Properties

Label 162.5.d.d.107.3
Level $162$
Weight $5$
Character 162.107
Analytic conductor $16.746$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.3
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 162.107
Dual form 162.5.d.d.53.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44949 + 1.41421i) q^{2} +(4.00000 + 6.92820i) q^{4} +(-39.7924 + 22.9742i) q^{5} +(40.2750 - 69.7583i) q^{7} +22.6274i q^{8} +O(q^{10})\) \(q+(2.44949 + 1.41421i) q^{2} +(4.00000 + 6.92820i) q^{4} +(-39.7924 + 22.9742i) q^{5} +(40.2750 - 69.7583i) q^{7} +22.6274i q^{8} -129.962 q^{10} +(-97.9560 - 56.5549i) q^{11} +(-35.1269 - 60.8416i) q^{13} +(197.306 - 113.915i) q^{14} +(-32.0000 + 55.4256i) q^{16} -256.030i q^{17} +192.435 q^{19} +(-318.339 - 183.793i) q^{20} +(-159.962 - 277.061i) q^{22} +(471.056 - 271.964i) q^{23} +(743.125 - 1287.13i) q^{25} -198.708i q^{26} +644.400 q^{28} +(-712.719 - 411.488i) q^{29} +(-307.704 - 532.959i) q^{31} +(-156.767 + 90.5097i) q^{32} +(362.081 - 627.142i) q^{34} +3701.14i q^{35} -2355.20 q^{37} +(471.366 + 272.144i) q^{38} +(-519.846 - 900.400i) q^{40} +(-434.893 + 251.085i) q^{41} +(82.3595 - 142.651i) q^{43} -904.879i q^{44} +1538.46 q^{46} +(-901.727 - 520.613i) q^{47} +(-2043.65 - 3539.71i) q^{49} +(3640.55 - 2101.87i) q^{50} +(281.015 - 486.733i) q^{52} +182.004i q^{53} +5197.21 q^{55} +(1578.45 + 911.319i) q^{56} +(-1163.86 - 2015.87i) q^{58} +(-1569.03 + 905.882i) q^{59} +(1429.92 - 2476.70i) q^{61} -1740.64i q^{62} -512.000 q^{64} +(2795.57 + 1614.02i) q^{65} +(4447.92 + 7704.03i) q^{67} +(1773.83 - 1024.12i) q^{68} +(-5234.20 + 9065.90i) q^{70} +3556.66i q^{71} -8008.40 q^{73} +(-5769.03 - 3330.75i) q^{74} +(769.738 + 1333.23i) q^{76} +(-7890.36 + 4555.50i) q^{77} +(2013.20 - 3486.96i) q^{79} -2940.69i q^{80} -1420.35 q^{82} +(-1599.54 - 923.492i) q^{83} +(5882.07 + 10188.0i) q^{85} +(403.477 - 232.948i) q^{86} +(1279.69 - 2216.49i) q^{88} -4204.70i q^{89} -5658.95 q^{91} +(3768.44 + 2175.71i) q^{92} +(-1472.51 - 2550.47i) q^{94} +(-7657.44 + 4421.02i) q^{95} +(-6593.40 + 11420.1i) q^{97} -11560.6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{4} + 52 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 32 q^{4} + 52 q^{7} - 624 q^{10} - 572 q^{13} - 256 q^{16} - 248 q^{19} - 864 q^{22} + 1892 q^{25} + 832 q^{28} - 3584 q^{31} + 1608 q^{34} - 18800 q^{37} - 2496 q^{40} - 3020 q^{43} - 4320 q^{46} - 9324 q^{49} + 4576 q^{52} + 22248 q^{55} + 2952 q^{58} + 4144 q^{61} - 4096 q^{64} + 12076 q^{67} - 18096 q^{70} - 3584 q^{73} - 992 q^{76} + 15004 q^{79} + 10752 q^{82} + 24048 q^{85} + 6912 q^{88} + 24440 q^{91} + 12912 q^{94} - 46304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949 + 1.41421i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 4.00000 + 6.92820i 0.250000 + 0.433013i
\(5\) −39.7924 + 22.9742i −1.59170 + 0.918967i −0.598681 + 0.800988i \(0.704308\pi\)
−0.993016 + 0.117979i \(0.962358\pi\)
\(6\) 0 0
\(7\) 40.2750 69.7583i 0.821939 1.42364i −0.0822981 0.996608i \(-0.526226\pi\)
0.904237 0.427032i \(-0.140441\pi\)
\(8\) 22.6274i 0.353553i
\(9\) 0 0
\(10\) −129.962 −1.29962
\(11\) −97.9560 56.5549i −0.809554 0.467396i 0.0372470 0.999306i \(-0.488141\pi\)
−0.846801 + 0.531910i \(0.821475\pi\)
\(12\) 0 0
\(13\) −35.1269 60.8416i −0.207852 0.360010i 0.743186 0.669085i \(-0.233314\pi\)
−0.951038 + 0.309075i \(0.899980\pi\)
\(14\) 197.306 113.915i 1.00667 0.581198i
\(15\) 0 0
\(16\) −32.0000 + 55.4256i −0.125000 + 0.216506i
\(17\) 256.030i 0.885916i −0.896542 0.442958i \(-0.853929\pi\)
0.896542 0.442958i \(-0.146071\pi\)
\(18\) 0 0
\(19\) 192.435 0.533060 0.266530 0.963827i \(-0.414123\pi\)
0.266530 + 0.963827i \(0.414123\pi\)
\(20\) −318.339 183.793i −0.795849 0.459483i
\(21\) 0 0
\(22\) −159.962 277.061i −0.330499 0.572441i
\(23\) 471.056 271.964i 0.890464 0.514110i 0.0163699 0.999866i \(-0.494789\pi\)
0.874094 + 0.485756i \(0.161456\pi\)
\(24\) 0 0
\(25\) 743.125 1287.13i 1.18900 2.05941i
\(26\) 198.708i 0.293947i
\(27\) 0 0
\(28\) 644.400 0.821939
\(29\) −712.719 411.488i −0.847466 0.489285i 0.0123291 0.999924i \(-0.496075\pi\)
−0.859795 + 0.510639i \(0.829409\pi\)
\(30\) 0 0
\(31\) −307.704 532.959i −0.320191 0.554588i 0.660336 0.750970i \(-0.270414\pi\)
−0.980527 + 0.196383i \(0.937081\pi\)
\(32\) −156.767 + 90.5097i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 362.081 627.142i 0.313219 0.542511i
\(35\) 3701.14i 3.02134i
\(36\) 0 0
\(37\) −2355.20 −1.72038 −0.860189 0.509976i \(-0.829654\pi\)
−0.860189 + 0.509976i \(0.829654\pi\)
\(38\) 471.366 + 272.144i 0.326431 + 0.188465i
\(39\) 0 0
\(40\) −519.846 900.400i −0.324904 0.562750i
\(41\) −434.893 + 251.085i −0.258711 + 0.149367i −0.623746 0.781627i \(-0.714390\pi\)
0.365036 + 0.930994i \(0.381057\pi\)
\(42\) 0 0
\(43\) 82.3595 142.651i 0.0445427 0.0771503i −0.842894 0.538079i \(-0.819150\pi\)
0.887437 + 0.460929i \(0.152484\pi\)
\(44\) 904.879i 0.467396i
\(45\) 0 0
\(46\) 1538.46 0.727061
\(47\) −901.727 520.613i −0.408206 0.235678i 0.281813 0.959469i \(-0.409064\pi\)
−0.690019 + 0.723792i \(0.742398\pi\)
\(48\) 0 0
\(49\) −2043.65 3539.71i −0.851166 1.47426i
\(50\) 3640.55 2101.87i 1.45622 0.840750i
\(51\) 0 0
\(52\) 281.015 486.733i 0.103926 0.180005i
\(53\) 182.004i 0.0647930i 0.999475 + 0.0323965i \(0.0103139\pi\)
−0.999475 + 0.0323965i \(0.989686\pi\)
\(54\) 0 0
\(55\) 5197.21 1.71809
\(56\) 1578.45 + 911.319i 0.503333 + 0.290599i
\(57\) 0 0
\(58\) −1163.86 2015.87i −0.345977 0.599249i
\(59\) −1569.03 + 905.882i −0.450742 + 0.260236i −0.708144 0.706068i \(-0.750467\pi\)
0.257401 + 0.966305i \(0.417134\pi\)
\(60\) 0 0
\(61\) 1429.92 2476.70i 0.384285 0.665601i −0.607385 0.794408i \(-0.707781\pi\)
0.991670 + 0.128807i \(0.0411146\pi\)
\(62\) 1740.64i 0.452819i
\(63\) 0 0
\(64\) −512.000 −0.125000
\(65\) 2795.57 + 1614.02i 0.661674 + 0.382018i
\(66\) 0 0
