Properties

Label 162.5.f.a.17.9
Level $162$
Weight $5$
Character 162.17
Analytic conductor $16.746$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(17,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.17");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 162.17
Dual form 162.5.f.a.143.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.967379 - 2.65785i) q^{2} +(-6.12836 - 5.14230i) q^{4} +(-5.05113 - 0.890650i) q^{5} +(14.8841 - 12.4892i) q^{7} +(-19.5959 + 11.3137i) q^{8} +O(q^{10})\) \(q+(0.967379 - 2.65785i) q^{2} +(-6.12836 - 5.14230i) q^{4} +(-5.05113 - 0.890650i) q^{5} +(14.8841 - 12.4892i) q^{7} +(-19.5959 + 11.3137i) q^{8} +(-7.25357 + 12.5636i) q^{10} +(-189.030 + 33.3311i) q^{11} +(40.7236 - 14.8222i) q^{13} +(-18.7959 - 51.6414i) q^{14} +(11.1135 + 63.0277i) q^{16} +(-81.7214 - 47.1819i) q^{17} +(30.4781 + 52.7896i) q^{19} +(26.3751 + 31.4326i) q^{20} +(-94.2747 + 534.659i) q^{22} +(-653.526 + 778.842i) q^{23} +(-562.587 - 204.765i) q^{25} -122.576i q^{26} -155.438 q^{28} +(-218.912 + 601.454i) q^{29} +(683.468 + 573.498i) q^{31} +(178.269 + 31.4337i) q^{32} +(-204.458 + 171.561i) q^{34} +(-86.3048 + 49.8281i) q^{35} +(-428.478 + 742.145i) q^{37} +(169.791 - 29.9387i) q^{38} +(109.058 - 39.6939i) q^{40} +(-384.538 - 1056.51i) q^{41} +(-125.410 - 711.234i) q^{43} +(1329.84 + 767.786i) q^{44} +(1437.84 + 2490.41i) q^{46} +(-691.787 - 824.440i) q^{47} +(-351.374 + 1992.74i) q^{49} +(-1088.47 + 1297.19i) q^{50} +(-325.789 - 118.578i) q^{52} -89.7780i q^{53} +984.503 q^{55} +(-150.368 + 413.131i) q^{56} +(1386.81 + 1163.67i) q^{58} +(-4976.00 - 877.402i) q^{59} +(1135.19 - 952.539i) q^{61} +(2185.45 - 1261.77i) q^{62} +(256.000 - 443.405i) q^{64} +(-218.902 + 38.5983i) q^{65} +(4070.77 - 1481.64i) q^{67} +(258.194 + 709.383i) q^{68} +(48.9463 + 277.588i) q^{70} +(3149.55 + 1818.39i) q^{71} +(-1734.14 - 3003.62i) q^{73} +(1558.01 + 1856.77i) q^{74} +(84.6795 - 480.241i) q^{76} +(-2397.26 + 2856.94i) q^{77} +(-11221.9 - 4084.44i) q^{79} -328.259i q^{80} -3180.04 q^{82} +(2967.38 - 8152.82i) q^{83} +(370.763 + 311.107i) q^{85} +(-2011.67 - 354.712i) q^{86} +(3327.12 - 2791.79i) q^{88} +(6125.54 - 3536.58i) q^{89} +(421.016 - 729.220i) q^{91} +(8010.07 - 1412.39i) q^{92} +(-2860.46 + 1041.12i) q^{94} +(-106.932 - 293.793i) q^{95} +(-2526.36 - 14327.7i) q^{97} +(4956.50 + 2861.64i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 18 q^{5} - 720 q^{11} + 288 q^{14} - 288 q^{20} - 1008 q^{22} - 4716 q^{23} - 882 q^{25} + 6084 q^{29} + 3330 q^{31} + 288 q^{34} - 5346 q^{35} - 576 q^{38} + 13356 q^{41} + 1260 q^{43} - 16578 q^{47} - 5904 q^{49} - 15552 q^{50} + 2304 q^{56} + 40104 q^{59} + 8352 q^{61} + 