Properties

Label 161.4.a.b.1.2
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.78325\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.78325 q^{2} -9.05000 q^{3} +6.31297 q^{4} -4.56958 q^{5} +34.2384 q^{6} -7.00000 q^{7} +6.38246 q^{8} +54.9026 q^{9} +17.2879 q^{10} -4.84425 q^{11} -57.1324 q^{12} +67.7189 q^{13} +26.4827 q^{14} +41.3547 q^{15} -74.6502 q^{16} +67.9787 q^{17} -207.710 q^{18} -72.3091 q^{19} -28.8476 q^{20} +63.3500 q^{21} +18.3270 q^{22} +23.0000 q^{23} -57.7613 q^{24} -104.119 q^{25} -256.197 q^{26} -252.518 q^{27} -44.1908 q^{28} +110.369 q^{29} -156.455 q^{30} -155.459 q^{31} +231.360 q^{32} +43.8405 q^{33} -257.180 q^{34} +31.9871 q^{35} +346.598 q^{36} +13.3091 q^{37} +273.563 q^{38} -612.856 q^{39} -29.1651 q^{40} -310.511 q^{41} -239.669 q^{42} +364.413 q^{43} -30.5816 q^{44} -250.882 q^{45} -87.0147 q^{46} +134.720 q^{47} +675.584 q^{48} +49.0000 q^{49} +393.908 q^{50} -615.208 q^{51} +427.507 q^{52} +590.866 q^{53} +955.340 q^{54} +22.1362 q^{55} -44.6772 q^{56} +654.398 q^{57} -417.552 q^{58} -415.205 q^{59} +261.071 q^{60} -322.759 q^{61} +588.141 q^{62} -384.318 q^{63} -278.093 q^{64} -309.447 q^{65} -165.859 q^{66} -589.265 q^{67} +429.147 q^{68} -208.150 q^{69} -121.015 q^{70} +786.036 q^{71} +350.413 q^{72} -758.113 q^{73} -50.3517 q^{74} +942.277 q^{75} -456.485 q^{76} +33.9097 q^{77} +2318.59 q^{78} +446.730 q^{79} +341.120 q^{80} +802.923 q^{81} +1174.74 q^{82} -1478.21 q^{83} +399.927 q^{84} -310.634 q^{85} -1378.67 q^{86} -998.837 q^{87} -30.9182 q^{88} +237.223 q^{89} +949.148 q^{90} -474.032 q^{91} +145.198 q^{92} +1406.91 q^{93} -509.679 q^{94} +330.422 q^{95} -2093.81 q^{96} -340.246 q^{97} -185.379 q^{98} -265.962 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} + 24 q^{4} - 24 q^{5} - 41 q^{6} - 56 q^{7} - 69 q^{8} + 95 q^{9} - 30 q^{10} - 98 q^{11} - 131 q^{12} - 145 q^{13} - 232 q^{15} - 76 q^{16} - 96 q^{17} - 69 q^{18} - 226 q^{19} - 22 q^{20}+ \cdots - 1676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.78325 −1.33758 −0.668790 0.743451i \(-0.733188\pi\)
−0.668790 + 0.743451i \(0.733188\pi\)
\(3\) −9.05000 −1.74167 −0.870837 0.491572i \(-0.836423\pi\)
−0.870837 + 0.491572i \(0.836423\pi\)
\(4\) 6.31297 0.789121
\(5\) −4.56958 −0.408716 −0.204358 0.978896i \(-0.565511\pi\)
−0.204358 + 0.978896i \(0.565511\pi\)
\(6\) 34.2384 2.32963
\(7\) −7.00000 −0.377964
\(8\) 6.38246 0.282067
\(9\) 54.9026 2.03343
\(10\) 17.2879 0.546690
\(11\) −4.84425 −0.132781 −0.0663907 0.997794i \(-0.521148\pi\)
−0.0663907 + 0.997794i \(0.521148\pi\)
\(12\) −57.1324 −1.37439
\(13\) 67.7189 1.44476 0.722378 0.691498i \(-0.243049\pi\)
0.722378 + 0.691498i \(0.243049\pi\)
\(14\) 26.4827 0.505558
\(15\) 41.3547 0.711849
\(16\) −74.6502 −1.16641
\(17\) 67.9787 0.969839 0.484919 0.874559i \(-0.338849\pi\)
0.484919 + 0.874559i \(0.338849\pi\)
\(18\) −207.710 −2.71987
\(19\) −72.3091 −0.873097 −0.436549 0.899681i \(-0.643799\pi\)
−0.436549 + 0.899681i \(0.643799\pi\)
\(20\) −28.8476 −0.322526
\(21\) 63.3500 0.658291
\(22\) 18.3270 0.177606
\(23\) 23.0000 0.208514
\(24\) −57.7613 −0.491270
\(25\) −104.119 −0.832952
\(26\) −256.197 −1.93248
\(27\) −252.518 −1.79990
\(28\) −44.1908 −0.298260
\(29\) 110.369 0.706723 0.353361 0.935487i \(-0.385039\pi\)
0.353361 + 0.935487i \(0.385039\pi\)
\(30\) −156.455 −0.952156
\(31\) −155.459 −0.900688 −0.450344 0.892855i \(-0.648699\pi\)
−0.450344 + 0.892855i \(0.648699\pi\)
\(32\) 231.360 1.27810
\(33\) 43.8405 0.231262
\(34\) −257.180 −1.29724
\(35\) 31.9871 0.154480
\(36\) 346.598 1.60462
\(37\) 13.3091 0.0591353 0.0295677 0.999563i \(-0.490587\pi\)
0.0295677 + 0.999563i \(0.490587\pi\)
\(38\) 273.563 1.16784
\(39\) −612.856 −2.51630
\(40\) −29.1651 −0.115285
\(41\) −310.511 −1.18277 −0.591386 0.806389i \(-0.701419\pi\)
−0.591386 + 0.806389i \(0.701419\pi\)
\(42\) −239.669 −0.880517
\(43\) 364.413 1.29238 0.646192 0.763175i \(-0.276360\pi\)
0.646192 + 0.763175i \(0.276360\pi\)
\(44\) −30.5816 −0.104781
\(45\) −250.882 −0.831094
\(46\) −87.0147 −0.278905
\(47\) 134.720 0.418105 0.209052 0.977904i \(-0.432962\pi\)
0.209052 + 0.977904i \(0.432962\pi\)
\(48\) 675.584 2.03150
\(49\) 49.0000 0.142857
\(50\) 393.908 1.11414
\(51\) −615.208 −1.68914
\(52\) 427.507 1.14009
\(53\) 590.866 1.53135 0.765676 0.643226i \(-0.222405\pi\)
0.765676 + 0.643226i \(0.222405\pi\)
\(54\) 955.340 2.40751
\(55\) 22.1362 0.0542699
\(56\) −44.6772 −0.106611
\(57\) 654.398 1.52065
\(58\) −417.552 −0.945298
\(59\) −415.205 −0.916188 −0.458094 0.888904i \(-0.651468\pi\)
−0.458094 + 0.888904i \(0.651468\pi\)
\(60\) 261.071 0.561735
\(61\) −322.759 −0.677459 −0.338730 0.940884i \(-0.609997\pi\)
−0.338730 + 0.940884i \(0.609997\pi\)
\(62\) 588.141 1.20474
\(63\) −384.318 −0.768564
\(64\) −278.093 −0.543150
\(65\) −309.447 −0.590495
\(66\) −165.859 −0.309332
\(67\) −589.265 −1.07448 −0.537241 0.843429i \(-0.680533\pi\)
−0.537241 + 0.843429i \(0.680533\pi\)
\(68\) 429.147 0.765320
\(69\) −208.150 −0.363164
\(70\) −121.015 −0.206629
\(71\) 786.036 1.31388 0.656939 0.753944i \(-0.271851\pi\)