\(67\) 4447.92 + 7704.03i 0.990850 + 1.71620i 0.612312 + 0.790616i \(0.290240\pi\)
0.378537 + 0.925586i \(0.376427\pi\)
\(68\) 1773.83 1024.12i 0.383613 0.221479i
\(69\) 0 0
\(70\) −5234.20 + 9065.90i −1.06820 + 1.85018i
\(71\) 3556.66i 0.705547i 0.935709 + 0.352773i \(0.114761\pi\)
−0.935709 + 0.352773i \(0.885239\pi\)
\(72\) 0 0
\(73\) −8008.40 −1.50280 −0.751398 0.659849i \(-0.770620\pi\)
−0.751398 + 0.659849i \(0.770620\pi\)
\(74\) −5769.03 3330.75i −1.05351 0.608245i
\(75\) 0 0
\(76\) 769.738 + 1333.23i 0.133265 + 0.230822i
\(77\) −7890.36 + 4555.50i −1.33081 + 0.768342i
\(78\) 0 0
\(79\) 2013.20 3486.96i 0.322576 0.558718i −0.658443 0.752631i \(-0.728784\pi\)
0.981019 + 0.193913i \(0.0621178\pi\)
\(80\) 2940.69i 0.459483i
\(81\) 0 0
\(82\) −1420.35 −0.211236
\(83\) −1599.54 923.492i −0.232187 0.134053i 0.379394 0.925235i \(-0.376133\pi\)
−0.611581 + 0.791182i \(0.709466\pi\)
\(84\) 0 0
\(85\) 5882.07 + 10188.0i 0.814127 + 1.41011i
\(86\) 403.477 232.948i 0.0545535 0.0314965i
\(87\) 0 0
\(88\) 1279.69 2216.49i 0.165250 0.286221i
\(89\) 4204.70i 0.530830i −0.964134 0.265415i \(-0.914491\pi\)
0.964134 0.265415i \(-0.0855089\pi\)
\(90\) 0 0
\(91\) −5658.95 −0.683365
\(92\) 3768.44 + 2175.71i 0.445232 + 0.257055i
\(93\) 0 0
\(94\) −1472.51 2550.47i −0.166649 0.288645i
\(95\) −7657.44 + 4421.02i −0.848470 + 0.489864i
\(96\) 0 0
\(97\) −6593.40 + 11420.1i −0.700755 + 1.21374i 0.267447 + 0.963573i \(0.413820\pi\)
−0.968202 + 0.250171i \(0.919513\pi\)
\(98\) 11560.6i 1.20373i
\(99\) 0 0
\(100\) 11890.0 1.18900
\(101\) 8651.84 + 4995.14i 0.848136 + 0.489672i 0.860022 0.510258i \(-0.170450\pi\)
−0.0118852 + 0.999929i \(0.503783\pi\)
\(102\) 0 0
\(103\) 1639.49 + 2839.69i 0.154538 + 0.267668i 0.932891 0.360160i \(-0.117278\pi\)
−0.778353 + 0.627827i \(0.783944\pi\)
\(104\) 1376.69 794.832i 0.127283 0.0734867i
\(105\) 0 0
\(106\) −257.392 + 445.816i −0.0229078 + 0.0396775i
\(107\) 20923.5i 1.82754i −0.406236 0.913768i \(-0.633159\pi\)
0.406236 0.913768i \(-0.366841\pi\)
\(108\) 0 0
\(109\) 3340.77 0.281186 0.140593 0.990067i \(-0.455099\pi\)
0.140593 + 0.990067i \(0.455099\pi\)
\(110\) 12730.5 + 7349.97i 1.05211 + 0.607435i
\(111\) 0 0
\(112\) 2577.60 + 4464.53i 0.205485 + 0.355910i
\(113\) 7683.71 4436.19i 0.601747 0.347419i −0.167982 0.985790i \(-0.553725\pi\)
0.769729 + 0.638371i \(0.220392\pi\)
\(114\) 0 0
\(115\) −12496.3 + 21644.2i −0.944899 + 1.63661i
\(116\) 6583.81i 0.489285i
\(117\) 0 0
\(118\) −5124.45 −0.368030
\(119\) −17860.2 10311.6i −1.26122 0.728169i
\(120\) 0 0
\(121\) −923.578 1599.68i −0.0630816 0.109261i
\(122\) 7005.17 4044.44i 0.470651 0.271731i
\(123\) 0 0
\(124\) 2461.63 4263.67i 0.160096 0.277294i
\(125\) 39573.0i 2.53267i
\(126\) 0 0
\(127\) −15509.1 −0.961569 −0.480784 0.876839i \(-0.659648\pi\)
−0.480784 + 0.876839i \(0.659648\pi\)
\(128\) −1254.14 724.077i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 4565.15 + 7907.07i 0.270127 + 0.467874i
\(131\) −11774.9 + 6798.24i −0.686143 + 0.396145i −0.802165 0.597102i \(-0.796319\pi\)
0.116023 + 0.993247i \(0.462985\pi\)
\(132\) 0 0
\(133\) 7750.30 13423.9i 0.438142 0.758885i
\(134\) 25161.3i 1.40127i
\(135\) 0 0
\(136\) 5793.29 0.313219
\(137\) 18762.2 + 10832.4i 0.999639 + 0.577142i 0.908141 0.418664i \(-0.137501\pi\)
0.0914974 + 0.995805i \(0.470835\pi\)
\(138\) 0 0
\(139\) −7719.12 13369.9i −0.399520 0.691989i 0.594147 0.804357i \(-0.297490\pi\)
−0.993667 + 0.112368i \(0.964157\pi\)
\(140\) −25642.2 + 14804.6i −1.30828 + 0.755334i
\(141\) 0 0
\(142\) −5029.88 + 8712.00i −0.249448 + 0.432057i
\(143\) 7946.41i 0.388596i
\(144\) 0 0
\(145\) 37814.4 1.79855
\(146\) −19616.5 11325.6i −0.920271 0.531319i
\(147\) 0 0
\(148\) −9420.78 16317.3i −0.430094 0.744945i
\(149\) 17729.3 10236.0i 0.798580 0.461060i −0.0443947 0.999014i \(-0.514136\pi\)
0.842974 + 0.537954i \(0.180803\pi\)
\(150\) 0 0
\(151\) 16002.4 27716.9i 0.701827 1.21560i −0.265997 0.963974i \(-0.585701\pi\)
0.967824 0.251626i \(-0.0809654\pi\)
\(152\) 4354.30i 0.188465i
\(153\) 0 0
\(154\) −25769.8 −1.08660
\(155\) 24488.6 + 14138.5i 1.01930 + 0.588490i
\(156\) 0 0
\(157\) 12103.6 + 20964.0i 0.491037 + 0.850501i 0.999947 0.0103185i \(-0.00328455\pi\)
−0.508910 + 0.860820i \(0.669951\pi\)
\(158\) 9862.62 5694.18i 0.395074 0.228096i
\(159\) 0 0
\(160\) 4158.77 7203.20i 0.162452 0.281375i
\(161\) 43813.4i 1.69027i
\(162\) 0 0
\(163\) 21091.0 0.793821 0.396911 0.917857i \(-0.370082\pi\)
0.396911 + 0.917857i \(0.370082\pi\)
\(164\) −3479.14 2008.68i −0.129355 0.0746833i
\(165\) 0 0
\(166\) −2612.03 4524.17i −0.0947899 0.164181i
\(167\) 11230.1 6483.70i 0.402671 0.232482i −0.284965 0.958538i \(-0.591982\pi\)
0.687636 + 0.726056i \(0.258649\pi\)
\(168\) 0 0
\(169\) 11812.7 20460.2i 0.413595 0.716368i
\(170\) 33274.0i 1.15135i
\(171\) 0 0
\(172\) 1317.75 0.0445427
\(173\) −36181.3 20889.3i −1.20891 0.697962i −0.246386 0.969172i \(-0.579243\pi\)
−0.962520 + 0.271210i \(0.912576\pi\)
\(174\) 0 0
\(175\) −59858.7 103678.i −1.95457 3.38541i
\(176\) 6269.19 3619.52i 0.202388 0.116849i
\(177\) 0 0
\(178\) 5946.35 10299.4i 0.187677 0.325065i
\(179\) 13288.6i 0.414736i −0.978263 0.207368i \(-0.933510\pi\)
0.978263 0.207368i \(-0.0664897\pi\)
\(180\) 0 0
\(181\) −28910.7 −0.882475 −0.441237 0.897390i \(-0.645460\pi\)
−0.441237 + 0.897390i \(0.645460\pi\)
\(182\) −13861.5 8002.96i −0.418474 0.241606i
\(183\) 0 0
\(184\) 6153.84 + 10658.8i 0.181765 + 0.314827i
\(185\) 93719.0 54108.7i 2.73832 1.58097i
\(186\) 0 0
\(187\) −14479.7 + 25079.7i −0.414074 + 0.717197i
\(188\) 8329.80i 0.235678i
\(189\) 0 0
\(190\) −25009.1 −0.692773
\(191\) −43612.2 25179.5i −1.19548 0.690209i −0.235934 0.971769i \(-0.575815\pi\)
−0.959544 + 0.281560i \(0.909148\pi\)
\(192\) 0 0
\(193\) 1733.01 + 3001.66i 0.0465250 + 0.0805837i 0.888350 0.459167i \(-0.151852\pi\)
−0.841825 + 0.539750i \(0.818519\pi\)