18432 q^{64} + 19674 q^{65} - 24192 q^{67} - 10224 q^{68} + 14400 q^{70} - 39528 q^{71} - 12222 q^{73} - 33120 q^{74} + 9792 q^{76} - 28206 q^{77} + 11304 q^{79} + 30078 q^{83} - 52200 q^{85} + 46224 q^{86} - 16128 q^{88} + 102222 q^{89} + 12078 q^{91} + 27504 q^{92} + 4032 q^{94} - 46728 q^{95} + 49680 q^{97} - 82944 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.967379 2.65785i 0.241845 0.664463i
\(3\) 0 0
\(4\) −6.12836 5.14230i −0.383022 0.321394i
\(5\) −5.05113 0.890650i −0.202045 0.0356260i 0.0717096 0.997426i \(-0.477155\pi\)
−0.273755 + 0.961800i \(0.588266\pi\)
\(6\) 0 0
\(7\) 14.8841 12.4892i 0.303756 0.254882i −0.478149 0.878279i \(-0.658692\pi\)
0.781906 + 0.623397i \(0.214248\pi\)
\(8\) −19.5959 + 11.3137i −0.306186 + 0.176777i
\(9\) 0 0
\(10\) −7.25357 + 12.5636i −0.0725357 + 0.125636i
\(11\) −189.030 + 33.3311i −1.56223 + 0.275464i −0.886870 0.462020i \(-0.847125\pi\)
−0.675365 + 0.737484i \(0.736014\pi\)
\(12\) 0 0
\(13\) 40.7236 14.8222i 0.240968 0.0877053i −0.218713 0.975789i \(-0.570186\pi\)
0.459681 + 0.888084i \(0.347964\pi\)
\(14\) −18.7959 51.6414i −0.0958977 0.263477i
\(15\) 0 0
\(16\) 11.1135 + 63.0277i 0.0434120 + 0.246202i
\(17\) −81.7214 47.1819i −0.282773 0.163259i 0.351905 0.936036i \(-0.385534\pi\)
−0.634678 + 0.772777i \(0.718867\pi\)
\(18\) 0 0
\(19\) 30.4781 + 52.7896i 0.0844269 + 0.146232i 0.905147 0.425099i \(-0.139761\pi\)
−0.820720 + 0.571331i \(0.806427\pi\)
\(20\) 26.3751 + 31.4326i 0.0659378 + 0.0785816i
\(21\) 0 0
\(22\) −94.2747 + 534.659i −0.194782 + 1.10467i
\(23\) −653.526 + 778.842i −1.23540 + 1.47229i −0.405769 + 0.913976i \(0.632996\pi\)
−0.829629 + 0.558314i \(0.811448\pi\)
\(24\) 0 0
\(25\) −562.587 204.765i −0.900140 0.327624i
\(26\) 122.576i 0.181326i
\(27\) 0 0
\(28\) −155.438 −0.198263
\(29\) −218.912 + 601.454i −0.260299 + 0.715166i 0.738848 + 0.673872i \(0.235370\pi\)
−0.999147 + 0.0412937i \(0.986852\pi\)
\(30\) 0 0
\(31\) 683.468 + 573.498i 0.711205 + 0.596772i 0.924937 0.380120i \(-0.124117\pi\)
−0.213732 + 0.976892i \(0.568562\pi\)
\(32\) 178.269 + 31.4337i 0.174091 + 0.0306970i
\(33\) 0 0
\(34\) −204.458 + 171.561i −0.176867 + 0.148409i
\(35\) −86.3048 + 49.8281i −0.0704529 + 0.0406760i
\(36\) 0 0
\(37\) −428.478 + 742.145i −0.312986 + 0.542108i −0.979007 0.203825i \(-0.934663\pi\)
0.666021 + 0.745933i \(0.267996\pi\)
\(38\) 169.791 29.9387i 0.117584 0.0207332i
\(39\) 0 0
\(40\) 109.058 39.6939i 0.0681613 0.0248087i
\(41\) −384.538 1056.51i −0.228756 0.628501i 0.771212 0.636579i \(-0.219651\pi\)
−0.999967 + 0.00807769i \(0.997429\pi\)
\(42\) 0 0
\(43\) −125.410 711.234i −0.0678257 0.384659i −0.999757 0.0220249i \(-0.992989\pi\)
0.931932 0.362634i \(-0.118122\pi\)