0.656939 + 0.753944i \(0.271851\pi\)
\(72\) 350.413 0.573564
\(73\) −758.113 −1.21548 −0.607742 0.794134i \(-0.707925\pi\)
−0.607742 + 0.794134i \(0.707925\pi\)
\(74\) −50.3517 −0.0790982
\(75\) 942.277 1.45073
\(76\) −456.485 −0.688979
\(77\) 33.9097 0.0501867
\(78\) 2318.59 3.36575
\(79\) 446.730 0.636216 0.318108 0.948054i \(-0.396952\pi\)
0.318108 + 0.948054i \(0.396952\pi\)
\(80\) 341.120 0.476730
\(81\) 802.923 1.10140
\(82\) 1174.74 1.58205
\(83\) −1478.21 −1.95487 −0.977437 0.211227i \(-0.932254\pi\)
−0.977437 + 0.211227i \(0.932254\pi\)
\(84\) 399.927 0.519471
\(85\) −310.634 −0.396388
\(86\) −1378.67 −1.72867
\(87\) −998.837 −1.23088
\(88\) −30.9182 −0.0374533
\(89\) 237.223 0.282534 0.141267 0.989972i \(-0.454882\pi\)
0.141267 + 0.989972i \(0.454882\pi\)
\(90\) 949.148 1.11165
\(91\) −474.032 −0.546067
\(92\) 145.198 0.164543
\(93\) 1406.91 1.56870
\(94\) −509.679 −0.559249
\(95\) 330.422 0.356848
\(96\) −2093.81 −2.22603
\(97\) −340.246 −0.356152 −0.178076 0.984017i \(-0.556987\pi\)
−0.178076 + 0.984017i \(0.556987\pi\)
\(98\) −185.379 −0.191083
\(99\) −265.962 −0.270002
\(100\) −657.300 −0.657300
\(101\) 432.577 0.426169 0.213084 0.977034i \(-0.431649\pi\)
0.213084 + 0.977034i \(0.431649\pi\)
\(102\) 2327.48 2.25936
\(103\) −2043.55 −1.95492 −0.977462 0.211111i \(-0.932292\pi\)
−0.977462 + 0.211111i \(0.932292\pi\)
\(104\) 432.213 0.407519
\(105\) −289.483 −0.269054
\(106\) −2235.39 −2.04831
\(107\) 1328.50 1.20029 0.600143 0.799893i \(-0.295110\pi\)
0.600143 + 0.799893i \(0.295110\pi\)
\(108\) −1594.14 −1.42034
\(109\) −1278.56 −1.12352 −0.561761 0.827299i \(-0.689876\pi\)
−0.561761 + 0.827299i \(0.689876\pi\)
\(110\) −83.7467 −0.0725903
\(111\) −120.448 −0.102994
\(112\) 522.551 0.440861
\(113\) −602.412 −0.501506 −0.250753 0.968051i \(-0.580678\pi\)
−0.250753 + 0.968051i \(0.580678\pi\)
\(114\) −2475.75 −2.03399
\(115\) −105.100 −0.0852231
\(116\) 696.754 0.557690
\(117\) 3717.94 2.93781
\(118\) 1570.82 1.22547
\(119\) −475.851 −0.366565
\(120\) 263.945 0.200790
\(121\) −1307.53 −0.982369
\(122\) 1221.08 0.906156
\(123\) 2810.12 2.06000
\(124\) −981.410 −0.710752
\(125\) 1046.98 0.749156
\(126\) 1453.97 1.02802
\(127\) −1697.57 −1.18610 −0.593052 0.805164i \(-0.702077\pi\)
−0.593052 + 0.805164i \(0.702077\pi\)
\(128\) −798.790 −0.551591
\(129\) −3297.94 −2.25091
\(130\) 1170.71 0.789834
\(131\) 1050.46 0.700604 0.350302 0.936637i \(-0.386079\pi\)
0.350302 + 0.936637i \(0.386079\pi\)
\(132\) 276.764 0.182494
\(133\) 506.164 0.330000
\(134\) 2229.34 1.43720
\(135\) 1153.90 0.735645
\(136\) 433.871 0.273560
\(137\) −1969.92 −1.22848 −0.614241 0.789119i \(-0.710538\pi\)
−0.614241 + 0.789119i \(0.710538\pi\)
\(138\) 787.484 0.485761
\(139\) −1548.94 −0.945178 −0.472589 0.881283i \(-0.656680\pi\)
−0.472589 + 0.881283i \(0.656680\pi\)
\(140\) 201.933 0.121903
\(141\) −1219.22 −0.728202
\(142\) −2973.77 −1.75742
\(143\) −328.047 −0.191837
\(144\) −4098.49 −2.37181
\(145\) −504.339 −0.288849
\(146\) 2868.13 1.62581
\(147\) −443.450 −0.248811
\(148\) 84.0201 0.0466649
\(149\) −1280.07 −0.703811 −0.351905 0.936036i \(-0.614466\pi\)
−0.351905 + 0.936036i \(0.614466\pi\)
\(150\) −3564.87 −1.94047
\(151\) −1822.48 −0.982196 −0.491098 0.871104i \(-0.663404\pi\)
−0.491098 + 0.871104i \(0.663404\pi\)
\(152\) −461.510 −0.246272
\(153\) 3732.21 1.97210
\(154\) −128.289 −0.0671287
\(155\) 710.384 0.368125
\(156\) −3868.94 −1.98566
\(157\) 1938.19 0.985249 0.492624 0.870242i \(-0.336038\pi\)
0.492624 + 0.870242i \(0.336038\pi\)
\(158\) −1690.09 −0.850991
\(159\) −5347.34 −2.66712
\(160\) −1057.22 −0.522379
\(161\) −161.000 −0.0788110
\(162\) −3037.66 −1.47322
\(163\) 1177.55 0.565844 0.282922 0.959143i \(-0.408696\pi\)
0.282922 + 0.959143i \(0.408696\pi\)
\(164\) −1960.24 −0.933350
\(165\) −200.333 −0.0945204
\(166\) 5592.43 2.61480
\(167\) −1059.81 −0.491080 −0.245540 0.969386i \(-0.578965\pi\)
−0.245540 + 0.969386i \(0.578965\pi\)
\(168\) 404.329 0.185682
\(169\) 2388.85 1.08732
\(170\) 1175.21 0.530201
\(171\) −3969.96 −1.77538
\(172\) 2300.53 1.01985
\(173\) −924.034 −0.406087 −0.203043 0.979170i \(-0.565083\pi\)
−0.203043 + 0.979170i \(0.565083\pi\)
\(174\) 3778.85 1.64640
\(175\) 728.833 0.314826
\(176\) 361.624 0.154878
\(177\) 3757.61 1.59570
\(178\) −897.472 −0.377912
\(179\) −1223.97 −0.511082 −0.255541 0.966798i \(-0.582254\pi\)
−0.255541 + 0.966798i \(0.582254\pi\)
\(180\) −1583.81 −0.655834
\(181\) 2806.42 1.15248 0.576242 0.817279i \(-0.304519\pi\)
0.576242 + 0.817279i \(0.304519\pi\)
\(182\) 1793.38 0.730408
\(183\) 2920.97 1.17991
\(184\) 146.797 0.0588151
\(185\) −60.8171 −0.0241695
\(186\) −5322.68 −2.09827
\(187\) −329.306 −0.128777
\(188\) 850.483 0.329935
\(189\) 1767.63 0.680297
\(190\) −1250.07 −0.477313
\(191\) −233.238 −0.0883586 −0.0441793 0.999024i \(-0.514067\pi\)
−0.0441793 + 0.999024i \(0.514067\pi\)
\(192\) 2516.74 0.945990
\(193\) 4808.96 1.79356 0.896778 0.442481i \(-0.145902\pi\)
0.896778 + 0.442481i \(0.145902\pi\)
\(194\) 1287.24 0.476382
\(195\) 2800.49 1.02845
\(196\) 309.335 0.112732
