485\pi\)
0.791087 0.611703i \(-0.209515\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 940.830i 1.65931i
\(568\) 0 0
\(569\) 492.906 0.866266 0.433133 0.901330i \(-0.357408\pi\)
0.433133 + 0.901330i \(0.357408\pi\)
\(570\) 0 0
\(571\) 517.240i 0.905849i 0.891549 + 0.452925i \(0.149619\pi\)
−0.891549 + 0.452925i \(0.850381\pi\)
\(572\) 0 0
\(573\) 475.161 0.829251
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 302.170 0.523692 0.261846 0.965110i \(-0.415669\pi\)
0.261846 + 0.965110i \(0.415669\pi\)
\(578\) 0 0
\(579\) − 259.193i − 0.447657i
\(580\) 0 0
\(581\) −881.017 −1.51638
\(582\) 0 0
\(583\) − 916.158i − 1.57145i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1086.61i 1.85113i 0.378588 + 0.925565i \(0.376410\pi\)
−0.378588 + 0.925565i \(0.623590\pi\)
\(588\) 0 0
\(589\) −7.00311 −0.0118898
\(590\) 0 0
\(591\) − 1974.12i − 3.34030i
\(592\) 0 0
\(593\) 439.548 0.741228 0.370614 0.928787i \(-0.379147\pi\)
0.370614 + 0.928787i \(0.379147\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2047.87 3.43027
\(598\) 0 0
\(599\) 489.718i 0.817560i 0.912633 + 0.408780i \(0.134046\pi\)
−0.912633 + 0.408780i \(0.865954\pi\)
\(600\) 0 0
\(601\) 23.3050 0.0387770 0.0193885 0.999812i \(-0.493828\pi\)
0.0193885 + 0.999812i \(0.493828\pi\)
\(602\) 0 0
\(603\) 1698.12i 2.81611i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1110.44i 1.82940i 0.404138 + 0.914698i \(0.367572\pi\)
−0.404138 + 0.914698i \(0.632428\pi\)
\(608\) 0 0
\(609\) −470.833 −0.773124
\(610\) 0 0
\(611\) − 259.850i − 0.425286i
\(612\) 0 0
\(613\) 149.587 0.244024 0.122012 0.992529i \(-0.461065\pi\)
0.122012 + 0.992529i \(0.461065\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −247.325 −0.400851 −0.200425 0.979709i \(-0.564232\pi\)
−0.200425 + 0.979709i \(0.564232\pi\)
\(618\) 0 0
\(619\) 61.3375i 0.0990912i 0.998772 + 0.0495456i \(0.0157773\pi\)
−0.998772 + 0.0495456i \(0.984223\pi\)
\(620\) 0 0
\(621\) −867.607 −1.39711
\(622\) 0 0
\(623\) − 305.410i − 0.490225i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 909.325i − 1.45028i
\(628\) 0 0
\(629\) 615.161 0.977998
\(630\) 0 0
\(631\) − 172.636i − 0.273591i −0.990599 0.136796i \(-0.956320\pi\)
0.990599 0.136796i \(-0.0436804\pi\)
\(632\) 0 0
\(633\) −1400.21 −2.21202
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −629.875 −0.988814
\(638\) 0 0
\(639\) 768.899i 1.20329i
\(640\) 0 0
\(641\) −646.020 −1.00783 −0.503916 0.863753i \(-0.668108\pi\)
−0.503916 + 0.863753i \(0.668108\pi\)
\(642\) 0 0
\(643\) 296.810i 0.461602i 0.973001 + 0.230801i \(0.0741347\pi\)
−0.973001 + 0.230801i \(0.925865\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 204.450i 0.315996i 0.987439 + 0.157998i \(0.0505040\pi\)
−0.987439 + 0.157998i \(0.949496\pi\)
\(648\) 0 0
\(649\) −442.991 −0.682574
\(650\) 0 0
\(651\) 31.1084i 0.0477855i
\(652\) 0 0
\(653\) −653.639 −1.00098 −0.500490 0.865743i \(-0.666847\pi\)