\(44\) 1329.84 + 767.786i 0.686903 + 0.396584i
\(45\) 0 0
\(46\) 1437.84 + 2490.41i 0.679508 + 1.17694i
\(47\) −691.787 824.440i −0.313168 0.373219i 0.586384 0.810033i \(-0.300551\pi\)
−0.899552 + 0.436815i \(0.856107\pi\)
\(48\) 0 0
\(49\) −351.374 + 1992.74i −0.146345 + 0.829964i
\(50\) −1088.47 + 1297.19i −0.435388 + 0.518875i
\(51\) 0 0
\(52\) −325.789 118.578i −0.120484 0.0438526i
\(53\) 89.7780i 0.0319608i −0.999872 0.0159804i \(-0.994913\pi\)
0.999872 0.0159804i \(-0.00508694\pi\)
\(54\) 0 0
\(55\) 984.503 0.325455
\(56\) −150.368 + 413.131i −0.0479488 + 0.131738i
\(57\) 0 0
\(58\) 1386.81 + 1163.67i 0.412249 + 0.345918i
\(59\) −4976.00 877.402i −1.42947 0.252055i −0.595276 0.803521i \(-0.702957\pi\)
−0.834197 + 0.551466i \(0.814068\pi\)
\(60\) 0 0
\(61\) 1135.19 952.539i 0.305077 0.255990i −0.477377 0.878699i \(-0.658412\pi\)
0.782454 + 0.622709i \(0.213968\pi\)
\(62\) 2185.45 1261.77i 0.568534 0.328243i
\(63\) 0 0
\(64\) 256.000 443.405i 0.0625000 0.108253i
\(65\) −218.902 + 38.5983i −0.0518110 + 0.00913569i
\(66\) 0 0
\(67\) 4070.77 1481.64i 0.906832 0.330060i 0.153845 0.988095i \(-0.450834\pi\)
0.752987 + 0.658035i \(0.228612\pi\)
\(68\) 258.194 + 709.383i 0.0558379 + 0.153413i
\(69\) 0 0
\(70\) 48.9463 + 277.588i 0.00998903 + 0.0566506i
\(71\) 3149.55 + 1818.39i 0.624787 + 0.360721i 0.778730 0.627359i \(-0.215864\pi\)
−0.153943 + 0.988080i \(0.549197\pi\)
\(72\) 0 0
\(73\) −1734.14 3003.62i −0.325416 0.563637i 0.656180 0.754604i \(-0.272171\pi\)
−0.981596 + 0.190967i \(0.938838\pi\)
\(74\) 1558.01 + 1856.77i 0.284516 + 0.339073i
\(75\) 0 0
\(76\) 84.6795 480.241i 0.0146606 0.0831443i
\(77\) −2397.26 + 2856.94i −0.404328 + 0.481859i
\(78\) 0 0
\(79\) −11221.9 4084.44i −1.79809 0.654452i −0.998549 0.0538429i \(-0.982853\pi\)
−0.799543 0.600609i \(-0.794925\pi\)
\(80\) 328.259i 0.0512905i
\(81\) 0 0
\(82\) −3180.04 −0.472939
\(83\) 2967.38 8152.82i 0.430742 1.18345i −0.514616 0.857421i \(-0.672065\pi\)
0.945358 0.326034i \(-0.105712\pi\)
\(84\) 0 0
\(85\) 370.763 + 311.107i 0.0513166 + 0.0430598i
\(86\) −2011.67 354.712i −0.271995 0.0479600i
\(87\) 0 0
\(88\) 3327.12 2791.79i 0.429639 0.360510i
\(89\) 6125.54 3536.58i 0.773329 0.446482i −0.0607317 0.998154i \(-0.519343\pi\)
0.834061 + 0.551672i \(0.186010\pi\)
\(90\) 0 0
\(91\) 421.016 729.220i 0.0508412 0.0880595i
\(92\) 8010.07 1412.39i 0.946370 0.166871i
\(93\) 0 0
\(94\) −2860.46 + 1041.12i −0.323728 + 0.117827i
\(95\) −106.932 293.793i −0.0118484 0.0325532i
\(96\) 0 0
\(97\) −2526.36 14327.7i −0.268504 1.52276i −0.758867 0.651245i \(-0.774247\pi\)
0.490363 0.871518i \(-0.336864\pi\)
\(98\) 4956.50 + 2861.64i 0.516088 + 0.297963i
\(99\) 0 0