\(197\) 4546.05 1.64412 0.822062 0.569398i \(-0.192824\pi\)
0.822062 + 0.569398i \(0.192824\pi\)
\(198\) 1006.20 0.361149
\(199\) 1465.84 0.522163 0.261081 0.965317i \(-0.415921\pi\)
0.261081 + 0.965317i \(0.415921\pi\)
\(200\) −664.535 −0.234949
\(201\) 5332.85 1.87140
\(202\) −1636.55 −0.570035
\(203\) −772.581 −0.267116
\(204\) −3883.79 −1.33294
\(205\) 1418.90 0.483417
\(206\) 7731.27 2.61487
\(207\) 1262.76 0.423999
\(208\) −5055.23 −1.68518
\(209\) 350.283 0.115931
\(210\) 1095.19 0.359881
\(211\) 2992.67 0.976415 0.488208 0.872728i \(-0.337651\pi\)
0.488208 + 0.872728i \(0.337651\pi\)
\(212\) 3730.12 1.20842
\(213\) −7113.63 −2.28835
\(214\) −5026.03 −1.60548
\(215\) −1665.22 −0.528218
\(216\) −1611.69 −0.507692
\(217\) 1088.22 0.340428
\(218\) 4837.12 1.50280
\(219\) 6860.92 2.11698
\(220\) 139.745 0.0428255
\(221\) 4603.44 1.40118
\(222\) 455.683 0.137763
\(223\) −2558.55 −0.768309 −0.384154 0.923269i \(-0.625507\pi\)
−0.384154 + 0.923269i \(0.625507\pi\)
\(224\) −1619.52 −0.483076
\(225\) −5716.40 −1.69375
\(226\) 2279.08 0.670805
\(227\) 1915.04 0.559937 0.279968 0.960009i \(-0.409676\pi\)
0.279968 + 0.960009i \(0.409676\pi\)
\(228\) 4131.19 1.19998
\(229\) −4612.32 −1.33096 −0.665482 0.746414i \(-0.731774\pi\)
−0.665482 + 0.746414i \(0.731774\pi\)
\(230\) 397.621 0.113993
\(231\) −306.883 −0.0874088
\(232\) 704.424 0.199343
\(233\) −5894.34 −1.65730 −0.828651 0.559766i \(-0.810891\pi\)
−0.828651 + 0.559766i \(0.810891\pi\)
\(234\) −14065.9 −3.92956
\(235\) −615.613 −0.170886
\(236\) −2621.18 −0.722983
\(237\) −4042.91 −1.10808
\(238\) 1800.26 0.490310
\(239\) −6769.93 −1.83226 −0.916130 0.400881i \(-0.868704\pi\)
−0.916130 + 0.400881i \(0.868704\pi\)
\(240\) −3087.14 −0.830307
\(241\) 1199.61 0.320639 0.160319 0.987065i \(-0.448748\pi\)
0.160319 + 0.987065i \(0.448748\pi\)
\(242\) 4946.72 1.31400
\(243\) −448.459 −0.118390
\(244\) −2037.57 −0.534597
\(245\) −223.909 −0.0583879
\(246\) −10631.4 −2.75542
\(247\) −4896.69 −1.26141
\(248\) −992.213 −0.254055
\(249\) 13377.8 3.40475
\(250\) −3960.97 −1.00206
\(251\) −5410.12 −1.36049 −0.680247 0.732983i \(-0.738127\pi\)
−0.680247 + 0.732983i \(0.738127\pi\)
\(252\) −2426.19 −0.606490
\(253\) −111.418 −0.0276869
\(254\) 6422.34 1.58651
\(255\) 2811.24 0.690379
\(256\) 5246.76 1.28095
\(257\) 4412.16 1.07091 0.535453 0.844565i \(-0.320141\pi\)
0.535453 + 0.844565i \(0.320141\pi\)
\(258\) 12476.9 3.01078
\(259\) −93.1639 −0.0223510
\(260\) −1953.53 −0.465972
\(261\) 6059.53 1.43707
\(262\) −3974.15 −0.937114
\(263\) 617.492 0.144776 0.0723882 0.997377i \(-0.476938\pi\)
0.0723882 + 0.997377i \(0.476938\pi\)
\(264\) 279.810 0.0652315
\(265\) −2700.01 −0.625888
\(266\) −1914.94 −0.441401
\(267\) −2146.87 −0.492083
\(268\) −3720.01 −0.847896
\(269\) 4413.54 1.00036 0.500182 0.865920i \(-0.333266\pi\)
0.500182 + 0.865920i \(0.333266\pi\)
\(270\) −4365.50 −0.983985
\(271\) −4540.10 −1.01768 −0.508841 0.860861i \(-0.669926\pi\)
−0.508841 + 0.860861i \(0.669926\pi\)
\(272\) −5074.62 −1.13123
\(273\) 4289.99 0.951070
\(274\) 7452.71 1.64319
\(275\) 504.378 0.110601
\(276\) −1314.05 −0.286580
\(277\) 3713.29 0.805451 0.402726 0.915321i \(-0.368063\pi\)
0.402726 + 0.915321i \(0.368063\pi\)
\(278\) 5860.04 1.26425
\(279\) −8535.12 −1.83148
\(280\) 204.156 0.0435738
\(281\) −8256.83 −1.75289 −0.876443 0.481505i \(-0.840090\pi\)
−0.876443 + 0.481505i \(0.840090\pi\)
\(282\) 4612.60 0.974029
\(283\) −1391.40 −0.292262 −0.146131 0.989265i \(-0.546682\pi\)
−0.146131 + 0.989265i \(0.546682\pi\)
\(284\) 4962.22 1.03681
\(285\) −2990.32 −0.621514
\(286\) 1241.08 0.256597
\(287\) 2173.57 0.447045
\(288\) 12702.3 2.59892
\(289\) −291.896 −0.0594129
\(290\) 1908.04 0.386358
\(291\) 3079.23 0.620301
\(292\) −4785.94 −0.959165
\(293\) −8477.87 −1.69038 −0.845192 0.534463i \(-0.820514\pi\)
−0.845192 + 0.534463i \(0.820514\pi\)
\(294\) 1677.68 0.332804
\(295\) 1897.31 0.374460
\(296\) 84.9449 0.0166801
\(297\) 1223.26 0.238993
\(298\) 4842.84 0.941403
\(299\) 1557.53 0.301253
\(300\) 5948.56 1.14480
\(301\) −2550.89 −0.488475
\(302\) 6894.91 1.31377
\(303\) −3914.83 −0.742247
\(304\) 5397.89 1.01839
\(305\) 1474.87 0.276888
\(306\) −14119.9 −2.63784
\(307\) −10382.3 −1.93013 −0.965067 0.262004i \(-0.915617\pi\)
−0.965067 + 0.262004i \(0.915617\pi\)
\(308\) 214.071 0.0396034
\(309\) 18494.2 3.40484
\(310\) −2687.56 −0.492397
\(311\) 2039.97 0.371949 0.185974 0.982555i \(-0.440456\pi\)
0.185974 + 0.982555i \(0.440456\pi\)
\(312\) −3911.53 −0.709765
\(313\) −2677.77 −0.483567 −0.241784 0.970330i \(-0.577732\pi\)
−0.241784 + 0.970330i \(0.577732\pi\)
\(314\) −7332.64 −1.31785
\(315\) 1756.17 0.314124
\(316\) 2820.20 0.502052
\(317\) −2581.29 −0.457350 −0.228675 0.973503i \(-0.573439\pi\)
−0.228675 + 0.973503i \(0.573439\pi\)
\(318\) 20230.3 3.56748
\(319\) −534.654 −0.0938397
\(320\) 1270.77 0.221994
\(321\) −12022.9 −2.09051
\(322\) 609.103 0.105416
\(323\) −4915.48 −0.846763
\(324\) 5068.83 0.869140
\(325\) −7050.82 −1.20341
\(326\) −4454.95 −0.756862
\(327\) 11571.0 1.95681
\(328\) −1981.82 −0.333621
