Properties

Label 161.6.a.a.1.3
Level $161$
Weight $6$
Character 161.1
Self dual yes
Analytic conductor $25.822$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,6,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8217949899\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 187 x^{8} + 322 x^{7} + 11471 x^{6} - 16782 x^{5} - 253209 x^{4} + 251398 x^{3} + \cdots - 6912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.68327\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.68327 q^{2} +5.69706 q^{3} +12.6661 q^{4} -77.3301 q^{5} -38.0750 q^{6} +49.0000 q^{7} +129.213 q^{8} -210.543 q^{9} +516.818 q^{10} +359.837 q^{11} +72.1598 q^{12} +811.735 q^{13} -327.480 q^{14} -440.555 q^{15} -1268.89 q^{16} +260.323 q^{17} +1407.12 q^{18} -1023.19 q^{19} -979.474 q^{20} +279.156 q^{21} -2404.89 q^{22} +529.000 q^{23} +736.137 q^{24} +2854.95 q^{25} -5425.05 q^{26} -2583.87 q^{27} +620.641 q^{28} +7814.84 q^{29} +2944.35 q^{30} +249.001 q^{31} +4345.48 q^{32} +2050.02 q^{33} -1739.81 q^{34} -3789.18 q^{35} -2666.77 q^{36} -9566.88 q^{37} +6838.23 q^{38} +4624.50 q^{39} -9992.09 q^{40} -2811.95 q^{41} -1865.68 q^{42} -7852.72 q^{43} +4557.75 q^{44} +16281.4 q^{45} -3535.45 q^{46} -3119.88 q^{47} -7228.92 q^{48} +2401.00 q^{49} -19080.4 q^{50} +1483.08 q^{51} +10281.5 q^{52} -38401.2 q^{53} +17268.7 q^{54} -27826.3 q^{55} +6331.46 q^{56} -5829.15 q^{57} -52228.7 q^{58} +16911.6 q^{59} -5580.13 q^{60} -41916.5 q^{61} -1664.14 q^{62} -10316.6 q^{63} +11562.3 q^{64} -62771.6 q^{65} -13700.8 q^{66} -59003.5 q^{67} +3297.29 q^{68} +3013.75 q^{69} +25324.1 q^{70} -17855.0 q^{71} -27205.1 q^{72} -61628.3 q^{73} +63938.1 q^{74} +16264.8 q^{75} -12959.8 q^{76} +17632.0 q^{77} -30906.8 q^{78} +18843.8 q^{79} +98123.1 q^{80} +36441.6 q^{81} +18793.0 q^{82} +95284.6 q^{83} +3535.83 q^{84} -20130.8 q^{85} +52481.9 q^{86} +44521.6 q^{87} +46495.8 q^{88} -80436.2 q^{89} -108813. q^{90} +39775.0 q^{91} +6700.39 q^{92} +1418.57 q^{93} +20851.0 q^{94} +79123.1 q^{95} +24756.5 q^{96} +55807.5 q^{97} -16046.5 q^{98} -75761.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{2} - 2 q^{3} + 64 q^{4} - 92 q^{5} - 162 q^{6} + 490 q^{7} - 462 q^{8} + 140 q^{9} - 566 q^{10} - 750 q^{11} + 2348 q^{12} + 124 q^{13} - 392 q^{14} - 1306 q^{15} - 524 q^{16} - 2500 q^{17}+ \cdots - 460326 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.68327 −1.18145 −0.590723 0.806874i \(-0.701158\pi\)
−0.590723 + 0.806874i \(0.701158\pi\)
\(3\) 5.69706 0.365467 0.182733 0.983163i \(-0.441505\pi\)
0.182733 + 0.983163i \(0.441505\pi\)
\(4\) 12.6661 0.395817
\(5\) −77.3301 −1.38332 −0.691662 0.722222i \(-0.743121\pi\)
−0.691662 + 0.722222i \(0.743121\pi\)
\(6\) −38.0750 −0.431780
\(7\) 49.0000 0.377964
\(8\) 129.213 0.713810
\(9\) −210.543 −0.866434
\(10\) 516.818 1.63432
\(11\) 359.837 0.896653 0.448326 0.893870i \(-0.352020\pi\)
0.448326 + 0.893870i \(0.352020\pi\)
\(12\) 72.1598 0.144658
\(13\) 811.735 1.33216 0.666079 0.745881i \(-0.267971\pi\)
0.666079 + 0.745881i \(0.267971\pi\)
\(14\) −327.480 −0.446545
\(15\) −440.555 −0.505559
\(16\) −1268.89 −1.23915
\(17\) 260.323 0.218469 0.109235 0.994016i \(-0.465160\pi\)
0.109235 + 0.994016i \(0.465160\pi\)
\(18\) 1407.12 1.02365
\(19\) −1023.19 −0.650235 −0.325118 0.945674i \(-0.605404\pi\)
−0.325118 + 0.945674i \(0.605404\pi\)
\(20\) −979.474 −0.547543
\(21\) 279.156 0.138133
\(22\) −2404.89 −1.05935
\(23\) 529.000 0.208514
\(24\) 736.137 0.260874
\(25\) 2854.95 0.913583
\(26\) −5425.05 −1.57387
\(27\) −2583.87 −0.682120
\(28\) 620.641 0.149605
\(29\) 7814.84 1.72554 0.862770 0.505596i \(-0.168728\pi\)
0.862770 + 0.505596i \(0.168728\pi\)
\(30\) 2944.35 0.597291
\(31\) 249.001 0.0465368 0.0232684 0.999729i \(-0.492593\pi\)
0.0232684 + 0.999729i \(0.492593\pi\)
\(32\) 4345.48 0.750175
\(33\) 2050.02 0.327697
\(34\) −1739.81 −0.258110
\(35\) −3789.18 −0.522847
\(36\) −2666.77 −0.342949
\(37\) −9566.88 −1.14886 −0.574429 0.818555i \(-0.694776\pi\)
−0.574429 + 0.818555i \(0.694776\pi\)
\(38\) 6838.23 0.768218
\(39\) 4624.50 0.486860
\(40\) −9992.09 −0.987430
\(41\) −2811.95 −0.261245 −0.130622 0.991432i \(-0.541698\pi\)
−0.130622 + 0.991432i \(0.541698\pi\)
\(42\) −1865.68 −0.163197
\(43\) −7852.72 −0.647663 −0.323831 0.946115i \(-0.604971\pi\)
−0.323831 + 0.946115i \(0.604971\pi\)
\(44\) 4557.75 0.354910
\(45\) 16281.4 1.19856
\(46\) −3535.45 −0.246349
\(47\) −3119.88 −0.206013 −0.103006 0.994681i \(-0.532846\pi\)
−0.103006 + 0.994681i \(0.532846\pi\)
\(48\) −7228.92 −0.452867
\(49\) 2401.00 0.142857
\(50\) −19080.4 −1.07935
\(51\) 1483.08 0.0798433
\(52\) 10281.5 0.527291
\(53\) −38401.2 −1.87782 −0.938912 0.344157i \(-0.888165\pi\)
−0.938912 + 0.344157i \(0.888165\pi\)
\(54\) 17268.7 0.805888
\(55\) −27826.3 −1.24036
\(56\) 6331.46 0.269795
\(57\) −5829.15 −0.237639
\(58\) −52228.7 −2.03863
\(59\) 16911.6 0.632492 0.316246 0.948677i \(-0.397577\pi\)
0.316246 + 0.948677i \(0.397577\pi\)
\(60\) −5580.13 −0.200109
\(61\) −41916.5 −1.44232 −0.721158 0.692771i \(-0.756390\pi\)
−0.721158 + 0.692771i \(0.756390\pi\)
\(62\) −1664.14 −0.0549808
\(63\) −10316.6 −0.327481
\(64\) 11562.3 0.352854
\(65\) −62771.6 −1.84281
\(66\) −13700.8 −0.387156
\(67\) −59003.5 −1.60580 −0.802899 0.596115i \(-0.796710\pi\)