\(100\) 2394.77 + 4147.87i 0.239477 + 0.414787i
\(101\) −11066.1 13188.1i −1.08481 1.29282i −0.953471 0.301483i \(-0.902518\pi\)
−0.131335 0.991338i \(-0.541926\pi\)
\(102\) 0 0
\(103\) 2077.68 11783.1i 0.195842 1.11067i −0.715373 0.698742i \(-0.753743\pi\)
0.911215 0.411931i \(-0.135146\pi\)
\(104\) −630.323 + 751.190i −0.0582769 + 0.0694517i
\(105\) 0 0
\(106\) −238.617 86.8494i −0.0212368 0.00772956i
\(107\) 12927.3i 1.12912i 0.825392 + 0.564560i \(0.190954\pi\)
−0.825392 + 0.564560i \(0.809046\pi\)
\(108\) 0 0
\(109\) −16523.4 −1.39074 −0.695370 0.718652i \(-0.744760\pi\)
−0.695370 + 0.718652i \(0.744760\pi\)
\(110\) 952.387 2616.66i 0.0787097 0.216253i
\(111\) 0 0
\(112\) 952.580 + 799.309i 0.0759391 + 0.0637205i
\(113\) 14173.4 + 2499.15i 1.10999 + 0.195720i 0.698440 0.715669i \(-0.253878\pi\)
0.411546 + 0.911389i \(0.364989\pi\)
\(114\) 0 0
\(115\) 3994.72 3351.97i 0.302058 0.253457i
\(116\) 4434.43 2560.22i 0.329550 0.190266i
\(117\) 0 0
\(118\) −7145.68 + 12376.7i −0.513192 + 0.888874i
\(119\) −1805.61 + 318.378i −0.127506 + 0.0224827i
\(120\) 0 0
\(121\) 20863.5 7593.68i 1.42500 0.518658i
\(122\) −1433.55 3938.64i −0.0963146 0.264622i
\(123\) 0 0
\(124\) −1239.44 7029.20i −0.0806086 0.457154i
\(125\) 5435.51 + 3138.19i 0.347872 + 0.200844i
\(126\) 0 0
\(127\) 6724.74 + 11647.6i 0.416935 + 0.722152i 0.995629 0.0933921i \(-0.0297710\pi\)
−0.578695 + 0.815544i \(0.696438\pi\)
\(128\) −930.856 1109.35i −0.0568149 0.0677094i
\(129\) 0 0
\(130\) −109.172 + 619.147i −0.00645991 + 0.0366359i
\(131\) −16647.4 + 19839.6i −0.970072 + 1.15609i 0.0176471 + 0.999844i \(0.494382\pi\)
−0.987719 + 0.156242i \(0.950062\pi\)
\(132\) 0 0
\(133\) 1112.94 + 405.077i 0.0629170 + 0.0228999i
\(134\) 12252.8i 0.682379i
\(135\) 0 0
\(136\) 2135.21 0.115442
\(137\) 8654.72 23778.6i 0.461118 1.26691i −0.463528 0.886082i \(-0.653417\pi\)
0.924646 0.380828i \(-0.124361\pi\)
\(138\) 0 0
\(139\) 26198.3 + 21983.0i 1.35595 + 1.13778i 0.977210 + 0.212275i \(0.0680874\pi\)
0.378741 + 0.925503i \(0.376357\pi\)
\(140\) 785.138 + 138.441i 0.0400580 + 0.00706331i
\(141\) 0 0
\(142\) 7879.84 6611.97i 0.390787 0.327910i
\(143\) −7203.96 + 4159.21i −0.352289 + 0.203394i
\(144\) 0 0
\(145\) 1641.44 2843.05i 0.0780707 0.135222i
\(146\) −9660.75 + 1703.45i −0.453216 + 0.0799142i
\(147\) 0 0
\(148\) 6442.20 2344.77i 0.294111 0.107047i
\(149\) −4494.89 12349.6i −0.202464 0.556264i 0.796357 0.604827i \(-0.206758\pi\)
−0.998820 + 0.0485634i \(0.984536\pi\)
\(150\) 0 0
\(151\) 5012.65 + 28428.1i 0.219843 + 1.24679i 0.872301 + 0.488969i \(0.162627\pi\)
−0.652458 + 0.757825i \(0.726262\pi\)
\(152\) −1194.49 689.641i −0.0517007 0.0298494i
\(153\) 0 0