−0.500490 + 0.865743i \(0.666847\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2507.65 −3.81682
\(658\) 0 0
\(659\) 1245.72i 1.89032i 0.326613 + 0.945158i \(0.394092\pi\)
−0.326613 + 0.945158i \(0.605908\pi\)
\(660\) 0 0
\(661\) −1005.42 −1.52105 −0.760527 0.649307i \(-0.775059\pi\)
−0.760527 + 0.649307i \(0.775059\pi\)
\(662\) 0 0
\(663\) − 1143.49i − 1.72472i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 155.429i − 0.233027i
\(668\) 0 0
\(669\) 166.026 0.248171
\(670\) 0 0
\(671\) 943.489i 1.40609i
\(672\) 0 0
\(673\) 897.331 1.33333 0.666665 0.745357i \(-0.267721\pi\)
0.666665 + 0.745357i \(0.267721\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −796.067 −1.17587 −0.587937 0.808907i \(-0.700060\pi\)
−0.587937 + 0.808907i \(0.700060\pi\)
\(678\) 0 0
\(679\) − 1218.24i − 1.79416i
\(680\) 0 0
\(681\) 850.630 1.24909
\(682\) 0 0
\(683\) 1124.31i 1.64614i 0.567942 + 0.823069i \(0.307740\pi\)
−0.567942 + 0.823069i \(0.692260\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 2226.17i − 3.24042i
\(688\) 0 0
\(689\) 729.771 1.05917
\(690\) 0 0
\(691\) − 188.584i − 0.272914i −0.990646 0.136457i \(-0.956428\pi\)
0.990646 0.136457i \(-0.0435716\pi\)
\(692\) 0 0
\(693\) −2713.31 −3.91531
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1350.82 1.93805
\(698\) 0 0
\(699\) − 928.519i − 1.32835i
\(700\) 0 0
\(701\) −177.404 −0.253073 −0.126536 0.991962i \(-0.540386\pi\)
−0.126536 + 0.991962i \(0.540386\pi\)
\(702\) 0 0
\(703\) 389.666i 0.554290i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 382.314i 0.540756i
\(708\) 0 0
\(709\) −1025.15 −1.44591 −0.722954 0.690896i \(-0.757216\pi\)
−0.722954 + 0.690896i \(0.757216\pi\)
\(710\) 0 0
\(711\) 1494.81i 2.10240i
\(712\) 0 0
\(713\) −10.2693 −0.0144030
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −447.659 −0.624351
\(718\) 0 0
\(719\) 1215.38i 1.69038i 0.534465 + 0.845190i \(0.320513\pi\)
−0.534465 + 0.845190i \(0.679487\pi\)
\(720\) 0 0
\(721\) 1802.05 2.49938
\(722\) 0 0
\(723\) − 262.249i − 0.362724i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 753.735i 1.03677i 0.855146 + 0.518387i \(0.173467\pi\)
−0.855146 + 0.518387i \(0.826533\pi\)
\(728\) 0 0
\(729\) 621.498 0.852536
\(730\) 0 0
\(731\) 88.1378i 0.120572i
\(732\) 0 0
\(733\) 901.141 1.22939 0.614694 0.788766i \(-0.289280\pi\)
0.614694 + 0.788766i \(0.289280\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1334.43 −1.81062
\(738\) 0 0
\(739\) − 415.947i − 0.562852i −0.959583 0.281426i \(-0.909193\pi\)
0.959583 0.281426i \(-0.0908073\pi\)
\(740\) 0 0
\(741\) 724.328 0.977501
\(742\) 0 0
\(743\) 492.207i 0.662458i 0.943550 + 0.331229i \(0.107463\pi\)
−0.943550 + 0.331229i \(0.892537\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1593.77i − 2.13357i
\(748\) 0 0
\(749\) −642.630 −0.857984
\(750\) 0 0
\(751\) − 994.512i − 1.32425i −0.749393 0.662125i \(-0.769655\pi\)
0.749393 0.662125i \(-0.230345\pi\)
\(752\) 0 0
\(753\) 283.777 0.376862
