Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [162,3,Mod(5,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([23]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.5");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.h (of order \(54\), degree \(18\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.41418028264\) |
Analytic rank: | \(0\) |
Dimension: | \(324\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{54})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{54}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −0.326140 | − | 1.37609i | −2.76034 | + | 1.17495i | −1.78727 | + | 0.897598i | 6.70564 | − | 4.99216i | 2.51710 | + | 3.41529i | −6.54938 | + | 4.30759i | 1.81808 | + | 2.16670i | 6.23898 | − | 6.48654i | −9.05666 | − | 7.59944i |
5.2 | −0.326140 | − | 1.37609i | −2.75282 | − | 1.19248i | −1.78727 | + | 0.897598i | −1.51997 | + | 1.13158i | −0.743160 | + | 4.17705i | −2.05983 | + | 1.35477i | 1.81808 | + | 2.16670i | 6.15598 | + | 6.56535i | 2.05288 | + | 1.72257i |
5.3 | −0.326140 | − | 1.37609i | −2.45330 | + | 1.72665i | −1.78727 | + | 0.897598i | −4.47588 | + | 3.33217i | 3.17615 | + | 2.81284i | 7.95611 | − | 5.23282i | 1.81808 | + | 2.16670i | 3.03734 | − | 8.47199i | 6.04514 | + | 5.07248i |
5.4 | −0.326140 | − | 1.37609i | −1.15412 | − | 2.76912i | −1.78727 | + | 0.897598i | 5.90063 | − | 4.39286i | −3.43416 | + | 2.49129i | 11.1239 | − | 7.31631i | 1.81808 | + | 2.16670i | −6.33603 | + | 6.39177i | −7.96942 | − | 6.68713i |
5.5 | −0.326140 | − | 1.37609i | −0.663139 | + | 2.92579i | −1.78727 | + | 0.897598i | 0.605521 | − | 0.450794i | 4.24244 | − | 0.0416761i | 1.59852 | − | 1.05136i | 1.81808 | + | 2.16670i | −8.12049 | − | 3.88041i | −0.817819 | − | 0.686231i |
5.6 | −0.326140 | − | 1.37609i | 0.243053 | − | 2.99014i | −1.78727 | + | 0.897598i | −2.26822 | + | 1.68862i | −4.19398 | + | 0.640740i | −8.30694 | + | 5.46356i | 1.81808 | + | 2.16670i | −8.88185 | − | 1.45353i | 3.06346 | + | 2.57055i |
5.7 | −0.326140 | − | 1.37609i | 2.26424 | + | 1.96805i | −1.78727 | + | 0.897598i | 5.11004 | − | 3.80428i | 1.96976 | − | 3.75766i | 1.09207 | − | 0.718268i | 1.81808 | + | 2.16670i | 1.25355 | + | 8.91227i | −6.90163 | − | 5.79116i |
5.8 | −0.326140 | − | 1.37609i | 2.56706 | − | 1.55248i | −1.78727 | + | 0.897598i | −0.00733898 | + | 0.00546367i | −2.97357 | − | 3.02620i | 2.72886 | − | 1.79480i | 1.81808 | + | 2.16670i | 4.17964 | − | 7.97061i | 0.00991205 | + | 0.00831720i |
5.9 | −0.326140 | − | 1.37609i | 2.89210 | + | 0.797352i | −1.78727 | + | 0.897598i | −7.40578 | + | 5.51340i | 0.154002 | − | 4.23984i | −1.07376 | + | 0.706223i | 1.81808 | + | 2.16670i | 7.72846 | + | 4.61204i | 10.0023 | + | 8.39290i |
5.10 | 0.326140 | + | 1.37609i | −2.96504 | − | 0.456664i | −1.78727 | + | 0.897598i | −1.81547 | + | 1.35157i | −0.338606 | − | 4.22911i | −1.49360 | + | 0.982359i | −1.81808 | − | 2.16670i | 8.58292 | + | 2.70805i | −2.45198 | − | 2.05746i |