\(194\) −32300.9 + 18649.0i −0.858246 + 0.495509i
\(195\) 0 0
\(196\) 16349.2 28317.6i 0.425583 0.737131i
\(197\) 7813.76i 0.201339i 0.994920 + 0.100669i \(0.0320984\pi\)
−0.994920 + 0.100669i \(0.967902\pi\)
\(198\) 0 0
\(199\) 29153.3 0.736176 0.368088 0.929791i \(-0.380013\pi\)
0.368088 + 0.929791i \(0.380013\pi\)
\(200\) 29124.4 + 16815.0i 0.728111 + 0.420375i
\(201\) 0 0
\(202\) 14128.4 + 24471.1i 0.346250 + 0.599723i
\(203\) −57409.5 + 33145.4i −1.39313 + 0.804324i
\(204\) 0 0
\(205\) 11537.0 19982.6i 0.274526 0.475493i
\(206\) 9274.37i 0.218550i
\(207\) 0 0
\(208\) 4496.25 0.103926
\(209\) −18850.1 10883.1i −0.431541 0.249150i
\(210\) 0 0
\(211\) 23579.0 + 40840.0i 0.529615 + 0.917321i 0.999403 + 0.0345415i \(0.0109971\pi\)
−0.469788 + 0.882779i \(0.655670\pi\)
\(212\) −1260.96 + 728.014i −0.0280562 + 0.0161983i
\(213\) 0 0
\(214\) 29590.2 51251.8i 0.646132 1.11913i
\(215\) 7568.56i 0.163733i
\(216\) 0 0
\(217\) −49571.1 −1.05271
\(218\) 8183.19 + 4724.56i 0.172191 + 0.0994143i
\(219\) 0 0
\(220\) 20788.8 + 36007.3i 0.429522 + 0.743953i
\(221\) −15577.3 + 8993.54i −0.318938 + 0.184139i
\(222\) 0 0
\(223\) −5026.64 + 8706.39i −0.101081 + 0.175077i −0.912130 0.409901i \(-0.865563\pi\)
0.811050 + 0.584978i \(0.198897\pi\)
\(224\) 14581.1i 0.290599i
\(225\) 0 0
\(226\) 25094.9 0.491324
\(227\) −25939.0 14975.9i −0.503386 0.290630i 0.226725 0.973959i \(-0.427198\pi\)
−0.730111 + 0.683329i \(0.760532\pi\)
\(228\) 0 0
\(229\) 10066.7 + 17436.1i 0.191963 + 0.332489i 0.945901 0.324456i \(-0.105181\pi\)
−0.753938 + 0.656946i \(0.771848\pi\)
\(230\) −61219.1 + 35344.9i −1.15726 + 0.668145i
\(231\) 0 0
\(232\) 9310.92 16127.0i 0.172988 0.299624i
\(233\) 19079.1i 0.351436i −0.984441 0.175718i \(-0.943775\pi\)
0.984441 0.175718i \(-0.0562246\pi\)
\(234\) 0 0
\(235\) 47842.6 0.866321
\(236\) −12552.3 7247.06i −0.225371 0.130118i
\(237\) 0 0
\(238\) −29165.6 50516.3i −0.514893 0.891821i
\(239\) 78167.1 45129.8i 1.36845 0.790073i 0.377717 0.925921i \(-0.376709\pi\)
0.990730 + 0.135848i \(0.0433757\pi\)
\(240\) 0 0
\(241\) −15080.5 + 26120.2i −0.259646 + 0.449720i −0.966147 0.257992i \(-0.916939\pi\)
0.706501 + 0.707712i \(0.250272\pi\)
\(242\) 5224.54i 0.0892109i
\(243\) 0 0
\(244\) 22878.8 0.384285
\(245\) 162644. + 93902.3i 2.70960 + 1.56439i
\(246\) 0 0
\(247\) −6759.64 11708.0i −0.110797 0.191907i
\(248\) 12059.5 6962.54i 0.196076 0.113205i
\(249\) 0 0
\(250\) −55964.7 + 96933.6i −0.895435 + 1.55094i
\(251\) 16436.6i 0.260894i −0.991455 0.130447i \(-0.958359\pi\)
0.991455 0.130447i \(-0.0416412\pi\)
\(252\) 0 0
\(253\) −61523.6 −0.961172
\(254\) −37989.5 21933.2i −0.588838 0.339966i
\(255\) 0 0
\(256\) −2048.00 3547.24i −0.0312500 0.0541266i
\(257\) 20129.9 11622.0i 0.304772 0.175960i −0.339813 0.940493i \(-0.610364\pi\)
0.644585 + 0.764533i \(0.277030\pi\)
\(258\) 0 0
\(259\) −94855.5 + 164295.i −1.41404 + 2.44920i
\(260\) 25824.4i 0.382018i
\(261\) 0 0
\(262\) −38456.6 −0.560233
\(263\) −26588.4 15350.8i −0.384398 0.221932i 0.295332 0.955395i \(-0.404570\pi\)
−0.679730 + 0.733462i \(0.737903\pi\)
\(264\) 0 0
\(265\) −4181.38 7242.36i −0.0595426 0.103131i
\(266\) 37968.6 21921.2i 0.536613 0.309813i
\(267\) 0 0
\(268\) −35583.4 + 61632.2i −0.495425 + 0.858101i
\(269\) 98285.6i 1.35827i −0.734014 0.679134i \(-0.762356\pi\)
0.734014 0.679134i \(-0.237644\pi\)
\(270\) 0 0
\(271\) 111736. 1.52144 0.760722 0.649078i \(-0.224845\pi\)
0.760722 + 0.649078i \(0.224845\pi\)
\(272\) 14190.6 + 8192.95i 0.191806 + 0.110740i
\(273\) 0 0
\(274\) 30638.6 + 53067.6i 0.408101 + 0.706851i
\(275\) −145587. + 84054.8i −1.92512 + 1.11147i
\(276\) 0 0
\(277\) 32204.3 55779.4i 0.419714 0.726967i −0.576196 0.817311i \(-0.695464\pi\)
0.995911 + 0.0903447i \(0.0287969\pi\)
\(278\) 43666.0i 0.565007i
\(279\) 0 0
\(280\) −83747.2 −1.06820
\(281\) 108135. + 62431.6i 1.36947 + 0.790664i 0.990860 0.134893i \(-0.0430690\pi\)
0.378610 + 0.925556i \(0.376402\pi\)
\(282\) 0 0
\(283\) 62898.9 + 108944.i 0.785362 + 1.36029i 0.928783 + 0.370625i \(0.120857\pi\)
−0.143421 + 0.989662i \(0.545810\pi\)
\(284\) −24641.3 + 14226.6i −0.305511 + 0.176387i
\(285\) 0 0
\(286\) −11237.9 + 19464.6i −0.137390 + 0.237966i
\(287\) 40449.8i 0.491081i
\(288\) 0 0
\(289\) 17969.8 0.215153
\(290\) 92626.0 + 53477.7i 1.10138 + 0.635882i
\(291\) 0 0
\(292\) −32033.6 55483.8i −0.375699 0.650730i
\(293\) −60944.4 + 35186.3i −0.709902 + 0.409862i −0.811025 0.585012i \(-0.801090\pi\)
0.101123 + 0.994874i \(0.467757\pi\)
\(294\) 0 0
\(295\) 41623.8 72094.5i 0.478297 0.828435i
\(296\) 53292.0i 0.608245i
\(297\) 0 0
\(298\) 57903.5 0.652037
\(299\) −33093.5 19106.5i −0.370169 0.213717i
\(300\) 0 0
\(301\) −6634.06 11490.5i −0.0732228 0.126826i
\(302\) 78395.2 45261.5i 0.859559 0.496267i
\(303\) 0 0
\(304\) −6157.91 + 10665.8i −0.0666325 + 0.115411i
\(305\) 131405.i 1.41258i
\(306\) 0 0
\(307\) −26790.2 −0.284249 −0.142125 0.989849i \(-0.545393\pi\)
−0.142125 + 0.989849i \(0.545393\pi\)
\(308\) −63122.9 36444.0i −0.665404 0.384171i
\(309\) 0 0
\(310\) 39989.7 + 69264.1i 0.416126 + 0.720751i
\(311\) −110747. + 63939.7i −1.14501 + 0.661074i −0.947667 0.319260i \(-0.896566\pi\)
−0.197347 + 0.980334i \(0.563232\pi\)
\(312\) 0 0
\(313\) −4782.11 + 8282.85i −0.0488125 + 0.0845457i −0.889399 0.457131i \(-0.848877\pi\)
0.840587 + 0.541677i \(0.182210\pi\)
\(314\) 68468.2i 0.694432i
\(315\) 0 0
\(316\) 32211.2 0.322576
\(317\) 33769.7 + 19497.0i 0.336054 + 0.194021i 0.658526 0.752558i \(-0.271180\pi\)
−0.322472 + 0.946579i \(0.604514\pi\)
\(318\) 0 0
\(319\) 46543.4 + 80615.5i 0.457380 + 0.792205i
\(320\) 20373.7 11762.8i 0.198962 0.114871i
\(321\) 0 0
\(322\) 61961.5 107320.i 0.597599 1.03507i
\(323\) 49269.0i 0.472246i
\(324\) 0 0
\(325\) −104415. −0.988542
\(326\) 51662.3 + 29827.2i 0.486114 + 0.280658i
\(327\) 0 0
\(328\) −5681.41 9840.49i −0.0528091 0.0914680i
