Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM RM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.1.l.a 161.l 161.l $10$ $0.080$ \(\Q(\zeta_{22})\) \(\Q(\sqrt{-7}) \) None 161.1.l.a \(-2\) \(0\) \(0\) \(-1\) \(q+(-\zeta_{22}+\zeta_{22}^{8})q^{2}+(\zeta_{22}^{2}-\zeta_{22}^{5}+\cdots)q^{4}+\cdots\)
161.2.a.a 161.a 1.a $1$ $1.286$ \(\Q\) None None 161.2.a.a \(-1\) \(0\) \(2\) \(1\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+2q^{5}+q^{7}+3q^{8}-3q^{9}+\cdots\)
161.2.a.b 161.a 1.a $2$ $1.286$ \(\Q(\sqrt{5}) \) None None 161.2.a.b \(-1\) \(-2\) \(-2\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-2+2\beta )q^{5}+\cdots\)
161.2.a.c 161.a 1.a $3$ $1.286$ 3.3.148.1 None None 161.2.a.c \(-1\) \(2\) \(2\) \(-3\) $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(1+2\beta _{1}+\cdots)q^{4}+\cdots\)
161.2.a.d 161.a 1.a $5$ $1.286$ 5.5.2147108.1 None None 161.2.a.d \(2\) \(0\) \(-4\) \(5\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
161.2.c.a 161.c 161.c $2$ $1.286$ \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{-7}) \) None 161.2.c.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-q^{2}-q^{4}-\beta q^{7}+3q^{8}+3q^{9}-2\beta q^{11}+\cdots\)
161.2.c.b 161.c 161.c $12$ $1.286$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None None 161.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{6}q^{3}+(1-\beta _{3})q^{4}-\beta _{2}q^{5}+\cdots\)
161.2.e.a 161.e 7.c $14$ $1.286$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None None 161.2.e.a \(0\) \(-5\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{6}-\beta _{10}-\beta _{11}+\cdots)q^{3}+\cdots\)
161.2.e.b 161.e 7.c $14$ $1.286$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None None 161.2.e.b \(0\) \(3\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{5}-\beta _{12})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)
161.2.g.a 161.g 161.g $28$ $1.286$ None None 161.2.g.a \(-4\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
161.2.i.a 161.i 23.c $50$ $1.286$ None None 161.2.i.a \(2\) \(0\) \(-11\) \(5\) $\mathrm{SU}(2)[C_{11}]$
161.2.i.b 161.i 23.c $70$ $1.286$ None None 161.2.i.b \(-4\) \(-4\) \(7\) \(-7\) $\mathrm{SU}(2)[C_{11}]$
161.2.k.a 161.k 161.k $20$ $1.286$ 20.0.\(\cdots\).2 \(\Q(\sqrt{-7}) \) None 161.2.k.a \(2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{22}]$ \(q+(\beta _{4}+\beta _{6}-\beta _{14})q^{2}+(-\beta _{2}+\beta _{13}+\cdots)q^{4}+\cdots\)
161.2.k.b 161.k 161.k $120$ $1.286$ None None 161.2.k.b \(-22\) \(0\) \(0\) \(-11\) $\mathrm{SU}(2)[C_{22}]$
161.2.m.a 161.m 161.m $280$ $1.286$ None None 161.2.m.a \(-11\) \(-9\) \(-11\) \(-20\) $\mathrm{SU}(2)[C_{33}]$
161.2.o.a 161.o 161.o $280$ $1.286$ None None 161.2.o.a \(-7\) \(-27\) \(-33\) \(-22\) $\mathrm{SU}(2)[C_{66}]$
161.3.b.a 161.b 7.b $28$ $4.387$ None None 161.3.b.a \(0\) \(0\) \(0\) \(18\) $\mathrm{SU}(2)[C_{2}]$
161.3.d.a 161.d 23.b $24$ $4.387$ None None 161.3.d.a \(-2\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
161.3.f.a 161.f 161.f $60$ $4.387$ None None 161.3.f.a \(-4\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
161.3.h.a 161.h 7.d $60$ $4.387$ None None 161.3.h.a \(0\) \(-6\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{6}]$
161.3.j.a 161.j 23.d $240$ $4.387$ None None 161.3.j.a \(2\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$
161.3.l.a 161.l 161.l $20$ $4.387$ 20.0.\(\cdots\).2 \(\Q(\sqrt{-7}) \) None 161.3.l.a \(6\) \(0\) \(0\) \(14\) $\mathrm{U}(1)[D_{22}]$ \(q+(\beta _{4}-\beta _{5}+2\beta _{6}-\beta _{14})q^{2}+(-3\beta _{2}+\cdots)q^{4}+\cdots\)
161.3.l.b 161.l 161.l $280$ $4.387$ None None 161.3.l.b \(-22\) \(0\) \(0\) \(-29\) $\mathrm{SU}(2)[C_{22}]$
161.3.n.a 161.n 161.n $600$ $4.387$ None None 161.3.n.a \(-11\) \(-27\) \(-33\) \(-12\) $\mathrm{SU}(2)[C_{66}]$
161.3.p.a 161.p 161.p $600$ $4.387$ None None 161.3.p.a \(-7\) \(-9\) \(-11\) \(-22\) $\mathrm{SU}(2)[C_{66}]$
161.4.a.a 161.a 1.a $5$ $9.499$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None None 161.4.a.a \(-4\) \(-11\) \(-4\) \(35\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-2-\beta _{4})q^{3}+\beta _{2}q^{4}+\cdots\)