\(154\) 5274.27 + 9135.31i 0.222393 + 0.385196i
\(155\) −2941.50 3505.54i −0.122435 0.145912i
\(156\) 0 0
\(157\) −1270.57 + 7205.76i −0.0515465 + 0.292335i −0.999673 0.0255575i \(-0.991864\pi\)
0.948127 + 0.317892i \(0.102975\pi\)
\(158\) −21711.6 + 25874.9i −0.869718 + 1.03649i
\(159\) 0 0
\(160\) −872.464 317.551i −0.0340806 0.0124043i
\(161\) 19754.3i 0.762098i
\(162\) 0 0
\(163\) −52617.9 −1.98042 −0.990212 0.139569i \(-0.955428\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(164\) −3076.31 + 8452.08i −0.114378 + 0.314251i
\(165\) 0 0
\(166\) −18798.4 15773.7i −0.682189 0.572425i
\(167\) 41405.7 + 7300.95i 1.48466 + 0.261786i 0.856439 0.516247i \(-0.172672\pi\)
0.628223 + 0.778033i \(0.283783\pi\)
\(168\) 0 0
\(169\) −20440.3 + 17151.4i −0.715671 + 0.600519i
\(170\) 1185.54 684.474i 0.0410223 0.0236842i
\(171\) 0 0
\(172\) −2888.82 + 5003.59i −0.0976482 + 0.169132i
\(173\) −18571.5 + 3274.65i −0.620518 + 0.109414i −0.475064 0.879951i \(-0.657575\pi\)
−0.145453 + 0.989365i \(0.546464\pi\)
\(174\) 0 0
\(175\) −10930.9 + 3978.53i −0.356928 + 0.129911i
\(176\) −4201.57 11543.7i −0.135640 0.372667i
\(177\) 0 0
\(178\) −3473.99 19702.0i −0.109645 0.621828i
\(179\) 14984.3 + 8651.18i 0.467660 + 0.270004i 0.715260 0.698859i \(-0.246308\pi\)
−0.247600 + 0.968862i \(0.579642\pi\)
\(180\) 0 0
\(181\) 18983.5 + 32880.4i 0.579454 + 1.00364i 0.995542 + 0.0943190i \(0.0300674\pi\)
−0.416088 + 0.909324i \(0.636599\pi\)
\(182\) −1530.88 1824.43i −0.0462166 0.0550788i
\(183\) 0 0
\(184\) 3994.85 22655.9i 0.117995 0.669185i
\(185\) 2825.29 3367.05i 0.0825504 0.0983798i
\(186\) 0 0
\(187\) 17020.4 + 6194.94i 0.486730 + 0.177155i
\(188\) 8609.84i 0.243601i
\(189\) 0 0
\(190\) −884.301 −0.0244959
\(191\) −1933.88 + 5313.30i −0.0530107 + 0.145646i −0.963372 0.268169i \(-0.913582\pi\)
0.910361 + 0.413814i \(0.135804\pi\)
\(192\) 0 0
\(193\) −8102.16 6798.52i −0.217514 0.182516i 0.527520 0.849543i \(-0.323122\pi\)
−0.745033 + 0.667027i \(0.767566\pi\)
\(194\) −40524.8 7145.62i −1.07676 0.189861i
\(195\) 0 0
\(196\) 12400.6 10405.4i 0.322799 0.270860i
\(197\) −38607.4 + 22290.0i −0.994806 + 0.574351i −0.906707 0.421760i \(-0.861412\pi\)
−0.0880985 + 0.996112i \(0.528079\pi\)
\(198\) 0 0
\(199\) 15060.1 26084.8i 0.380296 0.658691i −0.610809 0.791778i \(-0.709156\pi\)
0.991104 + 0.133087i \(0.0424889\pi\)
\(200\) 13341.1 2352.39i 0.333527 0.0588097i
\(201\) 0 0
\(202\) −45757.1 + 16654.2i −1.12139 + 0.408151i
\(203\) 4253.40 + 11686.1i 0.103215 + 0.283582i
\(204\) 0 0
\(205\) 1001.37 + 5679.06i 0.0238280 + 0.135135i
\(206\) −29307.9 16920.9i −0.690638 0.398740i
\(207\) 0 0
\(208\) 1386.79 + 2401.99i 0.0320541 + 0.0555194i