−0.802899 + 0.596115i \(0.796710\pi\)
\(68\) 3297.29 0.0864739
\(69\) 3013.75 0.0762051
\(70\) 25324.1 0.617716
\(71\) −17855.0 −0.420353 −0.210177 0.977663i \(-0.567404\pi\)
−0.210177 + 0.977663i \(0.567404\pi\)
\(72\) −27205.1 −0.618470
\(73\) −61628.3 −1.35355 −0.676773 0.736191i \(-0.736622\pi\)
−0.676773 + 0.736191i \(0.736622\pi\)
\(74\) 63938.1 1.35731
\(75\) 16264.8 0.333884
\(76\) −12959.8 −0.257374
\(77\) 17632.0 0.338903
\(78\) −30906.8 −0.575199
\(79\) 18843.8 0.339704 0.169852 0.985470i \(-0.445671\pi\)
0.169852 + 0.985470i \(0.445671\pi\)
\(80\) 98123.1 1.71414
\(81\) 36441.6 0.617142
\(82\) 18793.0 0.308647
\(83\) 95284.6 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(84\) 3535.83 0.0546756
\(85\) −20130.8 −0.302214
\(86\) 52481.9 0.765179
\(87\) 44521.6 0.630628
\(88\) 46495.8 0.640040
\(89\) −80436.2 −1.07641 −0.538203 0.842815i \(-0.680897\pi\)
−0.538203 + 0.842815i \(0.680897\pi\)
\(90\) −108813. −1.41603
\(91\) 39775.0 0.503508
\(92\) 6700.39 0.0825335
\(93\) 1418.57 0.0170077
\(94\) 20851.0 0.243393
\(95\) 79123.1 0.899485
\(96\) 24756.5 0.274164
\(97\) 55807.5 0.602231 0.301116 0.953588i \(-0.402641\pi\)
0.301116 + 0.953588i \(0.402641\pi\)
\(98\) −16046.5 −0.168778
\(99\) −75761.4 −0.776891
\(100\) 36161.2 0.361612
\(101\) 1770.69 0.0172718 0.00863592 0.999963i \(-0.497251\pi\)
0.00863592 + 0.999963i \(0.497251\pi\)
\(102\) −9911.82 −0.0943307
\(103\) 34333.3 0.318876 0.159438 0.987208i \(-0.449032\pi\)
0.159438 + 0.987208i \(0.449032\pi\)
\(104\) 104887. 0.950908
\(105\) −21587.2 −0.191083
\(106\) 256646. 2.21855
\(107\) 126238. 1.06593 0.532966 0.846137i \(-0.321077\pi\)
0.532966 + 0.846137i \(0.321077\pi\)
\(108\) −32727.6 −0.269994
\(109\) 30610.6 0.246777 0.123389 0.992358i \(-0.460624\pi\)
0.123389 + 0.992358i \(0.460624\pi\)
\(110\) 185970. 1.46542
\(111\) −54503.1 −0.419869
\(112\) −62175.4 −0.468353
\(113\) −258837. −1.90691 −0.953457 0.301530i \(-0.902503\pi\)
−0.953457 + 0.301530i \(0.902503\pi\)
\(114\) 38957.8 0.280758
\(115\) −40907.6 −0.288443
\(116\) 98983.9 0.682998
\(117\) −170905. −1.15423
\(118\) −113025. −0.747256
\(119\) 12755.8 0.0825737
\(120\) −56925.6 −0.360873
\(121\) −31568.2 −0.196014
\(122\) 280139. 1.70402
\(123\) −16019.8 −0.0954762
\(124\) 3153.88 0.0184201
\(125\) 20883.2 0.119542
\(126\) 68948.9 0.386902
\(127\) 47117.9 0.259225 0.129612 0.991565i \(-0.458627\pi\)
0.129612 + 0.991565i \(0.458627\pi\)
\(128\) −216329. −1.16705
\(129\) −44737.4 −0.236699
\(130\) 419519. 2.17718
\(131\) −86926.9 −0.442564 −0.221282 0.975210i \(-0.571024\pi\)
−0.221282 + 0.975210i \(0.571024\pi\)
\(132\) 25965.8 0.129708
\(133\) −50136.1 −0.245766
\(134\) 394337. 1.89717
\(135\) 199811. 0.943592
\(136\) 33637.3 0.155946
\(137\) 44143.4 0.200939 0.100470 0.994940i \(-0.467966\pi\)
0.100470 + 0.994940i \(0.467966\pi\)
\(138\) −20141.7 −0.0900323
\(139\) −283427. −1.24424 −0.622119 0.782922i \(-0.713728\pi\)
−0.622119 + 0.782922i \(0.713728\pi\)
\(140\) −47994.2 −0.206952
\(141\) −17774.2 −0.0752907
\(142\) 119330. 0.496625
\(143\) 292092. 1.19448
\(144\) 267156. 1.07364
\(145\) −604323. −2.38698
\(146\) 411879. 1.59914
\(147\) 13678.6 0.0522095
\(148\) −121175. −0.454737
\(149\) 267917. 0.988631 0.494315 0.869283i \(-0.335419\pi\)
0.494315 + 0.869283i \(0.335419\pi\)
\(150\) −108702. −0.394467
\(151\) −353403. −1.26133 −0.630663 0.776057i \(-0.717217\pi\)
−0.630663 + 0.776057i \(0.717217\pi\)
\(152\) −132209. −0.464145
\(153\) −54809.4 −0.189289
\(154\) −117840. −0.400396
\(155\) −19255.3 −0.0643755
\(156\) 58574.6 0.192707
\(157\) −235308. −0.761881 −0.380940 0.924600i \(-0.624400\pi\)
−0.380940 + 0.924600i \(0.624400\pi\)
\(158\) −125938. −0.401342
\(159\) −218774. −0.686282
\(160\) −336036. −1.03773
\(161\) 25921.0 0.0788110
\(162\) −243549. −0.729121
\(163\) 392817. 1.15803 0.579016 0.815316i \(-0.303437\pi\)
0.579016 + 0.815316i \(0.303437\pi\)
\(164\) −35616.5 −0.103405
\(165\) −158528. −0.453311
\(166\) −636813. −1.79367
\(167\) 213017. 0.591049 0.295524 0.955335i \(-0.404506\pi\)
0.295524 + 0.955335i \(0.404506\pi\)
\(168\) 36070.7 0.0986011
\(169\) 287620. 0.774646
\(170\) 134540. 0.357050
\(171\) 215425. 0.563386
\(172\) −99463.7 −0.256356
\(173\) −234406. −0.595461 −0.297730 0.954650i \(-0.596230\pi\)
−0.297730 + 0.954650i \(0.596230\pi\)
\(174\) −297550. −0.745053
\(175\) 139892. 0.345302
\(176\) −456592. −1.11108
\(177\) 96346.6 0.231155
\(178\) 537577. 1.27172
\(179\) −426482. −0.994873 −0.497436 0.867500i \(-0.665725\pi\)
−0.497436 + 0.867500i \(0.665725\pi\)
\(180\) 206222. 0.474410
\(181\) −377682. −0.856899 −0.428450 0.903566i \(-0.640940\pi\)
−0.428450 + 0.903566i \(0.640940\pi\)
\(182\) −265827. −0.594869
\(183\) −238801. −0.527118
\(184\) 68353.9 0.148840
\(185\) 739808. 1.58924
\(186\) −9480.72 −0.0200937
\(187\) 93674.0 0.195891
\(188\) −39516.9 −0.0815433
\(189\) −126609. −0.257817
\(190\) −528801. −1.06269
\(191\) 576023. 1.14250 0.571250 0.820776i \(-0.306459\pi\)
0.571250 + 0.820776i \(0.306459\pi\)
\(192\) 65871.3 0.128956
\(193\) 42519.4 0.0821662 0.0410831 0.999156i \(-0.486919\pi\)
0.0410831 + 0.999156i \(0.486919\pi\)
\(194\) −372977. −0.711504
\(195\) −357614. −0.673484
\(196\) 30411.4 0.0565453
\(197\) −406471. −0.746215 −0.373107 0.927788i \(-0.621708\pi\)