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −615.463 −0.813029 −0.406514 0.913644i \(-0.633256\pi\)
−0.406514 + 0.913644i \(0.633256\pi\)
\(758\) 0 0
\(759\) − 1333.43i − 1.75683i
\(760\) 0 0
\(761\) −1083.88 −1.42428 −0.712139 0.702038i \(-0.752274\pi\)
−0.712139 + 0.702038i \(0.752274\pi\)
\(762\) 0 0
\(763\) 452.741i 0.593370i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 352.867i − 0.460061i
\(768\) 0 0
\(769\) −411.115 −0.534609 −0.267305 0.963612i \(-0.586133\pi\)
−0.267305 + 0.963612i \(0.586133\pi\)
\(770\) 0 0
\(771\) 1494.91i 1.93892i
\(772\) 0 0
\(773\) 905.574 1.17151 0.585753 0.810490i \(-0.300799\pi\)
0.585753 + 0.810490i \(0.300799\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1730.93 2.22770
\(778\) 0 0
\(779\) 855.659i 1.09841i
\(780\) 0 0
\(781\) −604.223 −0.773653
\(782\) 0 0
\(783\) − 435.502i − 0.556196i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 583.262i − 0.741121i −0.928808 0.370561i \(-0.879166\pi\)
0.928808 0.370561i \(-0.120834\pi\)
\(788\) 0 0
\(789\) 644.243 0.816531
\(790\) 0 0
\(791\) − 190.590i − 0.240948i
\(792\) 0 0
\(793\) −751.542 −0.947720
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1061.80 1.33224 0.666121 0.745844i \(-0.267953\pi\)
0.666121 + 0.745844i \(0.267953\pi\)
\(798\) 0 0
\(799\) − 427.023i − 0.534447i
\(800\) 0 0
\(801\) 552.492 0.689753
\(802\) 0 0
\(803\) − 1970.59i − 2.45403i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 965.293i − 1.19615i
\(808\) 0 0
\(809\) 909.672 1.12444 0.562220 0.826988i \(-0.309947\pi\)
0.562220 + 0.826988i \(0.309947\pi\)
\(810\) 0 0
\(811\) − 604.689i − 0.745609i −0.927910 0.372804i \(-0.878396\pi\)
0.927910 0.372804i \(-0.121604\pi\)
\(812\) 0 0
\(813\) 965.601 1.18770
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −55.8297 −0.0683350
\(818\) 0 0
\(819\) − 2161.30i − 2.63896i
\(820\) 0 0
\(821\) 674.584 0.821661 0.410830 0.911712i \(-0.365239\pi\)
0.410830 + 0.911712i \(0.365239\pi\)
\(822\) 0 0
\(823\) 499.039i 0.606366i 0.952932 + 0.303183i \(0.0980494\pi\)
−0.952932 + 0.303183i \(0.901951\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1146.90i 1.38682i 0.720542 + 0.693411i \(0.243893\pi\)
−0.720542 + 0.693411i \(0.756107\pi\)
\(828\) 0 0
\(829\) −1196.74 −1.44359 −0.721794 0.692107i \(-0.756682\pi\)
−0.721794 + 0.692107i \(0.756682\pi\)
\(830\) 0 0
\(831\) − 106.918i − 0.128662i
\(832\) 0 0
\(833\) −1035.10 −1.24262
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −28.7740 −0.0343775
\(838\) 0 0
\(839\) 1121.82i 1.33710i 0.743669 + 0.668548i \(0.233084\pi\)
−0.743669 + 0.668548i \(0.766916\pi\)
\(840\) 0 0
\(841\) −762.981 −0.907231
\(842\) 0 0
\(843\) − 2426.45i − 2.87835i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 900.377i − 1.06302i
\(848\) 0 0
\(849\) −1659.29 −1.95440
\(850\) 0 0
\(851\) 571.404i 0.671450i
\(852\) 0 0
\(853\) −1278.40 −1.49871 −0.749356 0.662168i \(-0.769637\pi\)
−0.749356 + 0.662168i \(0.769637\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 485.384 0.566376 0.283188 0.959064i \(-0.408608\pi\)
