Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [162,5,Mod(17,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([11]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.17");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.f (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.7459340196\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | 45.7302 | + | 8.06347i | 0 | −14.1135 | + | 11.8427i | 19.5959 | − | 11.3137i | 0 | −65.6700 | + | 113.744i | ||||||
17.2 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | 5.14300 | + | 0.906850i | 0 | −21.7252 | + | 18.2296i | 19.5959 | − | 11.3137i | 0 | −7.38550 | + | 12.7921i | ||||||
17.3 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | 3.66245 | + | 0.645790i | 0 | 67.2236 | − | 56.4073i | 19.5959 | − | 11.3137i | 0 | −5.25940 | + | 9.10954i | ||||||
17.4 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | 20.4117 | + | 3.59913i | 0 | −31.5466 | + | 26.4708i | 19.5959 | − | 11.3137i | 0 | −29.3118 | + | 50.7695i | ||||||
17.5 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | −31.9962 | − | 5.64180i | 0 | 29.5375 | − | 24.7849i | 19.5959 | − | 11.3137i | 0 | 45.9475 | − | 79.5835i | ||||||
17.6 | −0.967379 | + | 2.65785i | 0 | −6.12836 | − | 5.14230i | −39.1530 | − | 6.90373i | 0 | −3.77039 | + | 3.16373i | 19.5959 | − | 11.3137i | 0 | 56.2249 | − | 97.3844i | ||||||
17.7 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | −41.7224 | − | 7.35678i | 0 | 19.0320 | − | 15.9698i | −19.5959 | + | 11.3137i | 0 | −59.9146 | + | 103.775i | ||||||
17.8 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | 33.5989 | + | 5.92440i | 0 | −63.3453 | + | 53.1530i | −19.5959 | + | 11.3137i | 0 | 48.2491 | − | 83.5699i | ||||||
17.9 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | −5.05113 | − | 0.890650i | 0 | 14.8841 | − | 12.4892i | −19.5959 | + | 11.3137i | 0 | −7.25357 | + | 12.5636i | ||||||
17.10 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | −6.60957 | − | 1.16545i | 0 | −57.7034 | + | 48.4189i | −19.5959 | + | 11.3137i | 0 | −9.49154 | + | 16.4398i | ||||||
17.11 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | −0.622849 | − | 0.109825i | 0 | 42.1999 | − | 35.4099i | −19.5959 | + | 11.3137i | 0 | −0.894430 | + | 1.54920i | ||||||
17.12 | 0.967379 | − | 2.65785i | 0 | −6.12836 | − | 5.14230i | 24.2051 | + | 4.26801i | 0 | 19.3273 | − | 16.2175i | −19.5959 | + | 11.3137i | 0 | 34.7593 | − | 60.2048i | ||||||
35.1 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | −4.26691 | + | 11.7232i | 0 | 3.24231 | − | 18.3880i | 19.5959 | + | 11.3137i | 0 | −17.6432 | − | 30.5589i | ||||||
35.2 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | 5.13581 | − | 14.1105i | 0 | 13.6904 | − | 77.6422i | 19.5959 | + | 11.3137i | 0 | 21.2360 | + | 36.7818i | ||||||
35.3 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | −6.13288 | + | 16.8500i | 0 | 8.35982 | − | 47.4109i | 19.5959 | + | 11.3137i | 0 | −25.3588 | − | 43.9227i | ||||||
35.4 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | 7.68730 | − | 21.1207i | 0 | −9.39505 | + | 53.2820i | 19.5959 | + | 11.3137i | 0 | 31.7861 | + | 55.0551i | ||||||
35.5 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | −12.8057 | + | 35.1833i | 0 | −14.9416 | + | 84.7379i | 19.5959 | + | 11.3137i | 0 | −52.9500 | − | 91.7121i | ||||||
35.6 | −1.81808 | + | 2.16670i | 0 | −1.38919 | − | 7.87846i | 12.4033 | − | 34.0778i | 0 | −2.97171 | + | 16.8534i | 19.5959 | + | 11.3137i | 0 | 51.2862 | + | 88.8303i | ||||||
35.7 | 1.81808 | − | 2.16670i | 0 | −1.38919 | − | 7.87846i | −14.9830 | + | 41.1655i | 0 | 12.4750 | − | 70.7490i | −19.5959 | − | 11.3137i | 0 | 61.9530 | + | 107.306i | ||||||
35.8 | 1.81808 | − | 2.16670i | 0 | −1.38919 | − | 7.87846i | 2.28016 | − | 6.26470i | 0 | −10.8277 | + | 61.4069i | −19.5959 | − | 11.3137i | 0 | −9.42821 | − | 16.3301i | ||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.5.f.a | 72 | |
3.b | odd | 2 | 1 | 54.5.f.a | ✓ | 72 | |
27.e | even | 9 | 1 | 54.5.f.a | ✓ | 72 | |
27.f | odd | 18 | 1 | inner | 162.5.f.a | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.5.f.a | ✓ | 72 | 3.b | odd | 2 | 1 | |
54.5.f.a | ✓ | 72 | 27.e | even | 9 | 1 | |
162.5.f.a | 72 | 1.a | even | 1 | 1 | trivial | |
162.5.f.a | 72 | 27.f | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(162, [\chi])\).