\(329\) −72634.1 + 41935.3i −0.671041 + 0.387426i
\(330\) 0 0
\(331\) −25217.1 + 43677.3i −0.230165 + 0.398658i −0.957857 0.287247i \(-0.907260\pi\)
0.727691 + 0.685905i \(0.240593\pi\)
\(332\) 14775.9i 0.134053i
\(333\) 0 0
\(334\) 36677.3 0.328780
\(335\) −353987. 204375.i −3.15427 1.82112i
\(336\) 0 0
\(337\) 63687.0 + 110309.i 0.560778 + 0.971296i 0.997429 + 0.0716648i \(0.0228312\pi\)
−0.436651 + 0.899631i \(0.643835\pi\)
\(338\) 57870.2 33411.4i 0.506549 0.292456i
\(339\) 0 0
\(340\) −47056.6 + 81504.4i −0.407064 + 0.705055i
\(341\) 69608.7i 0.598625i
\(342\) 0 0
\(343\) −135831. −1.15455
\(344\) 3227.82 + 1863.58i 0.0272767 + 0.0157482i
\(345\) 0 0
\(346\) −59083.9 102336.i −0.493534 0.854825i
\(347\) 167850. 96908.4i 1.39400 0.804827i 0.400246 0.916408i \(-0.368925\pi\)
0.993755 + 0.111581i \(0.0355914\pi\)
\(348\) 0 0
\(349\) −52034.4 + 90126.3i −0.427209 + 0.739947i −0.996624 0.0821031i \(-0.973836\pi\)
0.569415 + 0.822050i \(0.307170\pi\)
\(350\) 338612.i 2.76418i
\(351\) 0 0
\(352\) 20475.1 0.165250
\(353\) 139234. + 80386.8i 1.11737 + 0.645112i 0.940727 0.339163i \(-0.110144\pi\)
0.176640 + 0.984276i \(0.443477\pi\)
\(354\) 0 0
\(355\) −81711.3 141528.i −0.648374 1.12302i
\(356\) 29131.0 16818.8i 0.229856 0.132707i
\(357\) 0 0
\(358\) 18792.9 32550.2i 0.146631 0.253973i
\(359\) 21776.0i 0.168962i −0.996425 0.0844811i \(-0.973077\pi\)
0.996425 0.0844811i \(-0.0269233\pi\)
\(360\) 0 0
\(361\) −93289.9 −0.715847
\(362\) −70816.6 40886.0i −0.540403 0.312002i
\(363\) 0 0
\(364\) −22635.8 39206.3i −0.170841 0.295906i
\(365\) 318674. 183986.i 2.39200 1.38102i
\(366\) 0 0
\(367\) 125983. 218208.i 0.935360 1.62009i 0.161369 0.986894i \(-0.448409\pi\)
0.773991 0.633196i \(-0.218257\pi\)
\(368\) 34811.4i 0.257055i
\(369\) 0 0
\(370\) 306085. 2.23583
\(371\) 12696.3 + 7330.19i 0.0922419 + 0.0532559i
\(372\) 0 0
\(373\) −64013.0 110874.i −0.460098 0.796913i 0.538867 0.842391i \(-0.318852\pi\)
−0.998965 + 0.0454775i \(0.985519\pi\)
\(374\) −70936.0 + 40954.9i −0.507135 + 0.292794i
\(375\) 0 0
\(376\) 11780.1 20403.8i 0.0833247 0.144323i
\(377\) 57817.3i 0.406795i
\(378\) 0 0
\(379\) 92997.5 0.647430 0.323715 0.946155i \(-0.395068\pi\)
0.323715 + 0.946155i \(0.395068\pi\)
\(380\) −61259.5 35368.2i −0.424235 0.244932i
\(381\) 0 0
\(382\) −71218.5 123354.i −0.488052 0.845330i
\(383\) −241008. + 139146.i −1.64299 + 0.948580i −0.663226 + 0.748419i \(0.730813\pi\)
−0.979763 + 0.200161i \(0.935853\pi\)
\(384\) 0 0
\(385\) 209318. 362549.i 1.41216 2.44594i
\(386\) 9803.38i 0.0657963i
\(387\) 0 0
\(388\) −105494. −0.700755
\(389\) −120311. 69461.7i −0.795073 0.459035i 0.0466728 0.998910i \(-0.485138\pi\)
−0.841745 + 0.539875i \(0.818472\pi\)
\(390\) 0 0
\(391\) −69630.9 120604.i −0.455458 0.788876i
\(392\) 80094.4 46242.5i 0.521231 0.300933i
\(393\) 0 0
\(394\) −11050.3 + 19139.7i −0.0711840 + 0.123294i
\(395\) 185006.i 1.18575i
\(396\) 0 0
\(397\) −1760.70 −0.0111713 −0.00558564 0.999984i \(-0.501778\pi\)
−0.00558564 + 0.999984i \(0.501778\pi\)
\(398\) 71410.7 + 41229.0i 0.450814 + 0.260277i
\(399\) 0 0
\(400\) 47560.0 + 82376.3i 0.297250 + 0.514852i
\(401\) −35557.2 + 20529.0i −0.221126 + 0.127667i −0.606471 0.795105i \(-0.707416\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(402\) 0 0
\(403\) −21617.4 + 37442.4i −0.133105 + 0.230544i
\(404\) 79922.3i 0.489672i
\(405\) 0 0
\(406\) −187499. −1.13749
\(407\) 230706. + 133198.i 1.39274 + 0.804098i
\(408\) 0 0
\(409\) 83356.8 + 144378.i 0.498304 + 0.863088i 0.999998 0.00195718i \(-0.000622989\pi\)
−0.501694 + 0.865045i \(0.667290\pi\)
\(410\) 56519.3 32631.4i 0.336224 0.194119i
\(411\) 0 0
\(412\) −13115.9 + 22717.5i −0.0772690 + 0.133834i
\(413\) 145938.i 0.855593i
\(414\) 0 0
\(415\) 84865.9 0.492762
\(416\) 11013.5 + 6358.65i 0.0636413 + 0.0367433i
\(417\) 0 0
\(418\) −30782.1 53316.2i −0.176176 0.305145i
\(419\) −287267. + 165854.i −1.63628 + 0.944708i −0.654186 + 0.756334i \(0.726988\pi\)
−0.982097 + 0.188374i \(0.939678\pi\)
\(420\) 0 0
\(421\) 93913.4 162663.i 0.529863 0.917749i −0.469530 0.882916i \(-0.655577\pi\)
0.999393 0.0348330i \(-0.0110899\pi\)
\(422\) 133383.i 0.748989i
\(423\) 0 0
\(424\) −4118.27 −0.0229078
\(425\) −329544. 190262.i −1.82446 1.05335i
\(426\) 0 0
\(427\) −115180. 199498.i −0.631717 1.09417i
\(428\) 144962. 83693.9i 0.791347 0.456884i
\(429\) 0 0
\(430\) −10703.6 + 18539.1i −0.0578884 + 0.100266i
\(431\) 6952.01i 0.0374245i −0.999825 0.0187122i \(-0.994043\pi\)
0.999825 0.0187122i \(-0.00595664\pi\)
\(432\) 0 0
\(433\) −37941.0 −0.202364 −0.101182 0.994868i \(-0.532262\pi\)
−0.101182 + 0.994868i \(0.532262\pi\)
\(434\) −121424. 70104.1i −0.644651 0.372189i
\(435\) 0 0
\(436\) 13363.1 + 23145.5i 0.0702965 + 0.121757i
\(437\) 90647.4 52335.3i 0.474671 0.274051i
\(438\) 0 0
\(439\) −124202. + 215125.i −0.644467 + 1.11625i 0.339957 + 0.940441i \(0.389587\pi\)
−0.984424 + 0.175809i \(0.943746\pi\)
\(440\) 117599.i 0.607435i
\(441\) 0 0
\(442\) −50875.1 −0.260412
\(443\) 141031. + 81424.3i 0.718633 + 0.414903i 0.814249 0.580515i \(-0.197149\pi\)
−0.0956163 + 0.995418i \(0.530482\pi\)
\(444\) 0 0
\(445\) 96599.5 + 167315.i 0.487815 + 0.844920i
\(446\) −24625.4 + 14217.5i −0.123798 + 0.0714748i
\(447\) 0 0
\(448\) −20620.8 + 35716.3i −0.102742 + 0.177955i
\(449\) 139250.i 0.690723i 0.938470 + 0.345361i \(0.112244\pi\)
−0.938470 + 0.345361i \(0.887756\pi\)
\(450\) 0 0
\(451\) 56800.5 0.279254
\(452\) 61469.7 + 35489.5i 0.300874 + 0.173709i
\(453\) 0 0
\(454\) −42358.2 73366.5i −0.205507 0.355948i
\(455\) 225183. 130010.i 1.08771 0.627990i
\(456\) 0 0
\(457\) −125270. + 216973.i −0.599810 + 1.03890i 0.393039 + 0.919522i \(0.371424\pi\)
−0.992849 + 0.119379i \(0.961910\pi\)
\(458\) 56946.0i 0.271476i
\(459\) 0 0
\(460\) −199941. −0.944899
\(461\) 67711.5 + 39093.3i 0.318611 + 0.183950i 0.650773 0.759272i \(-0.274445\pi\)