\(329\) −943.040 −0.158029
\(330\) 757.908 0.126429
\(331\) −2719.32 −0.451564 −0.225782 0.974178i \(-0.572494\pi\)
−0.225782 + 0.974178i \(0.572494\pi\)
\(332\) −9331.89 −1.54263
\(333\) 730.705 0.120247
\(334\) 4009.51 0.656859
\(335\) 2692.69 0.439157
\(336\) −4729.09 −0.767836
\(337\) −571.658 −0.0924041 −0.0462021 0.998932i \(-0.514712\pi\)
−0.0462021 + 0.998932i \(0.514712\pi\)
\(338\) −9037.60 −1.45438
\(339\) 5451.83 0.873460
\(340\) −1961.02 −0.312798
\(341\) 753.084 0.119595
\(342\) 15019.3 2.37471
\(343\) −343.000 −0.0539949
\(344\) 2325.85 0.364540
\(345\) 951.158 0.148431
\(346\) 3495.85 0.543174
\(347\) −1444.25 −0.223434 −0.111717 0.993740i \(-0.535635\pi\)
−0.111717 + 0.993740i \(0.535635\pi\)
\(348\) −6305.63 −0.971314
\(349\) 6055.83 0.928829 0.464414 0.885618i \(-0.346265\pi\)
0.464414 + 0.885618i \(0.346265\pi\)
\(350\) −2757.35 −0.421105
\(351\) −17100.3 −2.60041
\(352\) −1120.77 −0.169708
\(353\) −6726.97 −1.01428 −0.507139 0.861864i \(-0.669297\pi\)
−0.507139 + 0.861864i \(0.669297\pi\)
\(354\) −14216.0 −2.13438
\(355\) −3591.85 −0.537002
\(356\) 1497.58 0.222954
\(357\) 4306.45 0.638436
\(358\) 4630.57 0.683613
\(359\) 8865.95 1.30342 0.651709 0.758469i \(-0.274052\pi\)
0.651709 + 0.758469i \(0.274052\pi\)
\(360\) −1601.24 −0.234425
\(361\) −1630.39 −0.237701
\(362\) −10617.4 −1.54154
\(363\) 11833.2 1.71097
\(364\) −2992.55 −0.430913
\(365\) 3464.26 0.496787
\(366\) −11050.7 −1.57823
\(367\) 6921.55 0.984474 0.492237 0.870461i \(-0.336179\pi\)
0.492237 + 0.870461i \(0.336179\pi\)
\(368\) −1716.95 −0.243213
\(369\) −17047.8 −2.40508
\(370\) 230.086 0.0323287
\(371\) −4136.06 −0.578797
\(372\) 8881.77 1.23790
\(373\) −8441.89 −1.17186 −0.585931 0.810361i \(-0.699271\pi\)
−0.585931 + 0.810361i \(0.699271\pi\)
\(374\) 1245.85 0.172249
\(375\) −9475.15 −1.30479
\(376\) 859.844 0.117934
\(377\) 7474.04 1.02104
\(378\) −6687.38 −0.909951
\(379\) 8366.99 1.13399 0.566996 0.823720i \(-0.308105\pi\)
0.566996 + 0.823720i \(0.308105\pi\)
\(380\) 2085.95 0.281597
\(381\) 15363.0 2.06581
\(382\) 882.397 0.118187
\(383\) 5063.95 0.675603 0.337802 0.941217i \(-0.390317\pi\)
0.337802 + 0.941217i \(0.390317\pi\)
\(384\) 7229.05 0.960692
\(385\) −154.953 −0.0205121
\(386\) −18193.5 −2.39902
\(387\) 20007.2 2.62797
\(388\) −2147.96 −0.281047
\(389\) −5601.27 −0.730066 −0.365033 0.930995i \(-0.618942\pi\)
−0.365033 + 0.930995i \(0.618942\pi\)
\(390\) −10595.0 −1.37563
\(391\) 1563.51 0.202225
\(392\) 312.740 0.0402953
\(393\) −9506.67 −1.22022
\(394\) −17198.8 −2.19915
\(395\) −2041.37 −0.260032
\(396\) −1679.01 −0.213064
\(397\) 15436.0 1.95142 0.975709 0.219070i \(-0.0703023\pi\)
0.975709 + 0.219070i \(0.0703023\pi\)
\(398\) −5545.62 −0.698434
\(399\) −4580.78 −0.574752
\(400\) 7772.50 0.971562
\(401\) −9034.43 −1.12508 −0.562541 0.826769i \(-0.690176\pi\)
−0.562541 + 0.826769i \(0.690176\pi\)
\(402\) −20175.5 −2.50314
\(403\) −10527.5 −1.30127
\(404\) 2730.85 0.336299
\(405\) −3669.02 −0.450161
\(406\) 2922.87 0.357289
\(407\) −64.4727 −0.00785207
\(408\) −3926.54 −0.476452
\(409\) 1988.19 0.240366 0.120183 0.992752i \(-0.461652\pi\)
0.120183 + 0.992752i \(0.461652\pi\)
\(410\) −5368.06 −0.646609
\(411\) 17827.8 2.13961
\(412\) −12900.9 −1.54267
\(413\) 2906.43 0.346286
\(414\) −4777.33 −0.567133
\(415\) 6754.79 0.798988
\(416\) 15667.5 1.84654
\(417\) 14018.0 1.64619
\(418\) −1325.21 −0.155067
\(419\) −11899.2 −1.38738 −0.693691 0.720273i \(-0.744017\pi\)
−0.693691 + 0.720273i \(0.744017\pi\)
\(420\) −1827.50 −0.212316
\(421\) −5809.77 −0.672567 −0.336284 0.941761i \(-0.609170\pi\)
−0.336284 + 0.941761i \(0.609170\pi\)
\(422\) −11322.0 −1.30603
\(423\) 7396.47 0.850186
\(424\) 3771.18 0.431945
\(425\) −7077.87 −0.807829
\(426\) 26912.6 3.06085
\(427\) 2259.31 0.256056
\(428\) 8386.76 0.947171
\(429\) 2968.83 0.334117
\(430\) 6299.93 0.706533
\(431\) −2165.59 −0.242025 −0.121013 0.992651i \(-0.538614\pi\)
−0.121013 + 0.992651i \(0.538614\pi\)
\(432\) 18850.5 2.09941
\(433\) −13371.3 −1.48402 −0.742011 0.670388i \(-0.766128\pi\)
−0.742011 + 0.670388i \(0.766128\pi\)
\(434\) −4116.99 −0.455350
\(435\) 4564.27 0.503080
\(436\) −8071.52 −0.886595
\(437\) −1663.11 −0.182053
\(438\) −25956.6 −2.83163
\(439\) −12889.5 −1.40132 −0.700662 0.713494i \(-0.747112\pi\)
−0.700662 + 0.713494i \(0.747112\pi\)
\(440\) 141.283 0.0153078
\(441\) 2690.23 0.290490
\(442\) −17416.0 −1.87419
\(443\) −1108.70 −0.118908 −0.0594539 0.998231i \(-0.518936\pi\)
−0.0594539 + 0.998231i \(0.518936\pi\)
\(444\) −760.382 −0.0812751
\(445\) −1084.01 −0.115476
\(446\) 9679.61 1.02767
\(447\) 11584.7 1.22581
\(448\) 1946.65 0.205291
\(449\) −11525.5 −1.21141 −0.605705 0.795690i \(-0.707109\pi\)
−0.605705 + 0.795690i \(0.707109\pi\)
\(450\) 21626.6 2.26552
\(451\) 1504.19 0.157050
\(452\) −3803.01 −0.395749
\(453\) 16493.5 1.71067
\(454\) −7245.07 −0.748960
\(455\) 2166.13 0.223186
\(456\) 4176.67 0.428926
\(457\) 8740.83 0.894702 0.447351 0.894358i \(-0.352367\pi\)
0.447351 + 0.894358i \(0.352367\pi\)
\(458\) 17449.6 1.78027
\(459\) −17165.9 −1.74561