−0.373107 + 0.927788i \(0.621708\pi\)
\(198\) 506334. 0.917855
\(199\) 447282. 0.800660 0.400330 0.916371i \(-0.368895\pi\)
0.400330 + 0.916371i \(0.368895\pi\)
\(200\) 368898. 0.652125
\(201\) −336147. −0.586866
\(202\) −11834.0 −0.0204058
\(203\) 382927. 0.652193
\(204\) 18784.9 0.0316033
\(205\) 217448. 0.361386
\(206\) −229459. −0.376735
\(207\) −111377. −0.180664
\(208\) −1.03000e6 −1.65074
\(209\) −368180. −0.583035
\(210\) 144273. 0.225755
\(211\) −608033. −0.940202 −0.470101 0.882613i \(-0.655783\pi\)
−0.470101 + 0.882613i \(0.655783\pi\)
\(212\) −486395. −0.743275
\(213\) −101721. −0.153625
\(214\) −843681. −1.25934
\(215\) 607252. 0.895927
\(216\) −333870. −0.486904
\(217\) 12201.0 0.0175893
\(218\) −204579. −0.291554
\(219\) −351100. −0.494676
\(220\) −352451. −0.490956
\(221\) 211314. 0.291036
\(222\) 364259. 0.496053
\(223\) 335834. 0.452233 0.226117 0.974100i \(-0.427397\pi\)
0.226117 + 0.974100i \(0.427397\pi\)
\(224\) 212928. 0.283539
\(225\) −601091. −0.791560
\(226\) 1.72988e6 2.25292
\(227\) −779261. −1.00373 −0.501867 0.864945i \(-0.667353\pi\)
−0.501867 + 0.864945i \(0.667353\pi\)
\(228\) −73832.9 −0.0940617
\(229\) 646862. 0.815123 0.407561 0.913178i \(-0.366379\pi\)
0.407561 + 0.913178i \(0.366379\pi\)
\(230\) 273397. 0.340780
\(231\) 100451. 0.123858
\(232\) 1.00978e6 1.23171
\(233\) 1.13590e6 1.37073 0.685364 0.728201i \(-0.259643\pi\)
0.685364 + 0.728201i \(0.259643\pi\)
\(234\) 1.14221e6 1.36366
\(235\) 241261. 0.284982
\(236\) 214205. 0.250351
\(237\) 107354. 0.124150
\(238\) −85250.8 −0.0975565
\(239\) −450126. −0.509729 −0.254865 0.966977i \(-0.582031\pi\)
−0.254865 + 0.966977i \(0.582031\pi\)
\(240\) 559013. 0.626461
\(241\) −954805. −1.05894 −0.529471 0.848328i \(-0.677610\pi\)
−0.529471 + 0.848328i \(0.677610\pi\)
\(242\) 210979. 0.231580
\(243\) 835490. 0.907664
\(244\) −530920. −0.570893
\(245\) −185670. −0.197618
\(246\) 107065. 0.112800
\(247\) −830555. −0.866216
\(248\) 32174.3 0.0332185
\(249\) 542843. 0.554850
\(250\) −139568. −0.141233
\(251\) −1.40972e6 −1.41237 −0.706187 0.708025i \(-0.749586\pi\)
−0.706187 + 0.708025i \(0.749586\pi\)
\(252\) −130672. −0.129623
\(253\) 190354. 0.186965
\(254\) −314902. −0.306260
\(255\) −114687. −0.110449
\(256\) 1.07579e6 1.02596
\(257\) 1.24666e6 1.17738 0.588688 0.808360i \(-0.299645\pi\)
0.588688 + 0.808360i \(0.299645\pi\)
\(258\) 298993. 0.279648
\(259\) −468777. −0.434227
\(260\) −795073. −0.729414
\(261\) −1.64536e6 −1.49507
\(262\) 580956. 0.522866
\(263\) −1.83332e6 −1.63437 −0.817183 0.576379i \(-0.804465\pi\)
−0.817183 + 0.576379i \(0.804465\pi\)
\(264\) 264890. 0.233913
\(265\) 2.96957e6 2.59764
\(266\) 335073. 0.290359
\(267\) −458250. −0.393391
\(268\) −747347. −0.635602
\(269\) 1.39805e6 1.17799 0.588994 0.808138i \(-0.299524\pi\)
0.588994 + 0.808138i \(0.299524\pi\)
\(270\) −1.33539e6 −1.11480
\(271\) −1.80572e6 −1.49358 −0.746789 0.665061i \(-0.768405\pi\)
−0.746789 + 0.665061i \(0.768405\pi\)
\(272\) −330320. −0.270716
\(273\) 226601. 0.184016
\(274\) −295022. −0.237399
\(275\) 1.02732e6 0.819167
\(276\) 38172.5 0.0301633
\(277\) −1.91234e6 −1.49750 −0.748748 0.662855i \(-0.769344\pi\)
−0.748748 + 0.662855i \(0.769344\pi\)
\(278\) 1.89422e6 1.47000
\(279\) −52425.5 −0.0403211
\(280\) −489613. −0.373214
\(281\) −1.60891e6 −1.21553 −0.607766 0.794116i \(-0.707934\pi\)
−0.607766 + 0.794116i \(0.707934\pi\)
\(282\) 118790. 0.0889520
\(283\) −300506. −0.223042 −0.111521 0.993762i \(-0.535572\pi\)
−0.111521 + 0.993762i \(0.535572\pi\)
\(284\) −226154. −0.166383
\(285\) 450769. 0.328732
\(286\) −1.95213e6 −1.41122
\(287\) −137785. −0.0987412
\(288\) −914912. −0.649977
\(289\) −1.35209e6 −0.952271
\(290\) 4.03885e6 2.82009
\(291\) 317939. 0.220095
\(292\) −780593. −0.535757
\(293\) −2.17093e6 −1.47733 −0.738663 0.674075i \(-0.764542\pi\)
−0.738663 + 0.674075i \(0.764542\pi\)
\(294\) −91418.1 −0.0616828
\(295\) −1.30778e6 −0.874941
\(296\) −1.23617e6 −0.820066
\(297\) −929771. −0.611624
\(298\) −1.79056e6 −1.16801
\(299\) 429408. 0.277774
\(300\) 206012. 0.132157
\(301\) −384783. −0.244794
\(302\) 2.36189e6 1.49019
\(303\) 10087.7 0.00631228
\(304\) 1.29831e6 0.805736
\(305\) 3.24141e6 1.99519
\(306\) 366306. 0.223635
\(307\) −727722. −0.440676 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(308\) 223330. 0.134144
\(309\) 195599. 0.116539
\(310\) 128688. 0.0760562
\(311\) 2.99933e6 1.75842 0.879212 0.476431i \(-0.158070\pi\)
0.879212 + 0.476431i \(0.158070\pi\)
\(312\) 597548. 0.347525
\(313\) 41859.7 0.0241510 0.0120755 0.999927i \(-0.496156\pi\)
0.0120755 + 0.999927i \(0.496156\pi\)
\(314\) 1.57263e6 0.900122
\(315\) 797786. 0.453013
\(316\) 238678. 0.134461
\(317\) −1.76976e6 −0.989159 −0.494579 0.869133i \(-0.664678\pi\)
−0.494579 + 0.869133i \(0.664678\pi\)
\(318\) 1.46213e6 0.810806
\(319\) 2.81207e6 1.54721
\(320\) −894116. −0.488111
\(321\) 719184. 0.389563
\(322\) −173237. −0.0931111
\(323\) −266359. −0.142057
\(324\) 461575. 0.244275
\(325\) 2.31746e6 1.21704
\(326\) −2.62530e6 −1.36815
\(327\) 174390. 0.0901889
\(328\) −363341. −0.186479
\(329\) −152874. −0.0778654
\(330\) 1.05949e6 0.535562
\(331\) 1.69623e6 0.850970 0.425485 0.904965i \(-0.360103\pi\)
0.425485 + 0.904965i \(0.360103\pi\)