−0.332162 + 0.943222i \(0.607778\pi\)
\(462\) 0 0
\(463\) −176296. 305353.i −0.822393 1.42443i −0.903896 0.427753i \(-0.859305\pi\)
0.0815028 0.996673i \(-0.474028\pi\)
\(464\) 45614.0 26335.3i 0.211866 0.122321i
\(465\) 0 0
\(466\) 26981.9 46734.0i 0.124251 0.215209i
\(467\) 38384.6i 0.176005i 0.996120 + 0.0880023i \(0.0280483\pi\)
−0.996120 + 0.0880023i \(0.971952\pi\)
\(468\) 0 0
\(469\) 716560. 3.25767
\(470\) 117190. + 67659.6i 0.530511 + 0.306291i
\(471\) 0 0
\(472\) −20497.8 35503.2i −0.0920074 0.159362i
\(473\) −16135.2 + 9315.67i −0.0721195 + 0.0416382i
\(474\) 0 0
\(475\) 143003. 247688.i 0.633808 1.09779i
\(476\) 164986.i 0.728169i
\(477\) 0 0
\(478\) 255293. 1.11733
\(479\) 45051.7 + 26010.6i 0.196354 + 0.113365i 0.594954 0.803760i \(-0.297170\pi\)
−0.398600 + 0.917125i \(0.630504\pi\)
\(480\) 0 0
\(481\) 82730.8 + 143294.i 0.357583 + 0.619352i
\(482\) −73879.0 + 42654.0i −0.318000 + 0.183597i
\(483\) 0 0
\(484\) 7388.62 12797.5i 0.0315408 0.0546303i
\(485\) 605912.i 2.57588i
\(486\) 0 0
\(487\) −253420. −1.06852 −0.534261 0.845320i \(-0.679410\pi\)
−0.534261 + 0.845320i \(0.679410\pi\)
\(488\) 56041.4 + 32355.5i 0.235326 + 0.135865i
\(489\) 0 0
\(490\) 265596. + 460025.i 1.10619 + 1.91597i
\(491\) 158096. 91276.7i 0.655779 0.378614i −0.134888 0.990861i \(-0.543067\pi\)
0.790667 + 0.612247i \(0.209734\pi\)
\(492\) 0 0
\(493\) −105353. + 182477.i −0.433465 + 0.750784i
\(494\) 38238.3i 0.156691i
\(495\) 0 0
\(496\) 39386.1 0.160096
\(497\) 248107. + 143244.i 1.00444 + 0.579916i
\(498\) 0 0
\(499\) −17271.6 29915.3i −0.0693636 0.120141i 0.829258 0.558866i \(-0.188764\pi\)
−0.898621 + 0.438725i \(0.855430\pi\)
\(500\) −274170. + 158292.i −1.09668 + 0.633168i
\(501\) 0 0
\(502\) 23244.8 40261.2i 0.0922400 0.159764i
\(503\) 466084.i 1.84216i −0.389368 0.921082i \(-0.627307\pi\)
0.389368 0.921082i \(-0.372693\pi\)
\(504\) 0 0
\(505\) −459037. −1.79997
\(506\) −150702. 87007.6i −0.588595 0.339826i
\(507\) 0 0
\(508\) −62036.6 107450.i −0.240392 0.416371i
\(509\) 136755. 78955.7i 0.527848 0.304753i −0.212292 0.977206i \(-0.568093\pi\)
0.740139 + 0.672453i \(0.234759\pi\)
\(510\) 0 0
\(511\) −322538. + 558653.i −1.23521 + 2.13944i
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) 65743.9 0.248845
\(515\) −130479. 75332.0i −0.491955 0.284030i
\(516\) 0 0
\(517\) 58886.4 + 101994.i 0.220310 + 0.381588i
\(518\) −464695. + 268292.i −1.73184 + 0.999880i
\(519\) 0 0
\(520\) −36521.2 + 63256.6i −0.135064 + 0.233937i
\(521\) 39855.1i 0.146828i 0.997302 + 0.0734139i \(0.0233894\pi\)
−0.997302 + 0.0734139i \(0.976611\pi\)
\(522\) 0 0
\(523\) −250487. −0.915762 −0.457881 0.889014i \(-0.651391\pi\)
−0.457881 + 0.889014i \(0.651391\pi\)
\(524\) −94199.1 54385.9i −0.343071 0.198072i
\(525\) 0 0
\(526\) −43418.7 75203.4i −0.156930 0.271810i
\(527\) −136453. + 78781.3i −0.491318 + 0.283663i
\(528\) 0 0
\(529\) 8008.38 13870.9i 0.0286176 0.0495672i
\(530\) 23653.5i 0.0842060i
\(531\) 0 0
\(532\) 124005. 0.438142
\(533\) 30552.9 + 17639.7i 0.107547 + 0.0620922i
\(534\) 0 0
\(535\) 480699. + 832596.i 1.67945 + 2.90888i
\(536\) −174322. + 100645.i −0.606769 + 0.350318i
\(537\) 0 0
\(538\) 138997. 240750.i 0.480220 0.831766i
\(539\) 462314.i 1.59133i
\(540\) 0 0
\(541\) −324441. −1.10852 −0.554258 0.832345i \(-0.686998\pi\)
−0.554258 + 0.832345i \(0.686998\pi\)
\(542\) 273697. + 158019.i 0.931690 + 0.537912i
\(543\) 0 0
\(544\) 23173.2 + 40137.1i 0.0783047 + 0.135628i
\(545\) −132937. + 76751.4i −0.447563 + 0.258401i
\(546\) 0 0
\(547\) −7037.20 + 12188.8i −0.0235193 + 0.0407367i −0.877546 0.479493i \(-0.840820\pi\)
0.854026 + 0.520230i \(0.174154\pi\)
\(548\) 173318.i 0.577142i
\(549\) 0 0
\(550\) −475486. −1.57185
\(551\) −137152. 79184.6i −0.451750 0.260818i
\(552\) 0 0
\(553\) −162163. 280875.i −0.530276 0.918464i
\(554\) 157768. 91087.4i 0.514043 0.296783i
\(555\) 0 0
\(556\) 61753.0 106959.i 0.199760 0.345994i
\(557\) 94500.4i 0.304595i −0.988335 0.152298i \(-0.951333\pi\)
0.988335 0.152298i \(-0.0486672\pi\)
\(558\) 0 0
\(559\) −11572.1 −0.0370331
\(560\) −205138. 118436.i −0.654139 0.377667i
\(561\) 0 0
\(562\) 176583. + 305851.i 0.559084 + 0.968361i
\(563\) 92731.3 53538.5i 0.292556 0.168908i −0.346538 0.938036i \(-0.612643\pi\)
0.639094 + 0.769129i \(0.279309\pi\)
\(564\) 0 0
\(565\) −203836. + 353054.i −0.638533 + 1.10597i
\(566\) 355810.i 1.11067i
\(567\) 0 0
\(568\) −80478.0 −0.249448
\(569\) −205997. 118933.i −0.636264 0.367347i 0.146910 0.989150i \(-0.453067\pi\)
−0.783174 + 0.621803i \(0.786401\pi\)
\(570\) 0 0
\(571\) −122284. 211802.i −0.375057 0.649618i 0.615278 0.788310i \(-0.289044\pi\)
−0.990336 + 0.138692i \(0.955710\pi\)
\(572\) −55054.3 + 31785.6i −0.168267 + 0.0971491i
\(573\) 0 0
\(574\) −57204.7 + 99081.5i −0.173623 + 0.300724i
\(575\) 808413.i 2.44511i
\(576\) 0 0
\(577\) 456171. 1.37018 0.685088 0.728461i \(-0.259764\pi\)
0.685088 + 0.728461i \(0.259764\pi\)
\(578\) 44016.8 + 25413.1i 0.131754 + 0.0760680i
\(579\) 0 0
\(580\) 151258. + 261986.i 0.449636 + 0.778793i
\(581\) −128843. + 74387.3i −0.381687 + 0.220367i
\(582\) 0 0
\(583\) 10293.2 17828.3i 0.0302840 0.0524534i
\(584\) 181209.i 0.531319i
\(585\) 0 0
\(586\) −199044. −0.579633
\(587\) 517042. + 298514.i 1.50055 + 0.866341i 1.00000 0.000630751i \(0.000200774\pi\)
0.500546 + 0.865710i \(0.333133\pi\)
\(588\) 0 0
\(589\) −59212.9 102560.i −0.170681 0.295628i
\(590\) 203914. 117730.i 0.585792 0.338207i
\(591\) 0 0
\(592\) 75366.3 130538.i 0.215047 0.372473i
\(593\) 597802.i 1.70000i −0.526785 0.849999i \(-0.676603\pi\)
0.526785 0.849999i \(-0.323397\pi\)
\(594\) 0 0
\(595\) 947601. 2.67665
\(596\) 141834. + 81888.0i 0.399290 + 0.230530i
\(597\) 0 0
\(598\) −54041.4 93602.5i −0.151121 0.261749i
\(599\) 347165. 200436.i 0.967570 0.558627i 0.0690757 0.997611i \(-0.477995\pi\)
0.898495 + 0.438984i \(0.144662\pi\)