\(460\) −663.495 −0.0672513
\(461\) −4066.14 −0.410800 −0.205400 0.978678i \(-0.565850\pi\)
−0.205400 + 0.978678i \(0.565850\pi\)
\(462\) 1161.02 0.116916
\(463\) 11258.3 1.13006 0.565031 0.825070i \(-0.308864\pi\)
0.565031 + 0.825070i \(0.308864\pi\)
\(464\) −8239.04 −0.824328
\(465\) −6428.98 −0.641154
\(466\) 22299.8 2.21677
\(467\) 10961.4 1.08615 0.543076 0.839684i \(-0.317260\pi\)
0.543076 + 0.839684i \(0.317260\pi\)
\(468\) 23471.2 2.31829
\(469\) 4124.86 0.406116
\(470\) 2329.02 0.228574
\(471\) −17540.6 −1.71598
\(472\) −2650.03 −0.258427
\(473\) −1765.31 −0.171605
\(474\) 15295.3 1.48215
\(475\) 7528.75 0.727248
\(476\) −3004.03 −0.289264
\(477\) 32440.1 3.11390
\(478\) 25612.3 2.45079
\(479\) 13529.8 1.29059 0.645294 0.763934i \(-0.276735\pi\)
0.645294 + 0.763934i \(0.276735\pi\)
\(480\) 9567.85 0.909813
\(481\) 901.279 0.0854361
\(482\) −4538.44 −0.428880
\(483\) 1457.05 0.137263
\(484\) −8254.42 −0.775208
\(485\) 1554.78 0.145565
\(486\) 1696.63 0.158355
\(487\) 14377.0 1.33775 0.668875 0.743375i \(-0.266776\pi\)
0.668875 + 0.743375i \(0.266776\pi\)
\(488\) −2059.99 −0.191089
\(489\) −10656.8 −0.985517
\(490\) 847.105 0.0780986
\(491\) 11982.1 1.10131 0.550655 0.834733i \(-0.314378\pi\)
0.550655 + 0.834733i \(0.314378\pi\)
\(492\) 17740.2 1.62559
\(493\) 7502.72 0.685407
\(494\) 18525.4 1.68724
\(495\) 1215.33 0.110354
\(496\) 11605.1 1.05057
\(497\) −5502.25 −0.496599
\(498\) −50611.5 −4.55413
\(499\) 16885.3 1.51481 0.757405 0.652946i \(-0.226467\pi\)
0.757405 + 0.652946i \(0.226467\pi\)
\(500\) 6609.53 0.591175
\(501\) 9591.26 0.855301
\(502\) 20467.8 1.81977
\(503\) −244.700 −0.0216912 −0.0108456 0.999941i \(-0.503452\pi\)
−0.0108456 + 0.999941i \(0.503452\pi\)
\(504\) −2452.89 −0.216787
\(505\) −1976.70 −0.174182
\(506\) 421.521 0.0370334
\(507\) −21619.1 −1.89376
\(508\) −10716.7 −0.935980
\(509\) 3721.25 0.324050 0.162025 0.986787i \(-0.448197\pi\)
0.162025 + 0.986787i \(0.448197\pi\)
\(510\) −10635.6 −0.923437
\(511\) 5306.79 0.459410
\(512\) −13459.5 −1.16178
\(513\) 18259.4 1.57148
\(514\) −16692.3 −1.43242
\(515\) 9338.17 0.799008
\(516\) −20819.8 −1.77624
\(517\) −652.617 −0.0555166
\(518\) 352.462 0.0298963
\(519\) 8362.51 0.707271
\(520\) −1975.03 −0.166559
\(521\) −1616.30 −0.135914 −0.0679571 0.997688i \(-0.521648\pi\)
−0.0679571 + 0.997688i \(0.521648\pi\)
\(522\) −22924.7 −1.92220
\(523\) −19142.4 −1.60046 −0.800230 0.599693i \(-0.795289\pi\)
−0.800230 + 0.599693i \(0.795289\pi\)
\(524\) 6631.52 0.552861
\(525\) −6595.94 −0.548324
\(526\) −2336.13 −0.193650
\(527\) −10567.9 −0.873522
\(528\) −3272.70 −0.269746
\(529\) 529.000 0.0434783
\(530\) 10214.8 0.837175
\(531\) −22795.8 −1.86300
\(532\) 3195.40 0.260410
\(533\) −21027.4 −1.70882
\(534\) 8122.13 0.658200
\(535\) −6070.67 −0.490576
\(536\) −3760.96 −0.303076
\(537\) 11076.9 0.890138
\(538\) −16697.5 −1.33807
\(539\) −237.368 −0.0189688
\(540\) 7284.55 0.580513
\(541\) −6518.72 −0.518044 −0.259022 0.965871i \(-0.583400\pi\)
−0.259022 + 0.965871i \(0.583400\pi\)
\(542\) 17176.3 1.36123
\(543\) −25398.1 −2.00725
\(544\) 15727.6 1.23955
\(545\) 5842.49 0.459201
\(546\) −16230.1 −1.27213
\(547\) −16336.5 −1.27696 −0.638481 0.769637i \(-0.720437\pi\)
−0.638481 + 0.769637i \(0.720437\pi\)
\(548\) −12436.1 −0.969421
\(549\) −17720.3 −1.37756
\(550\) −1908.19 −0.147937
\(551\) −7980.66 −0.617038
\(552\) −1328.51 −0.102437
\(553\) −3127.11 −0.240467
\(554\) −14048.3 −1.07736
\(555\) 550.395 0.0420954
\(556\) −9778.44 −0.745860
\(557\) −11949.3 −0.908993 −0.454496 0.890749i \(-0.650181\pi\)
−0.454496 + 0.890749i \(0.650181\pi\)
\(558\) 32290.5 2.44976
\(559\) 24677.7 1.86718
\(560\) −2387.84 −0.180187
\(561\) 2980.22 0.224287
\(562\) 31237.6 2.34463
\(563\) 6148.58 0.460270 0.230135 0.973159i \(-0.426083\pi\)
0.230135 + 0.973159i \(0.426083\pi\)
\(564\) −7696.87 −0.574640
\(565\) 2752.77 0.204973
\(566\) 5264.02 0.390925
\(567\) −5620.46 −0.416291
\(568\) 5016.84 0.370602
\(569\) 4009.95 0.295441 0.147720 0.989029i \(-0.452806\pi\)
0.147720 + 0.989029i \(0.452806\pi\)
\(570\) 11313.1 0.831324
\(571\) 13301.0 0.974831 0.487416 0.873170i \(-0.337940\pi\)
0.487416 + 0.873170i \(0.337940\pi\)
\(572\) −2070.95 −0.151383
\(573\) 2110.80 0.153892
\(574\) −8223.17 −0.597959
\(575\) −2394.74 −0.173682
\(576\) −15268.0 −1.10446
\(577\) 17209.0 1.24163 0.620814 0.783958i \(-0.286802\pi\)
0.620814 + 0.783958i \(0.286802\pi\)
\(578\) 1104.31 0.0794695
\(579\) −43521.1 −3.12379
\(580\) −3183.87 −0.227936
\(581\) 10347.5 0.738873
\(582\) −11649.5 −0.829703
\(583\) −2862.30 −0.203335
\(584\) −4838.62 −0.342849
\(585\) −16989.4 −1.20073
\(586\) 32073.9 2.26102
\(587\) 24505.2 1.72306 0.861531 0.507704i \(-0.169506\pi\)
0.861531 + 0.507704i \(0.169506\pi\)
\(588\) −2799.49 −0.196342
\(589\) 11241.1 0.786388
\(590\) −7178.00 −0.500871
\(591\) −41141.7 −2.86353
\(592\) −993.529 −0.0689760
\(593\) 13119.0 0.908488 0.454244 0.890877i \(-0.349910\pi\)
0.454244 + 0.890877i \(0.349910\pi\)
\(594\) −4627.90 −0.319672
\(595\) 2174.44 0.149821
\(596\) −8081.07 −0.555392