161.4.a.b 161.a 1.a $8$ $9.499$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None 161.4.a.b \(0\) \(-3\) \(-24\) \(-56\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(3+\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
161.4.a.c 161.a 1.a $9$ $9.499$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None None 161.4.a.c \(0\) \(9\) \(-4\) \(-63\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{4})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
161.4.a.d 161.a 1.a $12$ $9.499$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None None 161.4.a.d \(4\) \(1\) \(16\) \(84\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(6+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
161.4.c.a 161.c 161.c $2$ $9.499$ \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{-7}) \) None 161.4.c.a \(10\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+5q^{2}+17q^{4}+7\beta q^{7}+45q^{8}+3^{3}q^{9}+\cdots\)
161.4.c.b 161.c 161.c $8$ $9.499$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None 161.4.c.b \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{2}q^{3}-7q^{4}+(-\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
161.4.c.c 161.c 161.c $36$ $9.499$ None None 161.4.c.c \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
161.4.e.a 161.e 7.c $44$ $9.499$ None None 161.4.e.a \(0\) \(-6\) \(-20\) \(-12\) $\mathrm{SU}(2)[C_{3}]$
161.4.e.b 161.e 7.c $44$ $9.499$ None None 161.4.e.b \(0\) \(18\) \(20\) \(-44\) $\mathrm{SU}(2)[C_{3}]$
161.4.g.a 161.g 161.g $92$ $9.499$ None None 161.4.g.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
161.4.i.a 161.i 23.c $170$ $9.499$ None None 161.4.i.a \(0\) \(10\) \(10\) \(-119\) $\mathrm{SU}(2)[C_{11}]$
161.4.i.b 161.i 23.c $190$ $9.499$ None None 161.4.i.b \(2\) \(-2\) \(-26\) \(133\) $\mathrm{SU}(2)[C_{11}]$
161.4.k.a 161.k 161.k $20$ $9.499$ 20.0.\(\cdots\).2 \(\Q(\sqrt{-7}) \) None 161.4.k.a \(-10\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{22}]$ \(q+(-3-\beta _{2}-3\beta _{3}-3\beta _{5}+3\beta _{6}-3\beta _{8}+\cdots)q^{2}+\cdots\)
161.4.k.b 161.k 161.k $440$ $9.499$ None None 161.4.k.b \(-6\) \(0\) \(0\) \(-11\) $\mathrm{SU}(2)[C_{22}]$
161.4.m.a 161.m 161.m $920$ $9.499$ None None 161.4.m.a \(-7\) \(-9\) \(3\) \(-22\) $\mathrm{SU}(2)[C_{33}]$
161.4.o.a 161.o 161.o $920$ $9.499$ None None 161.4.o.a \(-11\) \(-27\) \(-33\) \(-22\) $\mathrm{SU}(2)[C_{66}]$
161.5.b.a 161.b 7.b $60$ $16.643$ None None 161.5.b.a \(0\) \(0\) \(0\) \(-130\) $\mathrm{SU}(2)[C_{2}]$
161.5.d.a 161.d 23.b $48$ $16.643$ None None 161.5.d.a \(6\) \(20\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
161.6.a.a 161.a 1.a $10$ $25.822$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None None 161.6.a.a \(-8\) \(-2\) \(-92\) \(490\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-\beta _{3}q^{3}+(7-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
161.6.a.b 161.a 1.a $13$ $25.822$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None None 161.6.a.b \(0\) \(-12\) \(8\) \(-637\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{4})q^{3}+(12+\beta _{1}+\cdots)q^{4}+\cdots\)
161.6.a.c 161.a 1.a $14$ $25.822$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None None 161.6.a.c \(0\) \(24\) \(108\) \(-686\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{1}-\beta _{2})q^{3}+(19+\beta _{1}+\cdots)q^{4}+\cdots\)
161.6.a.d 161.a 1.a $17$ $25.822$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None None 161.6.a.d \(8\) \(34\) \(8\) \(833\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{1}-\beta _{3})q^{3}+(20+\beta _{1}+\cdots)q^{4}+\cdots\)
161.6.c.a 161.c 161.c $2$ $25.822$ \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{-7}) \) None 161.6.c.a \(-22\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-11q^{2}+89q^{4}+7^{2}\beta q^{7}-627q^{8}+\cdots\)
161.6.c.b 161.c 161.c $76$ $25.822$ None None 161.6.c.b \(16\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
161.7.b.a 161.b 7.b $88$ $37.039$ None None 161.7.b.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$
Next   displayed columns for results