\(600\) 0 0
\(601\) −38616.2 + 66885.2i −0.106910 + 0.185174i −0.914517 0.404547i \(-0.867429\pi\)
0.807607 + 0.589722i \(0.200762\pi\)
\(602\) 37527.9i 0.103553i
\(603\) 0 0
\(604\) 256038. 0.701827
\(605\) 73502.8 + 42436.9i 0.200814 + 0.115940i
\(606\) 0 0
\(607\) 300353. + 520227.i 0.815182 + 1.41194i 0.909197 + 0.416366i \(0.136697\pi\)
−0.0940146 + 0.995571i \(0.529970\pi\)
\(608\) −30167.5 + 17417.2i −0.0816078 + 0.0471163i
\(609\) 0 0
\(610\) −185835. + 321876.i −0.499423 + 0.865026i
\(611\) 73150.1i 0.195944i
\(612\) 0 0
\(613\) 211376. 0.562516 0.281258 0.959632i \(-0.409248\pi\)
0.281258 + 0.959632i \(0.409248\pi\)
\(614\) −65622.3 37887.1i −0.174066 0.100497i
\(615\) 0 0
\(616\) −103079. 178538.i −0.271650 0.470511i
\(617\) −327641. + 189164.i −0.860653 + 0.496898i −0.864231 0.503095i \(-0.832194\pi\)
0.00357801 + 0.999994i \(0.498861\pi\)
\(618\) 0 0
\(619\) 245962. 426018.i 0.641927 1.11185i −0.343075 0.939308i \(-0.611468\pi\)
0.985002 0.172543i \(-0.0551983\pi\)
\(620\) 226216.i 0.588490i
\(621\) 0 0
\(622\) −361698. −0.934900
\(623\) −293313. 169344.i −0.755710 0.436309i
\(624\) 0 0
\(625\) −444704. 770249.i −1.13844 1.97184i
\(626\) −23427.5 + 13525.8i −0.0597828 + 0.0345156i
\(627\) 0 0
\(628\) −96828.6 + 167712.i −0.245519 + 0.425251i
\(629\) 603000.i 1.52411i
\(630\) 0 0
\(631\) −64515.4 −0.162033 −0.0810167 0.996713i \(-0.525817\pi\)
−0.0810167 + 0.996713i \(0.525817\pi\)
\(632\) 78900.9 + 45553.5i 0.197537 + 0.114048i
\(633\) 0 0
\(634\) 55145.7 + 95515.2i 0.137193 + 0.237626i
\(635\) 617146. 356310.i 1.53053 0.883650i
\(636\) 0 0
\(637\) −143574. + 248678.i −0.353833 + 0.612856i
\(638\) 263289.i 0.646832i
\(639\) 0 0
\(640\) 66540.3 0.162452
\(641\) 372051. + 214804.i 0.905495 + 0.522788i 0.878979 0.476861i \(-0.158225\pi\)
0.0265161 + 0.999648i \(0.491559\pi\)
\(642\) 0 0
\(643\) −250475. 433835.i −0.605818 1.04931i −0.991922 0.126852i \(-0.959513\pi\)
0.386103 0.922456i \(-0.373821\pi\)
\(644\) 303548. 175254.i 0.731907 0.422567i
\(645\) 0 0
\(646\) 69676.8 120684.i 0.166964 0.289191i
\(647\) 175906.i 0.420216i 0.977678 + 0.210108i \(0.0673815\pi\)
−0.977678 + 0.210108i \(0.932618\pi\)
\(648\) 0 0
\(649\) 204929. 0.486534
\(650\) −255763. 147665.i −0.605356 0.349503i
\(651\) 0 0
\(652\) 84364.1 + 146123.i 0.198455 + 0.343735i
\(653\) −45516.4 + 26278.9i −0.106744 + 0.0616284i −0.552421 0.833565i \(-0.686296\pi\)
0.445678 + 0.895193i \(0.352963\pi\)
\(654\) 0 0
\(655\) 312368. 541037.i 0.728087 1.26108i
\(656\) 32138.9i 0.0746833i
\(657\) 0 0
\(658\) −237222. −0.547902
\(659\) −330751. 190959.i −0.761607 0.439714i 0.0682654 0.997667i \(-0.478254\pi\)
−0.829872 + 0.557953i \(0.811587\pi\)
\(660\) 0 0
\(661\) −355620. 615952.i −0.813923 1.40976i −0.910099 0.414392i \(-0.863994\pi\)
0.0961753 0.995364i \(-0.469339\pi\)
\(662\) −123538. + 71324.8i −0.281893 + 0.162751i
\(663\) 0 0
\(664\) 20896.2 36193.4i 0.0473949 0.0820905i
\(665\) 712227.i 1.61055i
\(666\) 0 0
\(667\) −447640. −1.00618
\(668\) 89840.7 + 51869.6i 0.201336 + 0.116241i
\(669\) 0 0
\(670\) −578059. 1.00123e6i −1.28772 2.23040i
\(671\) −280139. + 161739.i −0.622199 + 0.359227i
\(672\) 0 0
\(673\) 85387.1 147895.i 0.188522 0.326530i −0.756236 0.654299i \(-0.772964\pi\)
0.944758 + 0.327770i \(0.106297\pi\)
\(674\) 360268.i 0.793060i
\(675\) 0 0
\(676\) 189003. 0.413595
\(677\) −223906. 129272.i −0.488527 0.282051i 0.235436 0.971890i \(-0.424348\pi\)
−0.723963 + 0.689839i \(0.757681\pi\)
\(678\) 0 0
\(679\) 531099. + 919890.i 1.15196 + 1.99524i
\(680\) −230529. + 133096.i −0.498549 + 0.287837i
\(681\) 0 0
\(682\) −98441.6 + 170506.i −0.211646 + 0.366581i
\(683\) 402556.i 0.862948i 0.902125 + 0.431474i \(0.142006\pi\)
−0.902125 + 0.431474i \(0.857994\pi\)
\(684\) 0 0
\(685\) −995459. −2.12150
\(686\) −332718. 192095.i −0.707013 0.408194i
\(687\) 0 0
\(688\) 5271.01 + 9129.65i 0.0111357 + 0.0192876i
\(689\) 11073.4 6393.23i 0.0233261 0.0134673i
\(690\) 0 0
\(691\) −39761.5 + 68869.0i −0.0832735 + 0.144234i −0.904654 0.426146i \(-0.859871\pi\)
0.821381 + 0.570380i \(0.193204\pi\)
\(692\) 334229.i 0.697962i
\(693\) 0 0
\(694\) 548197. 1.13820
\(695\) 614325. + 354681.i 1.27183 + 0.734291i
\(696\) 0 0
\(697\) 64285.3 + 111345.i 0.132326 + 0.229196i
\(698\) −254916. + 147176.i −0.523221 + 0.302082i
\(699\) 0 0
\(700\) 478870. 829426.i 0.977285 1.69271i
\(701\) 371798.i 0.756609i 0.925681 + 0.378305i \(0.123493\pi\)
−0.925681 + 0.378305i \(0.876507\pi\)
\(702\) 0 0
\(703\) −453221. −0.917064
\(704\) 50153.5 + 28956.1i 0.101194 + 0.0584245i
\(705\) 0 0
\(706\) 227368. + 393813.i 0.456163 + 0.790098i
\(707\) 696906. 402359.i 1.39423 0.804960i
\(708\) 0 0
\(709\) 466603. 808180.i 0.928228 1.60774i 0.141944 0.989875i \(-0.454665\pi\)
0.786285 0.617864i \(-0.212002\pi\)
\(710\) 462229.i 0.916939i
\(711\) 0 0
\(712\) 95141.6 0.187677
\(713\) −289891. 167369.i −0.570238 0.329227i
\(714\) 0 0
\(715\) −182562. 316207.i −0.357107 0.618528i
\(716\) 92065.8 53154.2i 0.179586 0.103684i
\(717\) 0 0
\(718\) 30796.0 53340.2i 0.0597372 0.103468i
\(719\) 180424.i 0.349010i 0.984656 + 0.174505i \(0.0558325\pi\)
−0.984656 + 0.174505i \(0.944168\pi\)
\(720\) 0 0
\(721\) 264122. 0.508083
\(722\) −228513. 131932.i −0.438365 0.253090i
\(723\) 0 0
\(724\) −115643. 200300.i −0.220619 0.382123i
\(725\) −1.05928e6 + 611575.i −2.01527 + 1.16352i
\(726\) 0 0
\(727\) 227624. 394257.i 0.430675 0.745951i −0.566256 0.824229i \(-0.691609\pi\)
0.996932 + 0.0782779i \(0.0249421\pi\)
\(728\) 128047.i 0.241606i
\(729\) 0 0
\(730\) 1.04078e6 1.95306
\(731\) −36522.9 21086.5i −0.0683486 0.0394611i
\(732\) 0 0
\(733\) −275019. 476347.i −0.511864 0.886575i −0.999905 0.0137544i \(-0.995622\pi\)
0.488041 0.872821i \(-0.337712\pi\)
\(734\) 617187. 356333.i 1.14558 0.661399i
\(735\) 0 0
\(736\) −49230.8 + 85270.2i −0.0908826 + 0.157413i
