Properties

Label 1600.4.a.m
Level 16001600
Weight 44
Character orbit 1600.a
Self dual yes
Analytic conductor 94.40394.403
Analytic rank 22
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1600,4,Mod(1,1600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1600.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1600=2652 1600 = 2^{6} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-5,0,0,0,2,0,-2,0,-39,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 94.403056009294.4030560092
Analytic rank: 22
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 200)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q5q3+2q72q939q1184q1361q17151q1910q2158q23+145q27192q2918q31+195q33+138q37+420q39+229q41+164q43++78q99+O(q100) q - 5 q^{3} + 2 q^{7} - 2 q^{9} - 39 q^{11} - 84 q^{13} - 61 q^{17} - 151 q^{19} - 10 q^{21} - 58 q^{23} + 145 q^{27} - 192 q^{29} - 18 q^{31} + 195 q^{33} + 138 q^{37} + 420 q^{39} + 229 q^{41} + 164 q^{43}+ \cdots + 78 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −5.00000 0 0 0 2.00000 0 −2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.4.a.m 1
4.b odd 2 1 1600.4.a.bo 1
5.b even 2 1 1600.4.a.bn 1
8.b even 2 1 200.4.a.h yes 1
8.d odd 2 1 400.4.a.f 1
20.d odd 2 1 1600.4.a.n 1
24.h odd 2 1 1800.4.a.t 1
40.e odd 2 1 400.4.a.q 1
40.f even 2 1 200.4.a.c 1
40.i odd 4 2 200.4.c.d 2
40.k even 4 2 400.4.c.g 2
120.i odd 2 1 1800.4.a.p 1
120.w even 4 2 1800.4.f.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.4.a.c 1 40.f even 2 1
200.4.a.h yes 1 8.b even 2 1
200.4.c.d 2 40.i odd 4 2
400.4.a.f 1 8.d odd 2 1
400.4.a.q 1 40.e odd 2 1
400.4.c.g 2 40.k even 4 2
1600.4.a.m 1 1.a even 1 1 trivial
1600.4.a.n 1 20.d odd 2 1
1600.4.a.bn 1 5.b even 2 1
1600.4.a.bo 1 4.b odd 2 1
1800.4.a.p 1 120.i odd 2 1
1800.4.a.t 1 24.h odd 2 1
1800.4.f.c 2 120.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1600))S_{4}^{\mathrm{new}}(\Gamma_0(1600)):

T3+5 T_{3} + 5 Copy content Toggle raw display
T72 T_{7} - 2 Copy content Toggle raw display
T11+39 T_{11} + 39 Copy content Toggle raw display
T13+84 T_{13} + 84 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+5 T + 5 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T2 T - 2 Copy content Toggle raw display
1111 T+39 T + 39 Copy content Toggle raw display
1313 T+84 T + 84 Copy content Toggle raw display
1717 T+61 T + 61 Copy content Toggle raw display
1919 T+151 T + 151 Copy content Toggle raw display
2323 T+58 T + 58 Copy content Toggle raw display
2929 T+192 T + 192 Copy content Toggle raw display
3131 T+18 T + 18 Copy content Toggle raw display
3737 T138 T - 138 Copy content Toggle raw display
4141 T229 T - 229 Copy content Toggle raw display
4343 T164 T - 164 Copy content Toggle raw display
4747 T+212 T + 212 Copy content Toggle raw display
5353 T+578 T + 578 Copy content Toggle raw display
5959 T336 T - 336 Copy content Toggle raw display
6161 T+858 T + 858 Copy content Toggle raw display
6767 T209 T - 209 Copy content Toggle raw display
7171 T+780 T + 780 Copy content Toggle raw display
7373 T+403 T + 403 Copy content Toggle raw display
7979 T+230 T + 230 Copy content Toggle raw display
8383 T1293 T - 1293 Copy content Toggle raw display
8989 T+1369 T + 1369 Copy content Toggle raw display
9797 T382 T - 382 Copy content Toggle raw display
show more
show less