\(332\) 1.20689e6 0.600927
\(333\) 2.01424e6 0.995409
\(334\) −1.42365e6 −0.698293
\(335\) 4.56275e6 2.22134
\(336\) −354217. −0.171167
\(337\) −1.78727e6 −0.857264 −0.428632 0.903479i \(-0.641004\pi\)
−0.428632 + 0.903479i \(0.641004\pi\)
\(338\) −1.92225e6 −0.915203
\(339\) −1.47461e6 −0.696913
\(340\) −254980. −0.119621
\(341\) 89599.8 0.0417274
\(342\) −1.43974e6 −0.665611
\(343\) 117649. 0.0539949
\(344\) −1.01468e6 −0.462308
\(345\) −233053. −0.105416
\(346\) 1.56660e6 0.703506
\(347\) −87985.7 −0.0392273 −0.0196137 0.999808i \(-0.506244\pi\)
−0.0196137 + 0.999808i \(0.506244\pi\)
\(348\) 563917. 0.249613
\(349\) −1.95914e6 −0.860997 −0.430499 0.902591i \(-0.641662\pi\)
−0.430499 + 0.902591i \(0.641662\pi\)
\(350\) −934939. −0.407956
\(351\) −2.09741e6 −0.908691
\(352\) 1.56366e6 0.672646
\(353\) −1.39184e6 −0.594499 −0.297250 0.954800i \(-0.596069\pi\)
−0.297250 + 0.954800i \(0.596069\pi\)
\(354\) −643911. −0.273097
\(355\) 1.38073e6 0.581485
\(356\) −1.01882e6 −0.426060
\(357\) 72670.8 0.0301779
\(358\) 2.85029e6 1.17539
\(359\) 2.72511e6 1.11596 0.557979 0.829855i \(-0.311577\pi\)
0.557979 + 0.829855i \(0.311577\pi\)
\(360\) 2.10377e6 0.855543
\(361\) −1.42919e6 −0.577194
\(362\) 2.52415e6 1.01238
\(363\) −179846. −0.0716365
\(364\) 503796. 0.199297
\(365\) 4.76573e6 1.87239
\(366\) 1.59597e6 0.622763
\(367\) −4.33344e6 −1.67945 −0.839726 0.543011i \(-0.817284\pi\)
−0.839726 + 0.543011i \(0.817284\pi\)
\(368\) −671240. −0.258380
\(369\) 592037. 0.226351
\(370\) −4.94434e6 −1.87760
\(371\) −1.88166e6 −0.709751
\(372\) 17967.9 0.00673192
\(373\) 2.45591e6 0.913990 0.456995 0.889469i \(-0.348926\pi\)
0.456995 + 0.889469i \(0.348926\pi\)
\(374\) −626049. −0.231435
\(375\) 118973. 0.0436887
\(376\) −403131. −0.147054
\(377\) 6.34358e6 2.29869
\(378\) 846165. 0.304597
\(379\) −2.84350e6 −1.01684 −0.508422 0.861108i \(-0.669771\pi\)
−0.508422 + 0.861108i \(0.669771\pi\)
\(380\) 1.00218e6 0.356032
\(381\) 268433. 0.0947380
\(382\) −3.84972e6 −1.34980
\(383\) 5.15142e6 1.79444 0.897222 0.441581i \(-0.145582\pi\)
0.897222 + 0.441581i \(0.145582\pi\)
\(384\) −1.23244e6 −0.426519
\(385\) −1.36349e6 −0.468812
\(386\) −284168. −0.0970751
\(387\) 1.65334e6 0.561157
\(388\) 706866. 0.238373
\(389\) −1.29287e6 −0.433191 −0.216595 0.976261i \(-0.569495\pi\)
−0.216595 + 0.976261i \(0.569495\pi\)
\(390\) 2.39003e6 0.795686
\(391\) 137711. 0.0455540
\(392\) 310242. 0.101973
\(393\) −495228. −0.161742
\(394\) 2.71656e6 0.881613
\(395\) −1.45719e6 −0.469920
\(396\) −959604. −0.307506
\(397\) 2.10419e6 0.670051 0.335026 0.942209i \(-0.391255\pi\)
0.335026 + 0.942209i \(0.391255\pi\)
\(398\) −2.98931e6 −0.945938
\(399\) −285629. −0.0898192
\(400\) −3.62260e6 −1.13206
\(401\) −2.32723e6 −0.722735 −0.361367 0.932424i \(-0.617690\pi\)
−0.361367 + 0.932424i \(0.617690\pi\)
\(402\) 2.24656e6 0.693351
\(403\) 202123. 0.0619944
\(404\) 22427.8 0.00683649
\(405\) −2.81803e6 −0.853707
\(406\) −2.55921e6 −0.770531
\(407\) −3.44252e6 −1.03013
\(408\) 191634. 0.0569930
\(409\) 1.89123e6 0.559032 0.279516 0.960141i \(-0.409826\pi\)
0.279516 + 0.960141i \(0.409826\pi\)
\(410\) −1.45327e6 −0.426958
\(411\) 251488. 0.0734365
\(412\) 434870. 0.126217
\(413\) 828670. 0.239060
\(414\) 744366. 0.213445
\(415\) −7.36837e6 −2.10016
\(416\) 3.52738e6 0.999352
\(417\) −1.61470e6 −0.454728
\(418\) 2.46065e6 0.688825
\(419\) 4.15812e6 1.15708 0.578538 0.815655i \(-0.303623\pi\)
0.578538 + 0.815655i \(0.303623\pi\)
\(420\) −273426. −0.0756340
\(421\) −4.26633e6 −1.17314 −0.586569 0.809899i \(-0.699522\pi\)
−0.586569 + 0.809899i \(0.699522\pi\)
\(422\) 4.06365e6 1.11080
\(423\) 656871. 0.178496
\(424\) −4.96195e6 −1.34041
\(425\) 743210. 0.199590
\(426\) 679831. 0.181500
\(427\) −2.05391e6 −0.545144
\(428\) 1.59894e6 0.421914
\(429\) 1.66407e6 0.436544
\(430\) −4.05843e6 −1.05849
\(431\) −5.57140e6 −1.44468 −0.722339 0.691539i \(-0.756933\pi\)
−0.722339 + 0.691539i \(0.756933\pi\)
\(432\) 3.27863e6 0.845246
\(433\) −365124. −0.0935881 −0.0467940 0.998905i \(-0.514900\pi\)
−0.0467940 + 0.998905i \(0.514900\pi\)
\(434\) −81542.9 −0.0207808
\(435\) −3.44286e6 −0.872362
\(436\) 387718. 0.0976786
\(437\) −541265. −0.135583
\(438\) 2.34650e6 0.584434
\(439\) 878974. 0.217678 0.108839 0.994059i \(-0.465287\pi\)
0.108839 + 0.994059i \(0.465287\pi\)
\(440\) −3.59553e6 −0.885382
\(441\) −505515. −0.123776
\(442\) −1.41227e6 −0.343844
\(443\) −5.35277e6 −1.29589 −0.647947 0.761686i \(-0.724372\pi\)
−0.647947 + 0.761686i \(0.724372\pi\)
\(444\) −690344. −0.166191
\(445\) 6.22014e6 1.48902
\(446\) −2.24447e6 −0.534290
\(447\) 1.52634e6 0.361312
\(448\) 566554. 0.133366
\(449\) 6.41194e6 1.50098 0.750488 0.660884i \(-0.229819\pi\)
0.750488 + 0.660884i \(0.229819\pi\)
\(450\) 4.01725e6 0.935186
\(451\) −1.01184e6 −0.234246
\(452\) −3.27847e6 −0.754789
\(453\) −2.01336e6 −0.460973
\(454\) 5.20802e6 1.18586
\(455\) −3.07581e6 −0.696515
\(456\) −753205. −0.169629
\(457\) 7.40166e6 1.65782 0.828912 0.559378i \(-0.188960\pi\)
0.828912 + 0.559378i \(0.188960\pi\)
\(458\) −4.32316e6 −0.963024
\(459\) −672641. −0.149022
\(460\) −518142. −0.114171
\(461\) 1.62888e6 0.356975 0.178487 0.983942i \(-0.442880\pi\)
0.178487 + 0.983942i \(0.442880\pi\)
\(462\) −671340. −0.146331