\(737\) 1.00621e6i 1.85248i
\(738\) 0 0
\(739\) 663313. 1.21459 0.607295 0.794477i \(-0.292255\pi\)
0.607295 + 0.794477i \(0.292255\pi\)
\(740\) 749752. + 432869.i 1.36916 + 0.790485i
\(741\) 0 0
\(742\) 20732.9 + 35910.5i 0.0376576 + 0.0652249i
\(743\) 279153. 161169.i 0.505666 0.291947i −0.225384 0.974270i \(-0.572364\pi\)
0.731050 + 0.682323i \(0.239030\pi\)
\(744\) 0 0
\(745\) −470327. + 814630.i −0.847398 + 1.46774i
\(746\) 362112.i 0.650677i
\(747\) 0 0
\(748\) −231676. −0.414074
\(749\) −1.45959e6 842692.i −2.60175 1.50212i
\(750\) 0 0
\(751\) −164336. 284638.i −0.291375 0.504677i 0.682760 0.730643i \(-0.260780\pi\)
−0.974135 + 0.225966i \(0.927446\pi\)
\(752\) 57710.5 33319.2i 0.102052 0.0589195i
\(753\) 0 0
\(754\) −81766.0 + 141623.i −0.143824 + 0.249110i
\(755\) 1.47056e6i 2.57982i
\(756\) 0 0
\(757\) 530625. 0.925968 0.462984 0.886367i \(-0.346779\pi\)
0.462984 + 0.886367i \(0.346779\pi\)
\(758\) 227797. + 131518.i 0.396468 + 0.228901i
\(759\) 0 0
\(760\) −100036. 173268.i −0.173193 0.299979i
\(761\) 940741. 543137.i 1.62443 0.937864i 0.638713 0.769445i \(-0.279467\pi\)
0.985715 0.168420i \(-0.0538664\pi\)
\(762\) 0 0
\(763\) 134550. 233047.i 0.231118 0.400308i
\(764\) 402872.i 0.690209i
\(765\) 0 0
\(766\) −787130. −1.34150
\(767\) 110231. + 63641.7i 0.187375 + 0.108181i
\(768\) 0 0
\(769\) 320037. + 554320.i 0.541187 + 0.937364i 0.998836 + 0.0482307i \(0.0153583\pi\)
−0.457649 + 0.889133i \(0.651308\pi\)
\(770\) 1.02544e6 592040.i 1.72954 0.998549i
\(771\) 0 0
\(772\) −13864.1 + 24013.3i −0.0232625 + 0.0402918i
\(773\) 924647.i 1.54745i −0.633521 0.773726i \(-0.718391\pi\)
0.633521 0.773726i \(-0.281609\pi\)
\(774\) 0 0
\(775\) −914650. −1.52283
\(776\) −258408. 149192.i −0.429123 0.247754i
\(777\) 0 0
\(778\) −196467. 340291.i −0.324587 0.562201i
\(779\) −83688.4 + 48317.5i −0.137908 + 0.0796213i
\(780\) 0 0
\(781\) 201147. 348396.i 0.329770 0.571178i
\(782\) 393892.i 0.644115i
\(783\) 0 0
\(784\) 261587. 0.425583
\(785\) −963261. 556139.i −1.56317 0.902494i
\(786\) 0 0
\(787\) −226727. 392703.i −0.366062 0.634037i 0.622884 0.782314i \(-0.285961\pi\)
−0.988946 + 0.148277i \(0.952627\pi\)
\(788\) −54135.3 + 31255.0i −0.0871822 + 0.0503347i
\(789\) 0 0
\(790\) −261638. + 453171.i −0.419225 + 0.726119i
\(791\) 714670.i 1.14223i
\(792\) 0 0
\(793\) −200915. −0.319497
\(794\) −4312.80 2490.00i −0.00684099 0.00394965i
\(795\) 0 0
\(796\) 116613. + 201980.i 0.184044 + 0.318773i
\(797\) −828944. + 478591.i −1.30499 + 0.753439i −0.981256 0.192707i \(-0.938273\pi\)
−0.323739 + 0.946147i \(0.604940\pi\)
\(798\) 0 0
\(799\) −133292. + 230869.i −0.208791 + 0.361636i
\(800\) 269040.i 0.420375i
\(801\) 0 0
\(802\) −116129. −0.180548
\(803\) 784471. + 452915.i 1.21659 + 0.702401i
\(804\) 0 0
\(805\) 1.00658e6 + 1.74344e6i 1.55330 + 2.69039i
\(806\) −105903. + 61143.2i −0.163019 + 0.0941192i
\(807\) 0 0
\(808\) −113027. + 195769.i −0.173125 + 0.299862i
\(809\) 464039.i 0.709018i 0.935053 + 0.354509i \(0.115352\pi\)
−0.935053 + 0.354509i \(0.884648\pi\)
\(810\) 0 0
\(811\) −732128. −1.11313 −0.556564 0.830804i \(-0.687881\pi\)
−0.556564 + 0.830804i \(0.687881\pi\)
\(812\) −459276. 265163.i −0.696565 0.402162i
\(813\) 0 0
\(814\) 376741. + 652534.i 0.568583 + 0.984815i
\(815\) −839263. + 484549.i −1.26352 + 0.729495i
\(816\) 0 0
\(817\) 15848.8 27450.9i 0.0237439 0.0411257i
\(818\) 471537.i 0.704708i
\(819\) 0 0
\(820\) 184591. 0.274526
\(821\) 1.09670e6 + 633181.i 1.62705 + 0.939381i 0.984966 + 0.172751i \(0.0552655\pi\)
0.642089 + 0.766630i \(0.278068\pi\)
\(822\) 0 0
\(823\) 86129.2 + 149180.i 0.127160 + 0.220248i 0.922575 0.385817i \(-0.126080\pi\)
−0.795415 + 0.606065i \(0.792747\pi\)
\(824\) −64254.7 + 37097.5i −0.0946348 + 0.0546374i
\(825\) 0 0
\(826\) −206387. + 357473.i −0.302498 + 0.523942i
\(827\) 135383.i 0.197949i 0.995090 + 0.0989746i \(0.0315563\pi\)
−0.995090 + 0.0989746i \(0.968444\pi\)
\(828\) 0 0
\(829\) 290151. 0.422197 0.211099 0.977465i \(-0.432296\pi\)
0.211099 + 0.977465i \(0.432296\pi\)
\(830\) 207878. + 120018.i 0.301754 + 0.174218i
\(831\) 0 0
\(832\) 17985.0 + 31150.9i 0.0259815 + 0.0450012i
\(833\) −906270. + 523235.i −1.30607 + 0.754062i
\(834\) 0 0
\(835\) −297915. + 516004.i −0.427287 + 0.740083i
\(836\) 174130.i 0.249150i
\(837\) 0 0
\(838\) −938212. −1.33602
\(839\) 463122. + 267383.i 0.657917 + 0.379849i 0.791483 0.611191i \(-0.209309\pi\)
−0.133566 + 0.991040i \(0.542643\pi\)
\(840\) 0 0
\(841\) −14995.1 25972.3i −0.0212010 0.0367213i
\(842\) 460080. 265627.i 0.648947 0.374670i
\(843\) 0 0
\(844\) −188632. + 326720.i −0.264808 + 0.458660i
\(845\) 1.08555e6i 1.52032i
\(846\) 0 0
\(847\) −148788. −0.207397
\(848\) −10087.7 5824.11i −0.0140281 0.00809913i
\(849\) 0 0
\(850\) −538142. 932090.i −0.744834 1.29009i
\(851\) −1.10943e6 + 640529.i −1.53193 + 0.884463i
\(852\) 0 0
\(853\) 469672. 813495.i 0.645500 1.11804i −0.338686 0.940900i \(-0.609982\pi\)
0.984186 0.177139i \(-0.0566843\pi\)
\(854\) 651559.i 0.893383i
\(855\) 0 0
\(856\) 473444. 0.646132
\(857\) −581553. 335760.i −0.791823 0.457159i 0.0487812 0.998809i \(-0.484466\pi\)
−0.840604 + 0.541651i \(0.817800\pi\)
\(858\) 0 0
\(859\) 571382. + 989663.i 0.774356 + 1.34122i 0.935156 + 0.354236i \(0.115259\pi\)
−0.160800 + 0.986987i \(0.551408\pi\)
\(860\) −52436.5 + 30274.3i −0.0708985 + 0.0409333i
\(861\) 0 0
\(862\) 9831.62 17028.9i 0.0132316 0.0229177i
\(863\) 1.09963e6i 1.47647i −0.674545 0.738234i \(-0.735660\pi\)
0.674545 0.738234i \(-0.264340\pi\)
\(864\) 0 0
\(865\) 1.91966e6 2.56562
\(866\) −92936.1 53656.7i −0.123922 0.0715464i
\(867\) 0 0
\(868\) −198284. 343439.i −0.263178 0.455837i
\(869\) −394410. + 227713.i −0.522286 + 0.301542i
\(870\) 0 0
\(871\) 312484. 541238.i 0.411900 0.713431i
\(872\) 75593.0i 0.0994143i
\(873\) 0 0
\(874\) 296053. 0.387567
\(875\) 2.76055e6 + 1.59380e6i 3.60561 + 2.08170i
