Properties

Label 1614.2.a.i
Level $1614$
Weight $2$
Character orbit 1614.a
Self dual yes
Analytic conductor $12.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1614,2,Mod(1,1614)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1614, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1614.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1614 = 2 \cdot 3 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1614.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.8878548862\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + \beta_1 q^{5} - q^{6} + (\beta_{2} + 1) q^{7} - q^{8} + q^{9} - \beta_1 q^{10} + ( - \beta_{4} - \beta_{3} + \beta_1 + 1) q^{11} + q^{12} + ( - \beta_{5} + \beta_{2} - 1) q^{13}+ \cdots + ( - \beta_{4} - \beta_{3} + \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 8 q^{6} + 9 q^{7} - 8 q^{8} + 8 q^{9} + 8 q^{11} + 8 q^{12} - 3 q^{13} - 9 q^{14} + 8 q^{16} + 8 q^{17} - 8 q^{18} + 18 q^{19} + 9 q^{21} - 8 q^{22} - 10 q^{23} - 8 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 86\nu^{7} + 658\nu^{6} - 1884\nu^{5} - 16251\nu^{4} + 11617\nu^{3} + 91212\nu^{2} - 29475\nu + 18092 ) / 17546 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 300\nu^{7} - 765\nu^{6} - 5756\nu^{5} + 18187\nu^{4} + 10533\nu^{3} - 106391\nu^{2} + 158330\nu - 3808 ) / 17546 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -303\nu^{7} + 334\nu^{6} + 8270\nu^{5} - 7929\nu^{4} - 61434\nu^{3} + 48939\nu^{2} + 95381\nu - 22122 ) / 17546 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 323\nu^{7} - 385\nu^{6} - 7484\nu^{5} + 6802\nu^{4} + 41081\nu^{3} - 19770\nu^{2} + 8753\nu - 74050 ) / 17546 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -377\nu^{7} + 1400\nu^{6} + 8871\nu^{5} - 32710\nu^{4} - 53680\nu^{3} + 196308\nu^{2} + 31177\nu - 111954 ) / 17546 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 466\nu^{7} - 311\nu^{6} - 13269\nu^{5} + 6201\nu^{4} + 116198\nu^{3} - 30098\nu^{2} - 314363\nu - 1938 ) / 17546 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} - \beta_{5} + 3\beta_{4} + \beta_{3} + 11\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 18\beta_{7} + 16\beta_{6} - 9\beta_{5} + 15\beta_{4} + 21\beta_{3} - 14\beta_{2} + 4\beta _1 + 104 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 41\beta_{7} + \beta_{6} - 21\beta_{5} + 68\beta_{4} + 28\beta_{3} + 3\beta_{2} + 126\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 293\beta_{7} + 253\beta_{6} - 216\beta_{5} + 217\beta_{4} + 367\beta_{3} - 183\beta_{2} + 109\beta _1 + 1277 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 727\beta_{7} + 49\beta_{6} - 373\beta_{5} + 1198\beta_{4} + 578\beta_{3} + 85\beta_{2} + 1539\beta _1 + 367 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.72348
−3.24183
−2.96228
−0.234455
0.386375
2.67535
3.17461
3.92571
−1.00000 1.00000 1.00000 −3.72348 −1.00000 −3.69765 −1.00000 1.00000 3.72348
1.2 −1.00000 1.00000 1.00000 −3.24183 −1.00000 0.788032 −1.00000 1.00000 3.24183
1.3 −1.00000 1.00000 1.00000 −2.96228 −1.00000 4.11619 −1.00000 1.00000 2.96228
1.4 −1.00000 1.00000 1.00000 −0.234455 −1.00000 2.69948 −1.00000 1.00000 0.234455
1.5 −1.00000 1.00000 1.00000 0.386375 −1.00000 2.17487 −1.00000 1.00000 −0.386375
1.6 −1.00000 1.00000 1.00000 2.67535 −1.00000 3.81683 −1.00000 1.00000 −2.67535
1.7 −1.00000 1.00000 1.00000 3.17461 −1.00000 −4.10776 −1.00000 1.00000 −3.17461
1.8 −1.00000 1.00000 1.00000 3.92571 −1.00000 3.21002 −1.00000 1.00000 −3.92571
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(269\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1614.2.a.i 8
3.b odd 2 1 4842.2.a.q 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1614.2.a.i 8 1.a even 1 1 trivial
4842.2.a.q 8 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} - 33T_{5}^{6} + 352T_{5}^{4} - 18T_{5}^{3} - 1229T_{5}^{2} + 178T_{5} + 108 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1614))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( (T - 1)^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 33 T^{6} + \cdots + 108 \) Copy content Toggle raw display
$7$ \( T^{8} - 9 T^{7} + \cdots + 3544 \) Copy content Toggle raw display
$11$ \( T^{8} - 8 T^{7} + \cdots + 5043 \) Copy content Toggle raw display
$13$ \( T^{8} + 3 T^{7} + \cdots + 7136 \) Copy content Toggle raw display
$17$ \( T^{8} - 8 T^{7} + \cdots + 109644 \) Copy content Toggle raw display
$19$ \( T^{8} - 18 T^{7} + \cdots + 220 \) Copy content Toggle raw display
$23$ \( T^{8} + 10 T^{7} + \cdots + 96 \) Copy content Toggle raw display
$29$ \( T^{8} + 9 T^{7} + \cdots - 1944 \) Copy content Toggle raw display
$31$ \( T^{8} - 18 T^{7} + \cdots + 4600 \) Copy content Toggle raw display
$37$ \( T^{8} - 22 T^{7} + \cdots - 5068576 \) Copy content Toggle raw display
$41$ \( T^{8} + T^{7} + \cdots + 1364856 \) Copy content Toggle raw display
$43$ \( T^{8} - 14 T^{7} + \cdots - 258472 \) Copy content Toggle raw display
$47$ \( T^{8} - 6 T^{7} + \cdots + 421152 \) Copy content Toggle raw display
$53$ \( T^{8} + 3 T^{7} + \cdots + 65328 \) Copy content Toggle raw display
$59$ \( T^{8} - T^{7} + \cdots + 11862912 \) Copy content Toggle raw display
$61$ \( T^{8} - 18 T^{7} + \cdots + 511232 \) Copy content Toggle raw display
$67$ \( T^{8} - 30 T^{7} + \cdots + 2448832 \) Copy content Toggle raw display
$71$ \( T^{8} + 5 T^{7} + \cdots + 7318377 \) Copy content Toggle raw display
$73$ \( T^{8} - 15 T^{7} + \cdots - 46343 \) Copy content Toggle raw display
$79$ \( T^{8} - 21 T^{7} + \cdots - 1178668 \) Copy content Toggle raw display
$83$ \( T^{8} + 11 T^{7} + \cdots - 48864 \) Copy content Toggle raw display
$89$ \( T^{8} - 22 T^{7} + \cdots - 691224 \) Copy content Toggle raw display
$97$ \( T^{8} - 13 T^{7} + \cdots + 776603 \) Copy content Toggle raw display
show more
show less