\(463\) −1.42073e6 −0.308006 −0.154003 0.988070i \(-0.549217\pi\)
−0.154003 + 0.988070i \(0.549217\pi\)
\(464\) −9.91614e6 −2.13820
\(465\) −109699. −0.0235271
\(466\) −7.59154e6 −1.61944
\(467\) 6.70860e6 1.42344 0.711721 0.702462i \(-0.247916\pi\)
0.711721 + 0.702462i \(0.247916\pi\)
\(468\) −2.16471e6 −0.456863
\(469\) −2.89117e6 −0.606935
\(470\) −1.61241e6 −0.336691
\(471\) −1.34056e6 −0.278442
\(472\) 2.18521e6 0.451480
\(473\) −2.82570e6 −0.580729
\(474\) −717478. −0.146677
\(475\) −2.92114e6 −0.594044
\(476\) 161567. 0.0326841
\(477\) 8.08512e6 1.62701
\(478\) 3.00832e6 0.602218
\(479\) 3.84819e6 0.766332 0.383166 0.923679i \(-0.374834\pi\)
0.383166 + 0.923679i \(0.374834\pi\)
\(480\) −1.91442e6 −0.379257
\(481\) −7.76577e6 −1.53046
\(482\) 6.38123e6 1.25108
\(483\) 147674. 0.0288028
\(484\) −399847. −0.0775855
\(485\) −4.31560e6 −0.833080
\(486\) −5.58381e6 −1.07236
\(487\) −7.85905e6 −1.50158 −0.750789 0.660542i \(-0.770326\pi\)
−0.750789 + 0.660542i \(0.770326\pi\)
\(488\) −5.41618e6 −1.02954
\(489\) 2.23790e6 0.423222
\(490\) 1.24088e6 0.233475
\(491\) 1.34364e6 0.251523 0.125762 0.992060i \(-0.459863\pi\)
0.125762 + 0.992060i \(0.459863\pi\)
\(492\) −202909. −0.0377911
\(493\) 2.03439e6 0.376978
\(494\) 5.55083e6 1.02339
\(495\) 5.85864e6 1.07469
\(496\) −315954. −0.0576659
\(497\) −874896. −0.158879
\(498\) −3.62797e6 −0.655526
\(499\) −3.77600e6 −0.678860 −0.339430 0.940631i \(-0.610234\pi\)
−0.339430 + 0.940631i \(0.610234\pi\)
\(500\) 264509. 0.0473168
\(501\) 1.21357e6 0.216009
\(502\) 9.42157e6 1.66865
\(503\) −216483. −0.0381509 −0.0190754 0.999818i \(-0.506072\pi\)
−0.0190754 + 0.999818i \(0.506072\pi\)
\(504\) −1.33305e6 −0.233760
\(505\) −136928. −0.0238925
\(506\) −1.27219e6 −0.220889
\(507\) 1.63859e6 0.283107
\(508\) 596801. 0.102605
\(509\) −1.00134e7 −1.71311 −0.856556 0.516053i \(-0.827401\pi\)
−0.856556 + 0.516053i \(0.827401\pi\)
\(510\) 766482. 0.130490
\(511\) −3.01979e6 −0.511593
\(512\) −267286. −0.0450611
\(513\) 2.64377e6 0.443538
\(514\) −8.33177e6 −1.39101
\(515\) −2.65499e6 −0.441109
\(516\) −566651. −0.0936896
\(517\) −1.12265e6 −0.184722
\(518\) 3.13297e6 0.513016
\(519\) −1.33543e6 −0.217621
\(520\) −8.11093e6 −1.31541
\(521\) 4.45441e6 0.718946 0.359473 0.933156i \(-0.382957\pi\)
0.359473 + 0.933156i \(0.382957\pi\)
\(522\) 1.09964e7 1.76634
\(523\) 2.47637e6 0.395878 0.197939 0.980214i \(-0.436575\pi\)
0.197939 + 0.980214i \(0.436575\pi\)
\(524\) −1.10103e6 −0.175174
\(525\) 796976. 0.126196
\(526\) 1.22526e7 1.93092
\(527\) 64820.8 0.0101669
\(528\) −2.60123e6 −0.406064
\(529\) 279841. 0.0434783
\(530\) −1.98464e7 −3.06897
\(531\) −3.56063e6 −0.548013
\(532\) −635031. −0.0972783
\(533\) −2.28255e6 −0.348019
\(534\) 3.06261e6 0.464770
\(535\) −9.76198e6 −1.47453
\(536\) −7.62405e6 −1.14624
\(537\) −2.42969e6 −0.363593
\(538\) −9.34352e6 −1.39173
\(539\) 863969. 0.128093
\(540\) 2.53083e6 0.373490
\(541\) 1.13650e7 1.66946 0.834729 0.550660i \(-0.185624\pi\)
0.834729 + 0.550660i \(0.185624\pi\)
\(542\) 1.20681e7 1.76458
\(543\) −2.15168e6 −0.313168
\(544\) 1.13123e6 0.163890
\(545\) −2.36712e6 −0.341373
\(546\) −1.51443e6 −0.217405
\(547\) 1.03518e7 1.47928 0.739639 0.673004i \(-0.234996\pi\)
0.739639 + 0.673004i \(0.234996\pi\)
\(548\) 559126. 0.0795351
\(549\) 8.82524e6 1.24967
\(550\) −6.86584e6 −0.967803
\(551\) −7.99603e6 −1.12201
\(552\) 389417. 0.0543960
\(553\) 923346. 0.128396
\(554\) 1.27807e7 1.76921
\(555\) 4.21473e6 0.580815
\(556\) −3.58992e6 −0.492491
\(557\) −7.76504e6 −1.06049 −0.530244 0.847845i \(-0.677900\pi\)
−0.530244 + 0.847845i \(0.677900\pi\)
\(558\) 350374. 0.0476372
\(559\) −6.37433e6 −0.862789
\(560\) 4.80803e6 0.647884
\(561\) 533667. 0.0715918
\(562\) 1.07528e7 1.43609
\(563\) 1.41201e7 1.87745 0.938723 0.344674i \(-0.112010\pi\)
0.938723 + 0.344674i \(0.112010\pi\)
\(564\) −225130. −0.0298014
\(565\) 2.00159e7 2.63788
\(566\) 2.00836e6 0.263513
\(567\) 1.78564e6 0.233258
\(568\) −2.30711e6 −0.300053
\(569\) −8.53936e6 −1.10572 −0.552859 0.833275i \(-0.686463\pi\)
−0.552859 + 0.833275i \(0.686463\pi\)
\(570\) −3.01261e6 −0.388379
\(571\) 542125. 0.0695839 0.0347920 0.999395i \(-0.488923\pi\)
0.0347920 + 0.999395i \(0.488923\pi\)
\(572\) 3.69968e6 0.472797
\(573\) 3.28164e6 0.417546
\(574\) 920857. 0.116657
\(575\) 1.51027e6 0.190495
\(576\) −2.43437e6 −0.305725
\(577\) 1.42394e7 1.78054 0.890270 0.455433i \(-0.150516\pi\)
0.890270 + 0.455433i \(0.150516\pi\)
\(578\) 9.03638e6 1.12506
\(579\) 242235. 0.0300290
\(580\) −7.65443e6 −0.944807
\(581\) 4.66895e6 0.573824
\(582\) −2.12487e6 −0.260031
\(583\) −1.38182e7 −1.68376
\(584\) −7.96321e6 −0.966176
\(585\) 1.32161e7 1.59667
\(586\) 1.45089e7 1.74538
\(587\) 8.45283e6 1.01253 0.506264 0.862379i \(-0.331026\pi\)
0.506264 + 0.862379i \(0.331026\pi\)
\(588\) 173256. 0.0206654
\(589\) −254774. −0.0302599
\(590\) 8.74024e6 1.03370
\(591\) −2.31569e6 −0.272717
\(592\) 1.21393e7 1.42360
\(593\) −6.78761e6 −0.792647 −0.396324 0.918111i \(-0.629714\pi\)
−0.396324 + 0.918111i \(0.629714\pi\)
\(594\) 6.21391e6 0.722602
\(595\) −986411. −0.114226
\(596\) 3.39347e6 0.391317
\(597\) 2.54819e6 0.292615
\(598\) −2.86985e6 −0.328175
\(599\) 9.34030e6 1.06364 0.531819 0.846858i \(-0.321509\pi\)
0.531819 + 0.846858i \(0.321509\pi\)