\(876\) 0 0
\(877\) −389866. 675267.i −0.506893 0.877964i −0.999968 0.00797718i \(-0.997461\pi\)
0.493076 0.869986i \(-0.335873\pi\)
\(878\) −608465. + 351297.i −0.789308 + 0.455707i
\(879\) 0 0
\(880\) −166311. + 288059.i −0.214761 + 0.371977i
\(881\) 622180.i 0.801611i −0.916163 0.400806i \(-0.868730\pi\)
0.916163 0.400806i \(-0.131270\pi\)
\(882\) 0 0
\(883\) −1.39076e6 −1.78373 −0.891865 0.452301i \(-0.850603\pi\)
−0.891865 + 0.452301i \(0.850603\pi\)
\(884\) −124618. 71948.3i −0.159469 0.0920696i
\(885\) 0 0
\(886\) 230303. + 398896.i 0.293381 + 0.508150i
\(887\) 829234. 478758.i 1.05397 0.608512i 0.130214 0.991486i \(-0.458433\pi\)
0.923759 + 0.382974i \(0.125100\pi\)
\(888\) 0 0
\(889\) −624631. + 1.08189e6i −0.790350 + 1.36893i
\(890\) 546450.i 0.689874i
\(891\) 0 0
\(892\) −80426.2 −0.101081
\(893\) −173523. 100184.i −0.217598 0.125630i
\(894\) 0 0
\(895\) 305293. + 528784.i 0.381129 + 0.660134i
\(896\) −101021. + 58324.4i −0.125833 + 0.0726498i
\(897\) 0 0
\(898\) −196930. + 341092.i −0.244207 + 0.422980i
\(899\) 506466.i 0.626659i
\(900\) 0 0
\(901\) 46598.3 0.0574012
\(902\) 139132. + 80328.0i 0.171007 + 0.0987311i
\(903\) 0 0
\(904\) 100380. + 173862.i 0.122831 + 0.212750i
\(905\) 1.15043e6 664200.i 1.40463 0.810965i
\(906\) 0 0
\(907\) −109786. + 190154.i −0.133454 + 0.231149i −0.925006 0.379953i \(-0.875940\pi\)
0.791552 + 0.611102i \(0.209273\pi\)
\(908\) 239614.i 0.290630i
\(909\) 0 0
\(910\) 735445. 0.888112
\(911\) −1.31841e6 761186.i −1.58860 0.917179i −0.993538 0.113500i \(-0.963794\pi\)
−0.595063 0.803679i \(-0.702873\pi\)
\(912\) 0 0
\(913\) 104456. + 180923.i 0.125312 + 0.217047i
\(914\) −613693. + 354316.i −0.734614 + 0.424129i
\(915\) 0 0
\(916\) −80533.8 + 139489.i −0.0959814 + 0.166245i
\(917\) 1.09520e6i 1.30243i
\(918\) 0 0
\(919\) −239088. −0.283091 −0.141546 0.989932i \(-0.545207\pi\)
−0.141546 + 0.989932i \(0.545207\pi\)
\(920\) −489753. 282759.i −0.578630 0.334072i
\(921\) 0 0
\(922\) 110572. + 191517.i 0.130072 + 0.225292i
\(923\) 216393. 124935.i 0.254004 0.146649i
\(924\) 0 0
\(925\) −1.75020e6 + 3.03144e6i −2.04553 + 3.54296i
\(926\) 997278.i 1.16304i
\(927\) 0 0
\(928\) 148975. 0.172988
\(929\) −31813.2 18367.4i −0.0368618 0.0212822i 0.481456 0.876470i \(-0.340108\pi\)
−0.518318 + 0.855188i \(0.673442\pi\)
\(930\) 0 0
\(931\) −393269. 681162.i −0.453722 0.785870i
\(932\) 132184. 76316.3i 0.152176 0.0878589i
\(933\) 0 0
\(934\) −54284.1 + 94022.8i −0.0622270 + 0.107780i
\(935\) 1.33064e6i 1.52208i
\(936\) 0 0
\(937\) −849585. −0.967671 −0.483835 0.875159i \(-0.660757\pi\)
−0.483835 + 0.875159i \(0.660757\pi\)
\(938\) 1.75521e6 + 1.01337e6i 1.99491 + 1.15176i
\(939\) 0 0
\(940\) 191370. + 331463.i 0.216580 + 0.375128i
\(941\) 99837.0 57640.9i 0.112749 0.0650956i −0.442565 0.896736i \(-0.645931\pi\)
0.555314 + 0.831641i \(0.312598\pi\)
\(942\) 0 0
\(943\) −136572. + 236550.i −0.153582 + 0.266011i
\(944\) 115953.i 0.130118i
\(945\) 0 0
\(946\) −52697.4 −0.0588853
\(947\) 44274.4 + 25561.8i 0.0493688 + 0.0285031i 0.524481 0.851422i \(-0.324259\pi\)
−0.475112 + 0.879925i \(0.657593\pi\)
\(948\) 0 0
\(949\) 281311. + 487244.i 0.312359 + 0.541021i
\(950\) 700568. 404473.i 0.776253 0.448170i
\(951\) 0 0
\(952\) 233325. 404130.i 0.257446 0.445910i
\(953\) 407821.i 0.449038i −0.974470 0.224519i \(-0.927919\pi\)
0.974470 0.224519i \(-0.0720812\pi\)
\(954\) 0 0
\(955\) 2.31391e6 2.53712
\(956\) 625337. + 361038.i 0.684224 + 0.395037i
\(957\) 0 0
\(958\) 73569.1 + 127425.i 0.0801612 + 0.138843i
\(959\) 1.51130e6 872547.i 1.64328 0.948750i
\(960\) 0 0
\(961\) 272397. 471806.i 0.294955 0.510877i
\(962\) 467996.i 0.505699i
\(963\) 0 0
\(964\) −241288. −0.259646
\(965\) −137921. 79628.9i −0.148107 0.0855099i
\(966\) 0 0
\(967\) −639545. 1.10773e6i −0.683941 1.18462i −0.973768 0.227541i \(-0.926931\pi\)
0.289828 0.957079i \(-0.406402\pi\)
\(968\) 36196.7 20898.2i 0.0386294 0.0223027i
\(969\) 0 0
\(970\) 856889. 1.48417e6i 0.910712 1.57740i
\(971\) 806048.i 0.854914i 0.904036 + 0.427457i \(0.140590\pi\)
−0.904036 + 0.427457i \(0.859410\pi\)
\(972\) 0 0
\(973\) −1.24355e6 −1.31352
\(974\) −620750. 358390.i −0.654333 0.377780i
\(975\) 0 0
\(976\) 91515.2 + 158509.i 0.0960713 + 0.166400i
\(977\) −1.18399e6 + 683577.i −1.24039 + 0.716141i −0.969174 0.246377i \(-0.920760\pi\)
−0.271219 + 0.962518i \(0.587427\pi\)
\(978\) 0 0
\(979\) −237797. + 411876.i −0.248108 + 0.429735i
\(980\) 1.50244e6i 1.56439i
\(981\) 0 0
\(982\) 516339. 0.535441
\(983\) −1.25036e6 721898.i −1.29399 0.747083i −0.314627 0.949215i \(-0.601879\pi\)
−0.979358 + 0.202133i \(0.935213\pi\)
\(984\) 0 0
\(985\) −179515. 310928.i −0.185024 0.320470i
\(986\) −516123. + 297984.i −0.530884 + 0.306506i
\(987\) 0 0
\(988\) 54077.1 93664.3i 0.0553987 0.0959533i
\(989\) 89595.3i 0.0915994i
\(990\) 0 0
\(991\) −476821. −0.485521 −0.242761 0.970086i \(-0.578053\pi\)
−0.242761 + 0.970086i \(0.578053\pi\)
\(992\) 96475.8 + 55700.4i 0.0980382 + 0.0566024i
\(993\) 0 0
\(994\) 405157. + 701752.i 0.410063 + 0.710249i
\(995\) −1.16008e6 + 669773.i −1.17177 + 0.676521i
\(996\) 0 0
\(997\) 512743. 888097.i 0.515834 0.893450i −0.483998 0.875069i \(-0.660816\pi\)
0.999831 0.0183805i \(-0.00585104\pi\)
\(998\) 97702.9i 0.0980949i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.d.d.107.3 8
3.2 odd 2 inner 162.5.d.d.107.2 8
9.2 odd 6 162.5.b.a.161.4 yes 4
9.4 even 3 inner 162.5.d.d.53.2 8
9.5 odd 6 inner 162.5.d.d.53.3 8
9.7 even 3 162.5.b.a.161.1 4
36.7 odd 6 1296.5.e.b.161.1 4
36.11 even 6 1296.5.e.b.161.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.5.b.a.161.1 4 9.7 even 3
162.5.b.a.161.4 yes 4 9.2 odd 6
162.5.d.d.53.2 8 9.4 even 3 inner
162.5.d.d.53.3 8 9.5 odd 6 inner
162.5.d.d.107.2 8 3.2 odd 2 inner
162.5.d.d.107.3 8 1.1 even 1 trivial
1296.5.e.b.161.1 4 36.7 odd 6
1296.5.e.b.161.4 4 36.11 even 6