0.283188 + 0.959064i \(0.408608\pi\)
\(858\) 0 0
\(859\) 781.483i 0.909759i 0.890553 + 0.454879i \(0.150318\pi\)
−0.890553 + 0.454879i \(0.849682\pi\)
\(860\) 0 0
\(861\) 3800.91 4.41453
\(862\) 0 0
\(863\) 154.659i 0.179211i 0.995977 + 0.0896053i \(0.0285605\pi\)
−0.995977 + 0.0896053i \(0.971439\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 365.925i − 0.422059i
\(868\) 0 0
\(869\) −1174.66 −1.35174
\(870\) 0 0
\(871\) − 1062.95i − 1.22037i
\(872\) 0 0
\(873\) 2203.81 2.52441
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −146.203 −0.166708 −0.0833539 0.996520i \(-0.526563\pi\)
−0.0833539 + 0.996520i \(0.526563\pi\)
\(878\) 0 0
\(879\) 2131.51i 2.42493i
\(880\) 0 0
\(881\) −39.2523 −0.0445543 −0.0222771 0.999752i \(-0.507092\pi\)
−0.0222771 + 0.999752i \(0.507092\pi\)
\(882\) 0 0
\(883\) − 493.131i − 0.558472i −0.960222 0.279236i \(-0.909919\pi\)
0.960222 0.279236i \(-0.0900812\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 865.183i 0.975404i 0.873010 + 0.487702i \(0.162165\pi\)
−0.873010 + 0.487702i \(0.837835\pi\)
\(888\) 0 0
\(889\) −829.280 −0.932824
\(890\) 0 0
\(891\) − 1337.46i − 1.50108i
\(892\) 0 0
\(893\) 270.492 0.302903
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1062.15 1.18412
\(898\) 0 0
\(899\) − 5.15476i − 0.00573388i
\(900\) 0 0
\(901\) 1199.27 1.33104
\(902\) 0 0
\(903\) 248.000i 0.274640i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 833.183i 0.918615i 0.888277 + 0.459307i \(0.151902\pi\)
−0.888277 + 0.459307i \(0.848098\pi\)
\(908\) 0 0
\(909\) −691.613 −0.760850
\(910\) 0 0
\(911\) 541.227i 0.594103i 0.954862 + 0.297051i \(0.0960032\pi\)
−0.954862 + 0.297051i \(0.903997\pi\)
\(912\) 0 0
\(913\) 1252.43 1.37178
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1721.31 1.87711
\(918\) 0 0
\(919\) − 330.610i − 0.359750i −0.983690 0.179875i \(-0.942431\pi\)
0.983690 0.179875i \(-0.0575693\pi\)
\(920\) 0 0
\(921\) −1667.90 −1.81097
\(922\) 0 0
\(923\) − 481.297i − 0.521449i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3259.95i 3.51666i
\(928\) 0 0
\(929\) 632.237 0.680556 0.340278 0.940325i \(-0.389479\pi\)
0.340278 + 0.940325i \(0.389479\pi\)
\(930\) 0 0
\(931\) − 655.672i − 0.704266i
\(932\) 0 0
\(933\) −821.601 −0.880601
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 147.666 0.157594 0.0787970 0.996891i \(-0.474892\pi\)
0.0787970 + 0.996891i \(0.474892\pi\)
\(938\) 0 0
\(939\) − 967.522i − 1.03037i
\(940\) 0 0
\(941\) −804.885 −0.855351 −0.427676 0.903932i \(-0.640667\pi\)
−0.427676 + 0.903932i \(0.640667\pi\)
\(942\) 0 0
\(943\) 1254.74i 1.33058i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1365.45i 1.44187i 0.693005 + 0.720933i \(0.256286\pi\)
−0.693005 + 0.720933i \(0.743714\pi\)
\(948\) 0 0
\(949\) 1569.68 1.65404
\(950\) 0 0
\(951\) − 76.3607i − 0.0802951i
\(952\) 0 0
\(953\) −1075.99 −1.12906 −0.564530 0.825413i \(-0.690942\pi\)
