gp: [N,k,chi] = [1600,4,Mod(1,1600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1600.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-5,0,0,0,2,0,-2,0,-39,0,-84]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1600 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1600)) S 4 n e w ( Γ 0 ( 1 6 0 0 ) ) :
T 3 + 5 T_{3} + 5 T 3 + 5
T3 + 5
T 7 − 2 T_{7} - 2 T 7 − 2
T7 - 2
T 11 + 39 T_{11} + 39 T 1 1 + 3 9
T11 + 39
T 13 + 84 T_{13} + 84 T 1 3 + 8 4
T13 + 84
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 5 T + 5 T + 5
T + 5
5 5 5
T T T
T
7 7 7
T − 2 T - 2 T − 2
T - 2
11 11 1 1
T + 39 T + 39 T + 3 9
T + 39
13 13 1 3
T + 84 T + 84 T + 8 4
T + 84
17 17 1 7
T + 61 T + 61 T + 6 1
T + 61
19 19 1 9
T + 151 T + 151 T + 1 5 1
T + 151
23 23 2 3
T + 58 T + 58 T + 5 8
T + 58
29 29 2 9
T + 192 T + 192 T + 1 9 2
T + 192
31 31 3 1
T + 18 T + 18 T + 1 8
T + 18
37 37 3 7
T − 138 T - 138 T − 1 3 8
T - 138
41 41 4 1
T − 229 T - 229 T − 2 2 9
T - 229
43 43 4 3
T − 164 T - 164 T − 1 6 4
T - 164
47 47 4 7
T + 212 T + 212 T + 2 1 2
T + 212
53 53 5 3
T + 578 T + 578 T + 5 7 8
T + 578
59 59 5 9
T − 336 T - 336 T − 3 3 6
T - 336
61 61 6 1
T + 858 T + 858 T + 8 5 8
T + 858
67 67 6 7
T − 209 T - 209 T − 2 0 9
T - 209
71 71 7 1
T + 780 T + 780 T + 7 8 0
T + 780
73 73 7 3
T + 403 T + 403 T + 4 0 3
T + 403
79 79 7 9
T + 230 T + 230 T + 2 3 0
T + 230
83 83 8 3
T − 1293 T - 1293 T − 1 2 9 3
T - 1293
89 89 8 9
T + 1369 T + 1369 T + 1 3 6 9
T + 1369
97 97 9 7
T − 382 T - 382 T − 3 8 2
T - 382
show more
show less