\(597\) −13265.8 −0.909437
\(598\) −5892.54 −0.402950
\(599\) −23171.7 −1.58058 −0.790292 0.612730i \(-0.790071\pi\)
−0.790292 + 0.612730i \(0.790071\pi\)
\(600\) 6014.04 0.409204
\(601\) −14118.2 −0.958227 −0.479113 0.877753i \(-0.659042\pi\)
−0.479113 + 0.877753i \(0.659042\pi\)
\(602\) 9650.66 0.653375
\(603\) −32352.2 −2.18488
\(604\) −11505.3 −0.775072
\(605\) 5974.88 0.401510
\(606\) 14810.8 0.992815
\(607\) −9761.28 −0.652715 −0.326357 0.945246i \(-0.605821\pi\)
−0.326357 + 0.945246i \(0.605821\pi\)
\(608\) −16729.5 −1.11590
\(609\) 6991.86 0.465229
\(610\) −5579.80 −0.370360
\(611\) 9123.08 0.604060
\(612\) 23561.3 1.55622
\(613\) −16066.2 −1.05858 −0.529288 0.848442i \(-0.677541\pi\)
−0.529288 + 0.848442i \(0.677541\pi\)
\(614\) 39278.9 2.58171
\(615\) −12841.1 −0.841955
\(616\) 216.428 0.0141560
\(617\) 7725.09 0.504052 0.252026 0.967720i \(-0.418903\pi\)
0.252026 + 0.967720i \(0.418903\pi\)
\(618\) −69968.0 −4.55425
\(619\) −15861.2 −1.02991 −0.514955 0.857217i \(-0.672192\pi\)
−0.514955 + 0.857217i \(0.672192\pi\)
\(620\) 4484.63 0.290495
\(621\) −5807.92 −0.375304
\(622\) −7717.71 −0.497511
\(623\) −1660.56 −0.106788
\(624\) 45749.8 2.93503
\(625\) 8230.62 0.526760
\(626\) 10130.7 0.646810
\(627\) −3170.07 −0.201914
\(628\) 12235.7 0.777481
\(629\) 904.737 0.0573517
\(630\) −6644.03 −0.420166
\(631\) −15676.7 −0.989032 −0.494516 0.869169i \(-0.664655\pi\)
−0.494516 + 0.869169i \(0.664655\pi\)
\(632\) 2851.24 0.179456
\(633\) −27083.6 −1.70060
\(634\) 9765.68 0.611742
\(635\) 7757.19 0.484779
\(636\) −33757.6 −2.10468
\(637\) 3318.22 0.206394
\(638\) 2022.73 0.125518
\(639\) 43155.4 2.67168
\(640\) 3650.13 0.225444
\(641\) −24437.6 −1.50582 −0.752908 0.658126i \(-0.771349\pi\)
−0.752908 + 0.658126i \(0.771349\pi\)
\(642\) 45485.6 2.79622
\(643\) −6427.17 −0.394188 −0.197094 0.980385i \(-0.563150\pi\)
−0.197094 + 0.980385i \(0.563150\pi\)
\(644\) −1016.39 −0.0621915
\(645\) 15070.2 0.919983
\(646\) 18596.5 1.13261
\(647\) 4215.13 0.256127 0.128063 0.991766i \(-0.459124\pi\)
0.128063 + 0.991766i \(0.459124\pi\)
\(648\) 5124.62 0.310670
\(649\) 2011.36 0.121653
\(650\) 26675.0 1.60966
\(651\) −9848.35 −0.592915
\(652\) 7433.82 0.446520
\(653\) 24079.4 1.44303 0.721517 0.692397i \(-0.243445\pi\)
0.721517 + 0.692397i \(0.243445\pi\)
\(654\) −43775.9 −2.61739
\(655\) −4800.16 −0.286348
\(656\) 23179.7 1.37959
\(657\) −41622.3 −2.47160
\(658\) 3567.75 0.211376
\(659\) −17107.1 −1.01123 −0.505614 0.862760i \(-0.668734\pi\)
−0.505614 + 0.862760i \(0.668734\pi\)
\(660\) −1264.69 −0.0745880
\(661\) 16609.1 0.977338 0.488669 0.872469i \(-0.337483\pi\)
0.488669 + 0.872469i \(0.337483\pi\)
\(662\) 10287.9 0.604002
\(663\) −41661.2 −2.44040
\(664\) −9434.61 −0.551406
\(665\) −2312.96 −0.134876
\(666\) −2764.44 −0.160841
\(667\) 2538.48 0.147362
\(668\) −6690.53 −0.387521
\(669\) 23154.8 1.33814
\(670\) −10187.1 −0.587408
\(671\) 1563.52 0.0899540
\(672\) 14656.7 0.841360
\(673\) −18095.9 −1.03647 −0.518237 0.855237i \(-0.673412\pi\)
−0.518237 + 0.855237i \(0.673412\pi\)
\(674\) 2162.72 0.123598
\(675\) 26291.9 1.49923
\(676\) 15080.7 0.858028
\(677\) −24604.0 −1.39676 −0.698381 0.715727i \(-0.746096\pi\)
−0.698381 + 0.715727i \(0.746096\pi\)
\(678\) −20625.6 −1.16832
\(679\) 2381.72 0.134613
\(680\) −1982.61 −0.111808
\(681\) −17331.1 −0.975227
\(682\) −2849.10 −0.159967
\(683\) −3505.60 −0.196396 −0.0981978 0.995167i \(-0.531308\pi\)
−0.0981978 + 0.995167i \(0.531308\pi\)
\(684\) −25062.2 −1.40099
\(685\) 9001.73 0.502100
\(686\) 1297.65 0.0722225
\(687\) 41741.5 2.31811
\(688\) −27203.5 −1.50745
\(689\) 40012.8 2.21243
\(690\) −3598.47 −0.198538
\(691\) −13973.7 −0.769299 −0.384649 0.923063i \(-0.625678\pi\)
−0.384649 + 0.923063i \(0.625678\pi\)
\(692\) −5833.40 −0.320452
\(693\) 1861.73 0.102051
\(694\) 5463.97 0.298861
\(695\) 7078.02 0.386309
\(696\) −6375.04 −0.347191
\(697\) −21108.1 −1.14710
\(698\) −22910.7 −1.24238
\(699\) 53343.8 2.88648
\(700\) 4601.10 0.248436
\(701\) −13863.7 −0.746967 −0.373483 0.927637i \(-0.621837\pi\)
−0.373483 + 0.927637i \(0.621837\pi\)
\(702\) 64694.5 3.47826
\(703\) −962.371 −0.0516309
\(704\) 1347.15 0.0721203
\(705\) 5571.30 0.297628
\(706\) 25449.8 1.35668
\(707\) −3028.04 −0.161077
\(708\) 23721.7 1.25920
\(709\) −32762.4 −1.73542 −0.867712 0.497067i \(-0.834410\pi\)
−0.867712 + 0.497067i \(0.834410\pi\)
\(710\) 13588.9 0.718284
\(711\) 24526.6 1.29370
\(712\) 1514.06 0.0796937
\(713\) −3575.57 −0.187806
\(714\) −16292.4 −0.853959
\(715\) 1499.04 0.0784067
\(716\) −7726.87 −0.403305
\(717\) 61267.9 3.19120
\(718\) −33542.1 −1.74343
\(719\) −9404.55 −0.487803 −0.243902 0.969800i \(-0.578427\pi\)
−0.243902 + 0.969800i \(0.578427\pi\)
\(720\) 18728.4 0.969395
\(721\) 14304.9 0.738892
\(722\) 6168.18 0.317945
\(723\) −10856.5 −0.558448
\(724\) 17716.8 0.909449
\(725\) −11491.5 −0.588666
\(726\) −44767.9 −2.28856
\(727\) 24724.0 1.26130 0.630648 0.776069i \(-0.282789\pi\)
0.630648 + 0.776069i \(0.282789\pi\)
\(728\) −3025.49 −0.154028
\(729\) −17620.4 −0.895207
\(730\) −13106.1 −0.664493