\(600\) 2.10163e6 0.238330
\(601\) 1.55790e7 1.75935 0.879677 0.475572i \(-0.157759\pi\)
0.879677 + 0.475572i \(0.157759\pi\)
\(602\) 2.57161e6 0.289211
\(603\) 1.24228e7 1.39132
\(604\) −4.47625e6 −0.499254
\(605\) 2.44117e6 0.271150
\(606\) −67419.0 −0.00745763
\(607\) 1.14766e7 1.26428 0.632138 0.774856i \(-0.282178\pi\)
0.632138 + 0.774856i \(0.282178\pi\)
\(608\) −4.44623e6 −0.487790
\(609\) 2.18156e6 0.238355
\(610\) −2.16632e7 −2.35721
\(611\) −2.53252e6 −0.274441
\(612\) −694223. −0.0749239
\(613\) 4.57897e6 0.492172 0.246086 0.969248i \(-0.420856\pi\)
0.246086 + 0.969248i \(0.420856\pi\)
\(614\) 4.86356e6 0.520635
\(615\) 1.23882e6 0.132074
\(616\) 2.27829e6 0.241912
\(617\) 5.39646e6 0.570685 0.285342 0.958426i \(-0.407893\pi\)
0.285342 + 0.958426i \(0.407893\pi\)
\(618\) −1.30724e6 −0.137684
\(619\) 9.45484e6 0.991808 0.495904 0.868377i \(-0.334837\pi\)
0.495904 + 0.868377i \(0.334837\pi\)
\(620\) −243890. −0.0254809
\(621\) −1.36686e6 −0.142232
\(622\) −2.00454e7 −2.07748
\(623\) −3.94137e6 −0.406843
\(624\) −5.86797e6 −0.603290
\(625\) −1.05366e7 −1.07895
\(626\) −279760. −0.0285331
\(627\) −2.09755e6 −0.213080
\(628\) −2.98044e6 −0.301565
\(629\) −2.49048e6 −0.250990
\(630\) −5.33182e6 −0.535210
\(631\) −1.16868e7 −1.16848 −0.584242 0.811580i \(-0.698608\pi\)
−0.584242 + 0.811580i \(0.698608\pi\)
\(632\) 2.43487e6 0.242484
\(633\) −3.46400e6 −0.343613
\(634\) 1.18278e7 1.16864
\(635\) −3.64363e6 −0.358591
\(636\) −2.77102e6 −0.271642
\(637\) 1.94898e6 0.190308
\(638\) −1.87938e7 −1.82795
\(639\) 3.75926e6 0.364208
\(640\) 1.67288e7 1.61441
\(641\) −3.61240e6 −0.347257 −0.173629 0.984811i \(-0.555549\pi\)
−0.173629 + 0.984811i \(0.555549\pi\)
\(642\) −4.80650e6 −0.460248
\(643\) −1.02519e6 −0.0977858 −0.0488929 0.998804i \(-0.515569\pi\)
−0.0488929 + 0.998804i \(0.515569\pi\)
\(644\) 328319. 0.0311947
\(645\) 3.45955e6 0.327432
\(646\) 1.78015e6 0.167832
\(647\) −1.14753e7 −1.07772 −0.538859 0.842396i \(-0.681144\pi\)
−0.538859 + 0.842396i \(0.681144\pi\)
\(648\) 4.70875e6 0.440522
\(649\) 6.08543e6 0.567126
\(650\) −1.54882e7 −1.43787
\(651\) 69510.1 0.00642829
\(652\) 4.97547e6 0.458369
\(653\) −5.21459e6 −0.478561 −0.239280 0.970951i \(-0.576911\pi\)
−0.239280 + 0.970951i \(0.576911\pi\)
\(654\) −1.16550e6 −0.106553
\(655\) 6.72207e6 0.612209
\(656\) 3.56804e6 0.323720
\(657\) 1.29754e7 1.17276
\(658\) 1.02170e6 0.0919939
\(659\) −9.04891e6 −0.811676 −0.405838 0.913945i \(-0.633020\pi\)
−0.405838 + 0.913945i \(0.633020\pi\)
\(660\) −2.00794e6 −0.179428
\(661\) 835159. 0.0743474 0.0371737 0.999309i \(-0.488165\pi\)
0.0371737 + 0.999309i \(0.488165\pi\)
\(662\) −1.13364e7 −1.00538
\(663\) 1.20387e6 0.106364
\(664\) 1.23121e7 1.08370
\(665\) 3.87703e6 0.339974
\(666\) −1.34617e7 −1.17602
\(667\) 4.13405e6 0.359800
\(668\) 2.69811e6 0.233947
\(669\) 1.91327e6 0.165276
\(670\) −3.04941e7 −2.62439
\(671\) −1.50831e7 −1.29326
\(672\) 1.21307e6 0.103624
\(673\) 2.11530e6 0.180026 0.0900129 0.995941i \(-0.471309\pi\)
0.0900129 + 0.995941i \(0.471309\pi\)
\(674\) 1.19448e7 1.01281
\(675\) −7.37680e6 −0.623173
\(676\) 3.64304e6 0.306618
\(677\) −6.61179e6 −0.554431 −0.277215 0.960808i \(-0.589412\pi\)
−0.277215 + 0.960808i \(0.589412\pi\)
\(678\) 9.85524e6 0.823366
\(679\) 2.73457e6 0.227622
\(680\) −2.60117e6 −0.215723
\(681\) −4.43950e6 −0.366831
\(682\) −598820. −0.0492987
\(683\) 5.06301e6 0.415295 0.207648 0.978204i \(-0.433419\pi\)
0.207648 + 0.978204i \(0.433419\pi\)
\(684\) 2.72860e6 0.222998
\(685\) −3.41361e6 −0.277964
\(686\) −786280. −0.0637921
\(687\) 3.68521e6 0.297900
\(688\) 9.96420e6 0.802549
\(689\) −3.11716e7 −2.50156
\(690\) 1.55756e6 0.124544
\(691\) 1.33295e7 1.06198 0.530991 0.847377i \(-0.321820\pi\)
0.530991 + 0.847377i \(0.321820\pi\)
\(692\) −2.96902e6 −0.235694
\(693\) −3.71231e6 −0.293637
\(694\) 588033. 0.0463450
\(695\) 2.19174e7 1.72118
\(696\) 5.75279e6 0.450148
\(697\) −732015. −0.0570740
\(698\) 1.30935e7 1.01722
\(699\) 6.47130e6 0.500955
\(700\) 1.77190e6 0.136676
\(701\) 2.62291e6 0.201599 0.100800 0.994907i \(-0.467860\pi\)
0.100800 + 0.994907i \(0.467860\pi\)
\(702\) 1.40176e7 1.07357
\(703\) 9.78869e6 0.747027
\(704\) 4.16055e6 0.316388
\(705\) 1.37448e6 0.104151
\(706\) 9.30202e6 0.702369
\(707\) 86763.7 0.00652814
\(708\) 1.22034e6 0.0914950
\(709\) 100816. 0.00753210 0.00376605 0.999993i \(-0.498801\pi\)
0.00376605 + 0.999993i \(0.498801\pi\)
\(710\) −9.22780e6 −0.686993
\(711\) −3.96744e6 −0.294331
\(712\) −1.03934e7 −0.768350
\(713\) 131722. 0.00970360
\(714\) −485679. −0.0356536
\(715\) −2.25875e7 −1.65236
\(716\) −5.40188e6 −0.393788
\(717\) −2.56440e6 −0.186289
\(718\) −1.82127e7 −1.31845
\(719\) −2.34693e7 −1.69308 −0.846539 0.532326i \(-0.821318\pi\)
−0.846539 + 0.532326i \(0.821318\pi\)
\(720\) −2.06592e7 −1.48519
\(721\) 1.68233e6 0.120524
\(722\) 9.55167e6 0.681924
\(723\) −5.43959e6 −0.387008
\(724\) −4.78377e6 −0.339175
\(725\) 2.23110e7 1.57642
\(726\) 1.20196e6 0.0846347
\(727\) −2.10697e7 −1.47850 −0.739252 0.673429i \(-0.764821\pi\)
−0.739252 + 0.673429i \(0.764821\pi\)
\(728\) 5.13947e6 0.359410
\(729\) −4.09548e6 −0.285421
\(730\) −3.18507e7 −2.21213
\(731\) −2.04425e6 −0.141495
\(732\) −3.02469e6 −0.208642
\(733\) −5.45237e6 −0.374822 −0.187411 0.982282i \(-0.560010\pi\)