−0.564530 + 0.825413i \(0.690942\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 669.325 0.699399
\(958\) 0 0
\(959\) 250.537i 0.261248i
\(960\) 0 0
\(961\) 960.659 0.999646
\(962\) 0 0
\(963\) − 1162.53i − 1.20719i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1057.05i − 1.09312i −0.837420 0.546559i \(-0.815937\pi\)
0.837420 0.546559i \(-0.184063\pi\)
\(968\) 0 0
\(969\) 1190.32 1.22840
\(970\) 0 0
\(971\) − 112.190i − 0.115541i −0.998330 0.0577705i \(-0.981601\pi\)
0.998330 0.0577705i \(-0.0183992\pi\)
\(972\) 0 0
\(973\) 747.136 0.767869
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1627.22 1.66553 0.832763 0.553629i \(-0.186757\pi\)
0.832763 + 0.553629i \(0.186757\pi\)
\(978\) 0 0
\(979\) 434.164i 0.443477i
\(980\) 0 0
\(981\) −819.017 −0.834880
\(982\) 0 0
\(983\) − 1451.62i − 1.47673i −0.674403 0.738364i \(-0.735599\pi\)
0.674403 0.738364i \(-0.264401\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1201.55i − 1.21737i
\(988\) 0 0
\(989\) −81.8684 −0.0827790
\(990\) 0 0
\(991\) 1179.44i 1.19016i 0.803668 + 0.595078i \(0.202879\pi\)
−0.803668 + 0.595078i \(0.797121\pi\)
\(992\) 0 0
\(993\) 400.997 0.403824
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −987.896 −0.990869 −0.495434 0.868645i \(-0.664991\pi\)
−0.495434 + 0.868645i \(0.664991\pi\)
\(998\) 0 0
\(999\) 1601.04i 1.60264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.3.b.n.1151.1 4
4.3 odd 2 inner 1600.3.b.n.1151.4 4
5.2 odd 4 1600.3.h.d.1599.1 4
5.3 odd 4 1600.3.h.m.1599.3 4
5.4 even 2 320.3.b.b.191.4 4
8.3 odd 2 800.3.b.d.351.1 4
8.5 even 2 800.3.b.d.351.4 4
15.14 odd 2 2880.3.e.a.2431.3 4
20.3 even 4 1600.3.h.d.1599.2 4
20.7 even 4 1600.3.h.m.1599.4 4
20.19 odd 2 320.3.b.b.191.1 4
40.3 even 4 800.3.h.j.799.3 4
40.13 odd 4 800.3.h.c.799.2 4
40.19 odd 2 160.3.b.a.31.4 yes 4
40.27 even 4 800.3.h.c.799.1 4
40.29 even 2 160.3.b.a.31.1 4
40.37 odd 4 800.3.h.j.799.4 4
60.59 even 2 2880.3.e.a.2431.4 4
80.19 odd 4 1280.3.g.d.1151.4 4
80.29 even 4 1280.3.g.a.1151.2 4
80.59 odd 4 1280.3.g.a.1151.1 4
80.69 even 4 1280.3.g.d.1151.3 4
120.29 odd 2 1440.3.e.b.991.1 4
120.59 even 2 1440.3.e.b.991.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.3.b.a.31.1 4 40.29 even 2
160.3.b.a.31.4 yes 4 40.19 odd 2
320.3.b.b.191.1 4 20.19 odd 2
320.3.b.b.191.4 4 5.4 even 2
800.3.b.d.351.1 4 8.3 odd 2
800.3.b.d.351.4 4 8.5 even 2
800.3.h.c.799.1 4 40.27 even 4
800.3.h.c.799.2 4 40.13 odd 4
800.3.h.j.799.3 4 40.3 even 4
800.3.h.j.799.4 4 40.37 odd 4
1280.3.g.a.1151.1 4 80.59 odd 4
1280.3.g.a.1151.2 4 80.29 even 4
1280.3.g.d.1151.3 4 80.69 even 4
1280.3.g.d.1151.4 4 80.19 odd 4
1440.3.e.b.991.1 4 120.29 odd 2
1440.3.e.b.991.2 4 120.59 even 2
1600.3.b.n.1151.1 4 1.1 even 1 trivial
1600.3.b.n.1151.4 4 4.3 odd 2 inner
1600.3.h.d.1599.1 4 5.2 odd 4
1600.3.h.d.1599.2 4 20.3 even 4
1600.3.h.m.1599.3 4 5.3 odd 4
1600.3.h.m.1599.4 4 20.7 even 4
2880.3.e.a.2431.3 4 15.14 odd 2
2880.3.e.a.2431.4 4 60.59 even 2