\(731\) 24772.4 1.25340
\(732\) 18440.0 0.931094
\(733\) 25332.2 1.27649 0.638245 0.769833i \(-0.279661\pi\)
0.638245 + 0.769833i \(0.279661\pi\)
\(734\) −26185.9 −1.31681
\(735\) 2026.38 0.101693
\(736\) 5321.29 0.266502
\(737\) 2854.55 0.142671
\(738\) 64496.2 3.21699
\(739\) −6708.25 −0.333920 −0.166960 0.985964i \(-0.553395\pi\)
−0.166960 + 0.985964i \(0.553395\pi\)
\(740\) −383.936 −0.0190727
\(741\) 44315.1 2.19697
\(742\) 15647.7 0.774187
\(743\) −28884.6 −1.42621 −0.713105 0.701057i \(-0.752712\pi\)
−0.713105 + 0.701057i \(0.752712\pi\)
\(744\) 8979.53 0.442481
\(745\) 5849.40 0.287658
\(746\) 31937.8 1.56746
\(747\) −81157.5 −3.97510
\(748\) −2078.90 −0.101620
\(749\) −9299.47 −0.453665
\(750\) 35846.8 1.74526
\(751\) −15823.4 −0.768848 −0.384424 0.923157i \(-0.625600\pi\)
−0.384424 + 0.923157i \(0.625600\pi\)
\(752\) −10056.9 −0.487681
\(753\) 48961.6 2.36954
\(754\) −28276.2 −1.36573
\(755\) 8327.99 0.401439
\(756\) 11159.0 0.536836
\(757\) 18547.6 0.890518 0.445259 0.895402i \(-0.353112\pi\)
0.445259 + 0.895402i \(0.353112\pi\)
\(758\) −31654.4 −1.51681
\(759\) 1008.33 0.0482215
\(760\) 2108.91 0.100655
\(761\) −30235.5 −1.44026 −0.720128 0.693841i \(-0.755917\pi\)
−0.720128 + 0.693841i \(0.755917\pi\)
\(762\) −58122.2 −2.76318
\(763\) 8949.93 0.424652
\(764\) −1472.42 −0.0697257
\(765\) −17054.6 −0.806027
\(766\) −19158.2 −0.903673
\(767\) −28117.2 −1.32367
\(768\) −47483.2 −2.23099
\(769\) 21255.4 0.996737 0.498368 0.866965i \(-0.333933\pi\)
0.498368 + 0.866965i \(0.333933\pi\)
\(770\) 586.227 0.0274366
\(771\) −39930.1 −1.86517
\(772\) 30358.8 1.41533
\(773\) 18701.5 0.870177 0.435089 0.900388i \(-0.356717\pi\)
0.435089 + 0.900388i \(0.356717\pi\)
\(774\) −75692.3 −3.51512
\(775\) 16186.3 0.750229
\(776\) −2171.61 −0.100459
\(777\) 843.133 0.0389282
\(778\) 21191.0 0.976522
\(779\) 22452.7 1.03267
\(780\) 17679.4 0.811571
\(781\) −3807.76 −0.174459
\(782\) −5915.15 −0.270493
\(783\) −27870.1 −1.27203
\(784\) −3657.86 −0.166630
\(785\) −8856.69 −0.402687
\(786\) 35966.1 1.63215
\(787\) −32672.6 −1.47987 −0.739933 0.672681i \(-0.765143\pi\)
−0.739933 + 0.672681i \(0.765143\pi\)
\(788\) 28699.0 1.29741
\(789\) −5588.30 −0.252153
\(790\) 7723.01 0.347813
\(791\) 4216.89 0.189551
\(792\) −1697.49 −0.0761587
\(793\) −21856.9 −0.978764
\(794\) −58398.4 −2.61018
\(795\) 24435.1 1.09009
\(796\) 9253.78 0.412050
\(797\) 14216.8 0.631851 0.315926 0.948784i \(-0.397685\pi\)
0.315926 + 0.948784i \(0.397685\pi\)
\(798\) 17330.2 0.768777
\(799\) 9158.09 0.405494
\(800\) −24089.0 −1.06459
\(801\) 13024.1 0.574513
\(802\) 34179.5 1.50489
\(803\) 3672.49 0.161394
\(804\) 33666.1 1.47676
\(805\) 735.702 0.0322113
\(806\) 39828.3 1.74056
\(807\) −39942.5 −1.74231
\(808\) 2760.91 0.120208
\(809\) 31047.8 1.34930 0.674650 0.738138i \(-0.264295\pi\)
0.674650 + 0.738138i \(0.264295\pi\)
\(810\) 13880.8 0.602126
\(811\) 1425.65 0.0617280 0.0308640 0.999524i \(-0.490174\pi\)
0.0308640 + 0.999524i \(0.490174\pi\)
\(812\) −4877.28 −0.210787
\(813\) 41088.0 1.77247
\(814\) 243.916 0.0105028
\(815\) −5380.90 −0.231269
\(816\) 45925.4 1.97023
\(817\) −26350.4 −1.12838
\(818\) −7521.82 −0.321509
\(819\) −26025.6 −1.11039
\(820\) 8957.49 0.381475
\(821\) 46004.3 1.95562 0.977808 0.209502i \(-0.0671842\pi\)
0.977808 + 0.209502i \(0.0671842\pi\)
\(822\) −67447.1 −2.86191
\(823\) −7394.38 −0.313186 −0.156593 0.987663i \(-0.550051\pi\)
−0.156593 + 0.987663i \(0.550051\pi\)
\(824\) −13042.9 −0.551420
\(825\) −4564.62 −0.192630
\(826\) −10995.8 −0.463186
\(827\) 24938.4 1.04860 0.524301 0.851533i \(-0.324327\pi\)
0.524301 + 0.851533i \(0.324327\pi\)
\(828\) 7971.76 0.334587
\(829\) −10899.8 −0.456654 −0.228327 0.973585i \(-0.573325\pi\)
−0.228327 + 0.973585i \(0.573325\pi\)
\(830\) −25555.1 −1.06871
\(831\) −33605.3 −1.40283
\(832\) −18832.1 −0.784720
\(833\) 3330.96 0.138548
\(834\) −53033.4 −2.20191
\(835\) 4842.87 0.200712
\(836\) 2211.33 0.0914837
\(837\) 39256.3 1.62114
\(838\) 45017.6 1.85573
\(839\) 12453.6 0.512451 0.256226 0.966617i \(-0.417521\pi\)
0.256226 + 0.966617i \(0.417521\pi\)
\(840\) −1847.61 −0.0758913
\(841\) −12207.7 −0.500543
\(842\) 21979.8 0.899613
\(843\) 74724.3 3.05296
\(844\) 18892.6 0.770510
\(845\) −10916.0 −0.444405
\(846\) −27982.7 −1.13719
\(847\) 9152.73 0.371301
\(848\) −44108.2 −1.78618
\(849\) 12592.2 0.509026
\(850\) 26777.3 1.08054
\(851\) 306.110 0.0123306
\(852\) −44908.1 −1.80578
\(853\) −25419.1 −1.02032 −0.510161 0.860079i \(-0.670414\pi\)
−0.510161 + 0.860079i \(0.670414\pi\)
\(854\) −8547.53 −0.342495
\(855\) 18141.0 0.725626
\(856\) 8479.07 0.338562
\(857\) 13111.6 0.522618 0.261309 0.965255i \(-0.415846\pi\)
0.261309 + 0.965255i \(0.415846\pi\)
\(858\) −11231.8 −0.446909
\(859\) 17402.8 0.691242 0.345621 0.938374i \(-0.387668\pi\)
0.345621 + 0.938374i \(0.387668\pi\)
\(860\) −10512.5 −0.416828
\(861\) −19670.9 −0.778607
\(862\) 8192.98 0.323728
\(863\) 20393.5 0.804406 0.402203 0.915551i \(-0.368245\pi\)
0.402203 + 0.915551i \(0.368245\pi\)
\(864\) −58422.8 −2.30044
\(865\) 4222.45 0.165974