−0.187411 + 0.982282i \(0.560010\pi\)
\(734\) 2.89615e7 1.98418
\(735\) −1.05777e6 −0.0722227
\(736\) 2.29876e6 0.156422
\(737\) −2.12317e7 −1.43984
\(738\) −3.95674e6 −0.267422
\(739\) 1.31042e7 0.882674 0.441337 0.897342i \(-0.354504\pi\)
0.441337 + 0.897342i \(0.354504\pi\)
\(740\) 9.37051e6 0.629048
\(741\) −4.73173e6 −0.316573
\(742\) 1.25756e7 0.838533
\(743\) −8.32658e6 −0.553343 −0.276672 0.960965i \(-0.589231\pi\)
−0.276672 + 0.960965i \(0.589231\pi\)
\(744\) 183299. 0.0121402
\(745\) −2.07180e7 −1.36760
\(746\) −1.64136e7 −1.07983
\(747\) −2.00616e7 −1.31542
\(748\) 1.18649e6 0.0775371
\(749\) 6.18565e6 0.402885
\(750\) −795127. −0.0516159
\(751\) −2.41029e7 −1.55944 −0.779721 0.626127i \(-0.784639\pi\)
−0.779721 + 0.626127i \(0.784639\pi\)
\(752\) 3.95877e6 0.255280
\(753\) −8.03129e6 −0.516176
\(754\) −4.23959e7 −2.71578
\(755\) 2.73287e7 1.74482
\(756\) −1.60365e6 −0.102048
\(757\) −6.38709e6 −0.405101 −0.202550 0.979272i \(-0.564923\pi\)
−0.202550 + 0.979272i \(0.564923\pi\)
\(758\) 1.90039e7 1.20135
\(759\) 1.08446e6 0.0683295
\(760\) 1.02238e7 0.642062
\(761\) −1.67115e7 −1.04605 −0.523025 0.852317i \(-0.675197\pi\)
−0.523025 + 0.852317i \(0.675197\pi\)
\(762\) −1.79401e6 −0.111928
\(763\) 1.49992e6 0.0932730
\(764\) 7.29599e6 0.452221
\(765\) 4.23842e6 0.261848
\(766\) −3.44283e7 −2.12004
\(767\) 1.37278e7 0.842580
\(768\) 6.12887e6 0.374953
\(769\) 1.66237e7 1.01371 0.506854 0.862032i \(-0.330808\pi\)
0.506854 + 0.862032i \(0.330808\pi\)
\(770\) 9.11255e6 0.553877
\(771\) 7.10230e6 0.430292
\(772\) 538556. 0.0325228
\(773\) 2.72819e7 1.64220 0.821101 0.570783i \(-0.193360\pi\)
0.821101 + 0.570783i \(0.193360\pi\)
\(774\) −1.10497e7 −0.662977
\(775\) 710885. 0.0425153
\(776\) 7.21108e6 0.429879
\(777\) −2.67065e6 −0.158696
\(778\) 8.64057e6 0.511792
\(779\) 2.87714e6 0.169870
\(780\) −4.52958e6 −0.266576
\(781\) −6.42490e6 −0.376911
\(782\) −920361. −0.0538197
\(783\) −2.01925e7 −1.17702
\(784\) −3.04659e6 −0.177021
\(785\) 1.81964e7 1.05393
\(786\) 3.30975e6 0.191090
\(787\) 1.07446e7 0.618377 0.309189 0.951001i \(-0.399943\pi\)
0.309189 + 0.951001i \(0.399943\pi\)
\(788\) −5.14842e6 −0.295364
\(789\) −1.04445e7 −0.597306
\(790\) 9.73882e6 0.555186
\(791\) −1.26830e7 −0.720746
\(792\) −9.78939e6 −0.554552
\(793\) −3.40251e7 −1.92139
\(794\) −1.40629e7 −0.791630
\(795\) 1.69178e7 0.949350
\(796\) 5.66533e6 0.316915
\(797\) 2.15172e7 1.19989 0.599944 0.800042i \(-0.295190\pi\)
0.599944 + 0.800042i \(0.295190\pi\)
\(798\) 1.90893e6 0.106117
\(799\) −812178. −0.0450075
\(800\) 1.24061e7 0.685347
\(801\) 1.69353e7 0.932635
\(802\) 1.55535e7 0.853873
\(803\) −2.21762e7 −1.21366
\(804\) −4.25768e6 −0.232291
\(805\) −2.00447e6 −0.109021
\(806\) −1.35084e6 −0.0732431
\(807\) 7.96475e6 0.430515
\(808\) 228797. 0.0123288
\(809\) 3.13181e6 0.168238 0.0841189 0.996456i \(-0.473192\pi\)
0.0841189 + 0.996456i \(0.473192\pi\)
\(810\) 1.88337e7 1.00861
\(811\) 1.07790e7 0.575473 0.287736 0.957710i \(-0.407097\pi\)
0.287736 + 0.957710i \(0.407097\pi\)
\(812\) 4.85021e6 0.258149
\(813\) −1.02873e7 −0.545853
\(814\) 2.30073e7 1.21704
\(815\) −3.03766e7 −1.60193
\(816\) −1.88186e6 −0.0989375
\(817\) 8.03479e6 0.421133
\(818\) −1.26396e7 −0.660467
\(819\) −8.37437e6 −0.436257
\(820\) 2.75423e6 0.143043
\(821\) −3.05138e7 −1.57993 −0.789967 0.613149i \(-0.789902\pi\)
−0.789967 + 0.613149i \(0.789902\pi\)
\(822\) −1.68076e6 −0.0867614
\(823\) −2.50014e6 −0.128666 −0.0643332 0.997928i \(-0.520492\pi\)
−0.0643332 + 0.997928i \(0.520492\pi\)
\(824\) 4.43632e6 0.227617
\(825\) 5.85269e6 0.299378
\(826\) −5.53823e6 −0.282436
\(827\) 4.34060e6 0.220692 0.110346 0.993893i \(-0.464804\pi\)
0.110346 + 0.993893i \(0.464804\pi\)
\(828\) −1.41072e6 −0.0715099
\(829\) 1.50388e7 0.760024 0.380012 0.924981i \(-0.375920\pi\)
0.380012 + 0.924981i \(0.375920\pi\)
\(830\) 4.92449e7 2.48122
\(831\) −1.08947e7 −0.547285
\(832\) 9.38554e6 0.470057
\(833\) 625036. 0.0312099
\(834\) 1.07915e7 0.537237
\(835\) −1.64726e7 −0.817612
\(836\) −4.66342e6 −0.230775
\(837\) −643385. −0.0317437
\(838\) −2.77899e7 −1.36702
\(839\) −2.35956e7 −1.15725 −0.578623 0.815595i \(-0.696410\pi\)
−0.578623 + 0.815595i \(0.696410\pi\)
\(840\) −2.78935e6 −0.136397
\(841\) 4.05606e7 1.97749
\(842\) 2.85130e7 1.38600
\(843\) −9.16607e6 −0.444237
\(844\) −7.70143e6 −0.372148
\(845\) −2.22417e7 −1.07159
\(846\) −4.39005e6 −0.210884
\(847\) −1.54684e6 −0.0740862
\(848\) 4.87267e7 2.32690
\(849\) −1.71200e6 −0.0815145
\(850\) −4.96707e6 −0.235805
\(851\) −5.06088e6 −0.239553
\(852\) −1.28842e6 −0.0608075
\(853\) 1.06675e6 0.0501986 0.0250993 0.999685i \(-0.492010\pi\)
0.0250993 + 0.999685i \(0.492010\pi\)
\(854\) 1.37268e7 0.644059
\(855\) −1.66588e7 −0.779345
\(856\) 1.63116e7 0.760873
\(857\) −1.51836e7 −0.706191 −0.353096 0.935587i \(-0.614871\pi\)
−0.353096 + 0.935587i \(0.614871\pi\)
\(858\) −1.11214e7 −0.515754
\(859\) 3.17872e7 1.46984 0.734919 0.678155i \(-0.237220\pi\)
0.734919 + 0.678155i \(0.237220\pi\)
\(860\) 7.69154e6 0.354623
\(861\) −784972. −0.0360866
\(862\) 3.72352e7 1.70681
\(863\) 1.02922e7 0.470415 0.235207 0.971945i \(-0.424423\pi\)
0.235207 + 0.971945i \(0.424423\pi\)
\(864\) −1.12281e7 −0.511709
\(865\) 1.81266e7 0.823715