5.11 | 0.326140 | + | 1.37609i | −2.78435 | + | 1.11687i | −1.78727 | + | 0.897598i | 5.92375 | − | 4.41007i | −2.44501 | − | 3.46727i | 6.83506 | − | 4.49549i | −1.81808 | − | 2.16670i | 6.50519 | − | 6.21953i | 8.00064 | + | 6.71334i |
5.12 | 0.326140 | + | 1.37609i | −2.21854 | − | 2.01943i | −1.78727 | + | 0.897598i | 2.97271 | − | 2.21310i | 2.05537 | − | 3.71153i | −8.93104 | + | 5.87404i | −1.81808 | − | 2.16670i | 0.843823 | + | 8.96036i | 4.01495 | + | 3.36895i |
5.13 | 0.326140 | + | 1.37609i | −1.18720 | + | 2.75509i | −1.78727 | + | 0.897598i | −3.75904 | + | 2.79850i | −4.17846 | − | 0.735156i | 1.03380 | − | 0.679940i | −1.81808 | − | 2.16670i | −6.18109 | − | 6.54172i | −5.07698 | − | 4.26009i |
5.14 | 0.326140 | + | 1.37609i | −0.0281193 | − | 2.99987i | −1.78727 | + | 0.897598i | 1.73126 | − | 1.28887i | 4.11893 | − | 1.01707i | 3.67681 | − | 2.41828i | −1.81808 | − | 2.16670i | −8.99842 | + | 0.168708i | 2.33824 | + | 1.96202i |
5.15 | 0.326140 | + | 1.37609i | 1.73974 | − | 2.44404i | −1.78727 | + | 0.897598i | −6.68826 | + | 4.97922i | 3.93062 | + | 1.59694i | −10.2458 | + | 6.73874i | −1.81808 | − | 2.16670i | −2.94663 | − | 8.50396i | −9.03318 | − | 7.57974i |
5.16 | 0.326140 | + | 1.37609i | 2.18959 | + | 2.05078i | −1.78727 | + | 0.897598i | −1.03753 | + | 0.772415i | −2.10794 | + | 3.68193i | −4.52918 | + | 2.97889i | −1.81808 | − | 2.16670i | 0.588642 | + | 8.98073i | −1.40130 | − | 1.17583i |
5.17 | 0.326140 | + | 1.37609i | 2.81870 | − | 1.02711i | −1.78727 | + | 0.897598i | −1.67736 | + | 1.24875i | 2.33268 | + | 3.54381i | 11.2134 | − | 7.37517i | −1.81808 | − | 2.16670i | 6.89011 | − | 5.79020i | −2.26544 | − | 1.90093i |
5.18 | 0.326140 | + | 1.37609i | 2.88671 | − | 0.816639i | −1.78727 | + | 0.897598i | 6.99459 | − | 5.20728i | 2.06524 | + | 3.70604i | −4.06903 | + | 2.67625i | −1.81808 | − | 2.16670i | 7.66620 | − | 4.71480i | 9.44691 | + | 7.92690i |
11.1 | −1.02866 | − | 0.970492i | −2.92008 | − | 0.687859i | 0.116290 | + | 1.99662i | 0.533779 | − | 4.56677i | 2.33621 | + | 3.54149i | 7.85421 | − | 3.94453i | 1.81808 | − | 2.16670i | 8.05370 | + | 4.01720i | −4.98110 | + | 4.17964i |
11.2 | −1.02866 | − | 0.970492i | −2.72678 | + | 1.25087i | 0.116290 | + | 1.99662i | 0.295075 | − | 2.52452i | 4.01889 | + | 1.35959i | −6.23888 | + | 3.13328i | 1.81808 | − | 2.16670i | 5.87063 | − | 6.82170i | −2.75356 | + | 2.31051i |
See next 80 embeddings (of 324 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.h | odd | 54 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.3.h.a | ✓ | 324 |
81.h | odd | 54 | 1 | inner | 162.3.h.a | ✓ | 324 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.3.h.a | ✓ | 324 | 1.a | even | 1 | 1 | trivial |
162.3.h.a | ✓ | 324 | 81.h | odd | 54 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(162, [\chi])\).