\(866\) 50586.8 1.98500
\(867\) 2641.66 0.103478
\(868\) 6869.87 0.268639
\(869\) −2164.07 −0.0844778
\(870\) −17267.8 −0.672910
\(871\) −39904.4 −1.55236
\(872\) −8160.36 −0.316909
\(873\) −18680.4 −0.724211
\(874\) 6291.96 0.243511
\(875\) −7328.84 −0.283154
\(876\) 43312.8 1.67055
\(877\) −34176.3 −1.31591 −0.657954 0.753058i \(-0.728578\pi\)
−0.657954 + 0.753058i \(0.728578\pi\)
\(878\) 48764.1 1.87438
\(879\) 76724.8 2.94410
\(880\) −1652.47 −0.0633009
\(881\) −43679.4 −1.67037 −0.835186 0.549968i \(-0.814640\pi\)
−0.835186 + 0.549968i \(0.814640\pi\)
\(882\) −10177.8 −0.388553
\(883\) 33948.9 1.29385 0.646926 0.762553i \(-0.276054\pi\)
0.646926 + 0.762553i \(0.276054\pi\)
\(884\) 29061.4 1.10570
\(885\) −17170.7 −0.652188
\(886\) 4194.50 0.159049
\(887\) 34720.7 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(888\) −768.752 −0.0290514
\(889\) 11883.0 0.448305
\(890\) 4101.07 0.154459
\(891\) −3889.56 −0.146246
\(892\) −16152.0 −0.606289
\(893\) −9741.48 −0.365046
\(894\) −43827.7 −1.63962
\(895\) 5593.02 0.208887
\(896\) 5591.53 0.208482
\(897\) −14095.7 −0.524684
\(898\) 43603.9 1.62036
\(899\) −17157.8 −0.636536
\(900\) −36087.4 −1.33657
\(901\) 40166.3 1.48516
\(902\) −5690.73 −0.210067
\(903\) 23085.6 0.850765
\(904\) −3844.87 −0.141459
\(905\) −12824.2 −0.471038
\(906\) −62399.0 −2.28815
\(907\) −15596.4 −0.570972 −0.285486 0.958383i \(-0.592155\pi\)
−0.285486 + 0.958383i \(0.592155\pi\)
\(908\) 12089.6 0.441858
\(909\) 23749.6 0.866584
\(910\) −8195.00 −0.298529
\(911\) 2980.74 0.108404 0.0542021 0.998530i \(-0.482738\pi\)
0.0542021 + 0.998530i \(0.482738\pi\)
\(912\) −48850.9 −1.77370
\(913\) 7160.81 0.259571
\(914\) −33068.7 −1.19674
\(915\) −13347.6 −0.482249
\(916\) −29117.4 −1.05029
\(917\) −7353.22 −0.264803
\(918\) 64942.8 2.33489
\(919\) 49093.6 1.76219 0.881093 0.472944i \(-0.156809\pi\)
0.881093 + 0.472944i \(0.156809\pi\)
\(920\) −670.798 −0.0240387
\(921\) 93960.2 3.36166
\(922\) 15383.2 0.549478
\(923\) 53229.5 1.89823
\(924\) −1937.35 −0.0689762
\(925\) −1385.73 −0.0492569
\(926\) −42593.0 −1.51155
\(927\) −112196. −3.97520
\(928\) 25535.0 0.903261
\(929\) −25012.3 −0.883345 −0.441672 0.897176i \(-0.645615\pi\)
−0.441672 + 0.897176i \(0.645615\pi\)
\(930\) 24322.4 0.857595
\(931\) −3543.15 −0.124728
\(932\) −37210.8 −1.30781
\(933\) −18461.7 −0.647813
\(934\) −41469.7 −1.45281
\(935\) 1504.79 0.0526330
\(936\) 23729.6 0.828660
\(937\) −20661.6 −0.720370 −0.360185 0.932881i \(-0.617286\pi\)
−0.360185 + 0.932881i \(0.617286\pi\)
\(938\) −15605.4 −0.543212
\(939\) 24233.8 0.842217
\(940\) −3886.35 −0.134850
\(941\) 25865.8 0.896069 0.448035 0.894016i \(-0.352124\pi\)
0.448035 + 0.894016i \(0.352124\pi\)
\(942\) 66360.4 2.29526
\(943\) −7141.74 −0.246625
\(944\) 30995.1 1.06865
\(945\) −8077.32 −0.278048
\(946\) 6678.60 0.229535
\(947\) −29129.1 −0.999544 −0.499772 0.866157i \(-0.666583\pi\)
−0.499772 + 0.866157i \(0.666583\pi\)
\(948\) −25522.8 −0.874411
\(949\) −51338.5 −1.75608
\(950\) −28483.1 −0.972752
\(951\) 23360.7 0.796554
\(952\) −3037.10 −0.103396
\(953\) 16.9264 0.000575340 0 0.000287670 1.00000i \(-0.499908\pi\)
0.000287670 1.00000i \(0.499908\pi\)
\(954\) −122729. −4.16509
\(955\) 1065.80 0.0361136
\(956\) −42738.3 −1.44588
\(957\) 4838.62 0.163438
\(958\) −51186.6 −1.72627
\(959\) 13789.5 0.464322
\(960\) −11500.4 −0.386641
\(961\) −5623.39 −0.188761
\(962\) −3409.76 −0.114278
\(963\) 72937.9 2.44070
\(964\) 7573.12 0.253023
\(965\) −21974.9 −0.733054
\(966\) −5512.38 −0.183600
\(967\) 31926.9 1.06174 0.530869 0.847454i \(-0.321866\pi\)
0.530869 + 0.847454i \(0.321866\pi\)
\(968\) −8345.28 −0.277094
\(969\) 44485.1 1.47479
\(970\) −5882.13 −0.194705
\(971\) 46315.0 1.53071 0.765355 0.643608i \(-0.222563\pi\)
0.765355 + 0.643608i \(0.222563\pi\)
\(972\) −2831.11 −0.0934237
\(973\) 10842.6 0.357244
\(974\) −54391.8 −1.78935
\(975\) 63809.9 2.09595
\(976\) 24094.0 0.790195
\(977\) 11114.5 0.363954 0.181977 0.983303i \(-0.441750\pi\)
0.181977 + 0.983303i \(0.441750\pi\)
\(978\) 40317.4 1.31821
\(979\) −1149.17 −0.0375153
\(980\) −1413.53 −0.0460752
\(981\) −70196.3 −2.28460
\(982\) −45331.2 −1.47309
\(983\) −9246.02 −0.300002 −0.150001 0.988686i \(-0.547928\pi\)
−0.150001 + 0.988686i \(0.547928\pi\)
\(984\) 17935.5 0.581059
\(985\) −20773.5 −0.671979
\(986\) −28384.7 −0.916787
\(987\) 8534.51 0.275235
\(988\) −30912.7 −0.995408
\(989\) 8381.51 0.269481
\(990\) −4597.91 −0.147607
\(991\) 16539.1 0.530152 0.265076 0.964228i \(-0.414603\pi\)
0.265076 + 0.964228i \(0.414603\pi\)
\(992\) −35967.2 −1.15117
\(993\) 24609.9 0.786476
\(994\) 20816.4 0.664241
\(995\) −6698.25 −0.213416
\(996\) 84453.6 2.68676
\(997\) −8326.03 −0.264481 −0.132241 0.991218i \(-0.542217\pi\)
−0.132241 + 0.991218i \(0.542217\pi\)
\(998\) −63881.3 −2.02618
\(999\) −3360.80 −0.106437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.b.1.2 8
3.2 odd 2 1449.4.a.i.1.7 8
7.6 odd 2 1127.4.a.e.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.b.1.2 8 1.1 even 1 trivial
1127.4.a.e.1.2 8 7.6 odd 2
1449.4.a.i.1.7 8 3.2 odd 2