\(866\) 2.44022e6 0.110569
\(867\) −7.70293e6 −0.348023
\(868\) 154540. 0.00696213
\(869\) 6.78070e6 0.304596
\(870\) 2.30096e7 1.03065
\(871\) −4.78952e7 −2.13918
\(872\) 3.95530e6 0.176152
\(873\) −1.17499e7 −0.521794
\(874\) 3.61742e6 0.160185
\(875\) 1.02327e6 0.0451827
\(876\) −4.44709e6 −0.195801
\(877\) 1.28214e7 0.562907 0.281453 0.959575i \(-0.409183\pi\)
0.281453 + 0.959575i \(0.409183\pi\)
\(878\) −5.87442e6 −0.257175
\(879\) −1.23679e7 −0.539913
\(880\) 3.53083e7 1.53699
\(881\) 1.74956e7 0.759432 0.379716 0.925103i \(-0.376022\pi\)
0.379716 + 0.925103i \(0.376022\pi\)
\(882\) 3.37849e6 0.146235
\(883\) 1.81531e6 0.0783518 0.0391759 0.999232i \(-0.487527\pi\)
0.0391759 + 0.999232i \(0.487527\pi\)
\(884\) 2.67653e6 0.115197
\(885\) −7.45049e6 −0.319762
\(886\) 3.57740e7 1.53103
\(887\) −2.84627e7 −1.21470 −0.607348 0.794436i \(-0.707767\pi\)
−0.607348 + 0.794436i \(0.707767\pi\)
\(888\) −7.04254e6 −0.299707
\(889\) 2.30877e6 0.0979777
\(890\) −4.15709e7 −1.75920
\(891\) 1.31130e7 0.553362
\(892\) 4.25372e6 0.179002
\(893\) 3.19222e6 0.133957
\(894\) −1.02009e7 −0.426871
\(895\) 3.29799e7 1.37623
\(896\) −1.06001e7 −0.441105
\(897\) 2.44636e6 0.101517
\(898\) −4.28528e7 −1.77332
\(899\) 1.94590e6 0.0803012
\(900\) −7.61350e6 −0.313313
\(901\) −9.99672e6 −0.410247
\(902\) 6.76242e6 0.276749
\(903\) −2.19213e6 −0.0894639
\(904\) −3.34453e7 −1.36117
\(905\) 2.92062e7 1.18537
\(906\) 1.34558e7 0.544615
\(907\) 3.85851e7 1.55740 0.778701 0.627395i \(-0.215879\pi\)
0.778701 + 0.627395i \(0.215879\pi\)
\(908\) −9.87023e6 −0.397295
\(909\) −372807. −0.0149649
\(910\) 2.05565e7 0.822896
\(911\) 2.66980e6 0.106582 0.0532909 0.998579i \(-0.483029\pi\)
0.0532909 + 0.998579i \(0.483029\pi\)
\(912\) 7.39653e6 0.294470
\(913\) 3.42870e7 1.36129
\(914\) −4.94673e7 −1.95863
\(915\) 1.84665e7 0.729175
\(916\) 8.19325e6 0.322639
\(917\) −4.25942e6 −0.167273
\(918\) 4.49544e6 0.176062
\(919\) 1.69742e7 0.662981 0.331491 0.943459i \(-0.392448\pi\)
0.331491 + 0.943459i \(0.392448\pi\)
\(920\) −5.28582e6 −0.205893
\(921\) −4.14588e6 −0.161052
\(922\) −1.08863e7 −0.421747
\(923\) −1.44935e7 −0.559977
\(924\) 1.27232e6 0.0490250
\(925\) −2.73129e7 −1.04958
\(926\) 9.49513e6 0.363893
\(927\) −7.22864e6 −0.276285
\(928\) 3.39592e7 1.29446
\(929\) 5.79682e6 0.220369 0.110184 0.993911i \(-0.464856\pi\)
0.110184 + 0.993911i \(0.464856\pi\)
\(930\) 733145. 0.0277960
\(931\) −2.45667e6 −0.0928907
\(932\) 1.43875e7 0.542557
\(933\) 1.70874e7 0.642645
\(934\) −4.48354e7 −1.68172
\(935\) −7.24382e6 −0.270981
\(936\) −2.20833e7 −0.823899
\(937\) 2.25276e7 0.838235 0.419117 0.907932i \(-0.362340\pi\)
0.419117 + 0.907932i \(0.362340\pi\)
\(938\) 1.93225e7 0.717061
\(939\) 238477. 0.00882639
\(940\) 3.05585e6 0.112801
\(941\) −3.68545e7 −1.35680 −0.678400 0.734693i \(-0.737326\pi\)
−0.678400 + 0.734693i \(0.737326\pi\)
\(942\) 8.95935e6 0.328965
\(943\) −1.48752e6 −0.0544733
\(944\) −2.14589e7 −0.783750
\(945\) 9.79072e6 0.356644
\(946\) 1.88849e7 0.686100
\(947\) −4.55162e7 −1.64927 −0.824633 0.565668i \(-0.808618\pi\)
−0.824633 + 0.565668i \(0.808618\pi\)
\(948\) 1.35976e6 0.0491409
\(949\) −5.00259e7 −1.80314
\(950\) 1.95228e7 0.701832
\(951\) −1.00824e7 −0.361505
\(952\) 1.64823e6 0.0589420
\(953\) 4.99430e7 1.78132 0.890660 0.454669i \(-0.150243\pi\)
0.890660 + 0.454669i \(0.150243\pi\)
\(954\) −5.40351e7 −1.92223
\(955\) −4.45439e7 −1.58045
\(956\) −5.70136e6 −0.201759
\(957\) 1.60205e7 0.565454
\(958\) −2.57185e7 −0.905381
\(959\) 2.16303e6 0.0759478
\(960\) −5.09383e6 −0.178388
\(961\) −2.85671e7 −0.997834
\(962\) 5.19008e7 1.80816
\(963\) −2.65785e7 −0.923560
\(964\) −1.20937e7 −0.419147
\(965\) −3.28803e6 −0.113662
\(966\) −986943. −0.0340290
\(967\) −1.45315e7 −0.499740 −0.249870 0.968279i \(-0.580388\pi\)
−0.249870 + 0.968279i \(0.580388\pi\)
\(968\) −4.07904e6 −0.139917
\(969\) −1.51746e6 −0.0519169
\(970\) 2.88423e7 0.984240
\(971\) −2.60662e7 −0.887217 −0.443609 0.896221i \(-0.646302\pi\)
−0.443609 + 0.896221i \(0.646302\pi\)
\(972\) 1.05824e7 0.359269
\(973\) −1.38879e7 −0.470278
\(974\) 5.25242e7 1.77403
\(975\) 1.32027e7 0.444787
\(976\) 5.31872e7 1.78724
\(977\) 3.10232e6 0.103980 0.0519900 0.998648i \(-0.483444\pi\)
0.0519900 + 0.998648i \(0.483444\pi\)
\(978\) −1.49565e7 −0.500015
\(979\) −2.89439e7 −0.965163
\(980\) −2.35172e6 −0.0782204
\(981\) −6.44485e6 −0.213816
\(982\) −8.97990e6 −0.297162
\(983\) −1.27189e7 −0.419823 −0.209912 0.977720i \(-0.567318\pi\)
−0.209912 + 0.977720i \(0.567318\pi\)
\(984\) −2.06998e6 −0.0681519
\(985\) 3.14324e7 1.03226
\(986\) −1.35964e7 −0.445379
\(987\) −870934. −0.0284572
\(988\) −1.05199e7 −0.342863
\(989\) −4.15409e6 −0.135047
\(990\) −3.91549e7 −1.26969
\(991\) 1.54629e7 0.500159 0.250080 0.968225i \(-0.419543\pi\)
0.250080 + 0.968225i \(0.419543\pi\)
\(992\) 1.08203e6 0.0349108
\(993\) 9.66352e6 0.311001
\(994\) 5.84717e6 0.187707
\(995\) −3.45883e7 −1.10757
\(996\) 6.87572e6 0.219619
\(997\) 2.99514e7 0.954287 0.477143 0.878825i \(-0.341672\pi\)
0.477143 + 0.878825i \(0.341672\pi\)
\(998\) 2.52360e7 0.802037
\(999\) 2.47195e7 0.783658
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.6.a.a.1.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.6.a.a.1.3 10 1.1 even 1 trivial