gp: [N,k,chi] = [162,2,Mod(55,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.55");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,1,0,-1,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 162 Z ) × \left(\mathbb{Z}/162\mathbb{Z}\right)^\times ( Z / 1 6 2 Z ) × .
n n n
83 83 8 3
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 162 , [ χ ] ) S_{2}^{\mathrm{new}}(162, [\chi]) S 2 n e w ( 1 6 2 , [ χ ] ) :
T 5 2 − 3 T 5 + 9 T_{5}^{2} - 3T_{5} + 9 T 5 2 − 3 T 5 + 9
T5^2 - 3*T5 + 9
T 7 2 − 4 T 7 + 16 T_{7}^{2} - 4T_{7} + 16 T 7 2 − 4 T 7 + 1 6
T7^2 - 4*T7 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
7 7 7
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
17 17 1 7
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
19 19 1 9
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 + 9 T + 81 T^{2} + 9T + 81 T 2 + 9 T + 8 1
T^2 + 9*T + 81
31 31 3 1
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
37 37 3 7
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
41 41 4 1
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
43 43 4 3
T 2 + 8 T + 64 T^{2} + 8T + 64 T 2 + 8 T + 6 4
T^2 + 8*T + 64
47 47 4 7
T 2 − 12 T + 144 T^{2} - 12T + 144 T 2 − 1 2 T + 1 4 4
T^2 - 12*T + 144
53 53 5 3
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
67 67 6 7
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
71 71 7 1
( T + 12 ) 2 (T + 12)^{2} ( T + 1 2 ) 2
(T + 12)^2
73 73 7 3
( T − 11 ) 2 (T - 11)^{2} ( T − 1 1 ) 2
(T - 11)^2
79 79 7 9
T 2 − 16 T + 256 T^{2} - 16T + 256 T 2 − 1 6 T + 2 5 6
T^2 - 16*T + 256
83 83 8 3
T 2 − 12 T + 144 T^{2} - 12T + 144 T 2 − 1 2 T + 1 4 4
T^2 - 12*T + 144
89 89 8 9
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
97 97 9 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
show more
show less