Properties

Label 162.2.c.d
Level 162162
Weight 22
Character orbit 162.c
Analytic conductor 1.2941.294
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,2,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 162.c (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.293576512741.29357651274
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q2ζ6q4+3ζ6q5+(4ζ6+4)q7q8+3q10+ζ6q134ζ6q14+(ζ61)q163q174q19+9q98+O(q100) q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} + 3 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{7} - q^{8} + 3 q^{10} + \zeta_{6} q^{13} - 4 \zeta_{6} q^{14} + (\zeta_{6} - 1) q^{16} - 3 q^{17} - 4 q^{19} + \cdots - 9 q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4+3q5+4q72q8+6q10+q134q14q166q178q19+3q204q25+2q268q289q29+4q31+q323q34+18q98+O(q100) 2 q + q^{2} - q^{4} + 3 q^{5} + 4 q^{7} - 2 q^{8} + 6 q^{10} + q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - 8 q^{19} + 3 q^{20} - 4 q^{25} + 2 q^{26} - 8 q^{28} - 9 q^{29} + 4 q^{31} + q^{32} - 3 q^{34}+ \cdots - 18 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/162Z)×\left(\mathbb{Z}/162\mathbb{Z}\right)^\times.

nn 8383
χ(n)\chi(n) ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 1.50000 + 2.59808i 0 2.00000 3.46410i −1.00000 0 3.00000
109.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.50000 2.59808i 0 2.00000 + 3.46410i −1.00000 0 3.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.2.c.d 2
3.b odd 2 1 162.2.c.a 2
4.b odd 2 1 1296.2.i.n 2
9.c even 3 1 162.2.a.a 1
9.c even 3 1 inner 162.2.c.d 2
9.d odd 6 1 162.2.a.d yes 1
9.d odd 6 1 162.2.c.a 2
12.b even 2 1 1296.2.i.b 2
36.f odd 6 1 1296.2.a.c 1
36.f odd 6 1 1296.2.i.n 2
36.h even 6 1 1296.2.a.l 1
36.h even 6 1 1296.2.i.b 2
45.h odd 6 1 4050.2.a.r 1
45.j even 6 1 4050.2.a.bh 1
45.k odd 12 2 4050.2.c.g 2
45.l even 12 2 4050.2.c.n 2
63.l odd 6 1 7938.2.a.n 1
63.o even 6 1 7938.2.a.s 1
72.j odd 6 1 5184.2.a.c 1
72.l even 6 1 5184.2.a.h 1
72.n even 6 1 5184.2.a.y 1
72.p odd 6 1 5184.2.a.bd 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.2.a.a 1 9.c even 3 1
162.2.a.d yes 1 9.d odd 6 1
162.2.c.a 2 3.b odd 2 1
162.2.c.a 2 9.d odd 6 1
162.2.c.d 2 1.a even 1 1 trivial
162.2.c.d 2 9.c even 3 1 inner
1296.2.a.c 1 36.f odd 6 1
1296.2.a.l 1 36.h even 6 1
1296.2.i.b 2 12.b even 2 1
1296.2.i.b 2 36.h even 6 1
1296.2.i.n 2 4.b odd 2 1
1296.2.i.n 2 36.f odd 6 1
4050.2.a.r 1 45.h odd 6 1
4050.2.a.bh 1 45.j even 6 1
4050.2.c.g 2 45.k odd 12 2
4050.2.c.n 2 45.l even 12 2
5184.2.a.c 1 72.j odd 6 1
5184.2.a.h 1 72.l even 6 1
5184.2.a.y 1 72.n even 6 1
5184.2.a.bd 1 72.p odd 6 1
7938.2.a.n 1 63.l odd 6 1
7938.2.a.s 1 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(162,[χ])S_{2}^{\mathrm{new}}(162, [\chi]):

T523T5+9 T_{5}^{2} - 3T_{5} + 9 Copy content Toggle raw display
T724T7+16 T_{7}^{2} - 4T_{7} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
77 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1717 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
3131 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
3737 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4141 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4343 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4747 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
5353 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7373 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7979 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
8383 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
8989 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
9797 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
show more
show less