Properties

Label 162.3.b.b
Level $162$
Weight $3$
Character orbit 162.b
Analytic conductor $4.414$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,3,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.41418028264\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 2 q^{4} + ( - \beta_{2} + \beta_1) q^{5} + (2 \beta_{3} + 2) q^{7} + 2 \beta_1 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 2 q^{4} + ( - \beta_{2} + \beta_1) q^{5} + (2 \beta_{3} + 2) q^{7} + 2 \beta_1 q^{8} + ( - \beta_{3} + 3) q^{10} + ( - 4 \beta_{2} - 2 \beta_1) q^{11} + (\beta_{3} - 16) q^{13} + ( - 4 \beta_{2} - 4 \beta_1) q^{14} + 4 q^{16} + ( - 5 \beta_{2} - 10 \beta_1) q^{17} + ( - 2 \beta_{3} + 14) q^{19} + (2 \beta_{2} - 2 \beta_1) q^{20} - 4 \beta_{3} q^{22} + (4 \beta_{2} + 2 \beta_1) q^{23} + (3 \beta_{3} + 7) q^{25} + ( - 2 \beta_{2} + 15 \beta_1) q^{26} + ( - 4 \beta_{3} - 4) q^{28} + ( - \beta_{2} + 22 \beta_1) q^{29} + 8 q^{31} - 4 \beta_1 q^{32} + ( - 5 \beta_{3} - 15) q^{34} + (4 \beta_{2} - 22 \beta_1) q^{35} + (8 \beta_{3} - 19) q^{37} + (4 \beta_{2} - 12 \beta_1) q^{38} + (2 \beta_{3} - 6) q^{40} + (8 \beta_{2} + \beta_1) q^{41} + ( - 6 \beta_{3} - 22) q^{43} + (8 \beta_{2} + 4 \beta_1) q^{44} + 4 \beta_{3} q^{46} - 12 \beta_1 q^{47} + (8 \beta_{3} + 63) q^{49} + ( - 6 \beta_{2} - 10 \beta_1) q^{50} + ( - 2 \beta_{3} + 32) q^{52} + (8 \beta_{2} + 43 \beta_1) q^{53} + (6 \beta_{3} - 54) q^{55} + (8 \beta_{2} + 8 \beta_1) q^{56} + ( - \beta_{3} + 45) q^{58} + (4 \beta_{2} + 56 \beta_1) q^{59} - 13 q^{61} - 8 \beta_1 q^{62} - 8 q^{64} + (19 \beta_{2} - 28 \beta_1) q^{65} + ( - 6 \beta_{3} - 10) q^{67} + (10 \beta_{2} + 20 \beta_1) q^{68} + (4 \beta_{3} - 48) q^{70} + (16 \beta_{2} - 22 \beta_1) q^{71} + (3 \beta_{3} + 56) q^{73} + ( - 16 \beta_{2} + 11 \beta_1) q^{74} + (4 \beta_{3} - 28) q^{76} + ( - 8 \beta_{2} - 112 \beta_1) q^{77} + ( - 14 \beta_{3} + 26) q^{79} + ( - 4 \beta_{2} + 4 \beta_1) q^{80} + (8 \beta_{3} - 6) q^{82} + ( - 12 \beta_{2} + 36 \beta_1) q^{83} - 45 q^{85} + (12 \beta_{2} + 28 \beta_1) q^{86} + 8 \beta_{3} q^{88} + ( - 29 \beta_{2} + 5 \beta_1) q^{89} + ( - 30 \beta_{3} + 22) q^{91} + ( - 8 \beta_{2} - 4 \beta_1) q^{92} - 24 q^{94} + ( - 20 \beta_{2} + 38 \beta_1) q^{95} + (16 \beta_{3} + 8) q^{97} + ( - 16 \beta_{2} - 71 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + 8 q^{7} + 12 q^{10} - 64 q^{13} + 16 q^{16} + 56 q^{19} + 28 q^{25} - 16 q^{28} + 32 q^{31} - 60 q^{34} - 76 q^{37} - 24 q^{40} - 88 q^{43} + 252 q^{49} + 128 q^{52} - 216 q^{55} + 180 q^{58} - 52 q^{61} - 32 q^{64} - 40 q^{67} - 192 q^{70} + 224 q^{73} - 112 q^{76} + 104 q^{79} - 24 q^{82} - 180 q^{85} + 88 q^{91} - 96 q^{94} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
0.517638i
1.93185i
1.93185i
0.517638i
1.41421i 0 −2.00000 1.55291i 0 12.3923 2.82843i 0 −2.19615
161.2 1.41421i 0 −2.00000 5.79555i 0 −8.39230 2.82843i 0 8.19615
161.3 1.41421i 0 −2.00000 5.79555i 0 −8.39230 2.82843i 0 8.19615
161.4 1.41421i 0 −2.00000 1.55291i 0 12.3923 2.82843i 0 −2.19615
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.3.b.b 4
3.b odd 2 1 inner 162.3.b.b 4
4.b odd 2 1 1296.3.e.d 4
9.c even 3 2 162.3.d.c 8
9.d odd 6 2 162.3.d.c 8
12.b even 2 1 1296.3.e.d 4
36.f odd 6 2 1296.3.q.o 8
36.h even 6 2 1296.3.q.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.3.b.b 4 1.a even 1 1 trivial
162.3.b.b 4 3.b odd 2 1 inner
162.3.d.c 8 9.c even 3 2
162.3.d.c 8 9.d odd 6 2
1296.3.e.d 4 4.b odd 2 1
1296.3.e.d 4 12.b even 2 1
1296.3.q.o 8 36.f odd 6 2
1296.3.q.o 8 36.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 36T_{5}^{2} + 81 \) acting on \(S_{3}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 36T^{2} + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T - 104)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 216)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 32 T + 229)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 900 T^{2} + 50625 \) Copy content Toggle raw display
$19$ \( (T^{2} - 28 T + 88)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 216)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 2052 T^{2} + 998001 \) Copy content Toggle raw display
$31$ \( (T - 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 38 T - 1367)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 1764 T^{2} + 715716 \) Copy content Toggle raw display
$43$ \( (T^{2} + 44 T - 488)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 7812 T^{2} + 4743684 \) Copy content Toggle raw display
$59$ \( T^{4} + 12096 T^{2} + 31539456 \) Copy content Toggle raw display
$61$ \( (T + 13)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 20 T - 872)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 10512 T^{2} + 2742336 \) Copy content Toggle raw display
$73$ \( (T^{2} - 112 T + 2893)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 52 T - 4616)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 10944 T^{2} + 2509056 \) Copy content Toggle raw display
$89$ \( T^{4} + 24228 T^{2} + 112211649 \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T - 6848)^{2} \) Copy content Toggle raw display
show more
show less