\(209\) −7520.83 8962.97i −0.172176 0.205192i
\(210\) 0 0
\(211\) −8324.85 + 47212.6i −0.186987 + 1.06046i 0.736389 + 0.676559i \(0.236530\pi\)
−0.923376 + 0.383898i \(0.874582\pi\)
\(212\) −461.666 + 550.192i −0.0102720 + 0.0122417i
\(213\) 0 0
\(214\) 34358.8 + 12505.6i 0.750258 + 0.273072i
\(215\) 3704.23i 0.0801348i
\(216\) 0 0
\(217\) 17335.3 0.368140
\(218\) −15984.4 + 43916.7i −0.336343 + 0.924095i
\(219\) 0 0
\(220\) −6033.38 5062.61i −0.124657 0.104599i
\(221\) −4027.33 710.127i −0.0824580 0.0145396i
\(222\) 0 0
\(223\) −61595.1 + 51684.4i −1.23861 + 1.03932i −0.240983 + 0.970529i \(0.577470\pi\)
−0.997631 + 0.0687916i \(0.978086\pi\)
\(224\) 3045.95 1758.58i 0.0607054 0.0350483i
\(225\) 0 0
\(226\) 20353.4 35253.2i 0.398493 0.690210i
\(227\) 5901.07 1040.52i 0.114519 0.0201928i −0.116095 0.993238i \(-0.537038\pi\)
0.230614 + 0.973045i \(0.425927\pi\)
\(228\) 0 0
\(229\) 56374.2 20518.5i 1.07500 0.391269i 0.256958 0.966423i \(-0.417280\pi\)
0.818046 + 0.575153i \(0.195058\pi\)
\(230\) −5044.62 13860.0i −0.0953615 0.262004i
\(231\) 0 0
\(232\) −2514.91 14262.8i −0.0467247 0.264989i
\(233\) −17362.4 10024.2i −0.319814 0.184645i 0.331495 0.943457i \(-0.392447\pi\)
−0.651310 + 0.758812i \(0.725780\pi\)
\(234\) 0 0
\(235\) 2760.02 + 4780.49i 0.0499777 + 0.0865639i
\(236\) 25982.8 + 30965.1i 0.466511 + 0.555966i
\(237\) 0 0
\(238\) −900.508 + 5107.04i −0.0158977 + 0.0901602i
\(239\) 40024.8 47699.7i 0.700701 0.835063i −0.291904 0.956448i \(-0.594289\pi\)
0.992606 + 0.121384i \(0.0387333\pi\)
\(240\) 0 0
\(241\) −14083.9 5126.12i −0.242487 0.0882581i 0.217918 0.975967i \(-0.430074\pi\)
−0.460405 + 0.887709i \(0.652296\pi\)
\(242\) 62798.0i 1.07230i
\(243\) 0 0
\(244\) −11855.1 −0.199125
\(245\) 3549.67 9752.65i 0.0591366 0.162476i
\(246\) 0 0
\(247\) 2023.64 + 1698.03i 0.0331695 + 0.0278325i
\(248\) −19881.6 3505.66i −0.323257 0.0569989i
\(249\) 0 0
\(250\) 13599.0 11411.0i 0.217585 0.182575i
\(251\) 14479.0 8359.45i 0.229822 0.132688i −0.380668 0.924712i \(-0.624306\pi\)
0.610490 + 0.792024i \(0.290973\pi\)
\(252\) 0 0
\(253\) 97576.5 169007.i 1.52442 2.64037i
\(254\) 37463.0 6605.73i 0.580677 0.102389i
\(255\) 0 0
\(256\) −3848.98 + 1400.91i −0.0587308 + 0.0213763i
\(257\) −6547.79 17989.9i −0.0991353 0.272372i 0.880204 0.474595i \(-0.157406\pi\)
−0.979339 + 0.202223i \(0.935183\pi\)
\(258\) 0 0
\(259\) 2891.32 + 16397.5i 0.0431019 + 0.244443i
\(260\) 1539.99 + 889.114i 0.0227809 + 0.0131526i
\(261\) 0 0
\(262\) 36626.4 + 63438.7i 0.533570 + 0.924170i
\(263\) 81090.1 + 96639.4i 1.17235 + 1.39715i 0.900526 + 0.434802i \(0.143182\pi\)
0.271822 + 0.962348i \(0.412374\pi\)
\(264\) 0 0
\(265\) −79.9608 + 453.480i −0.00113864 + 0.00645753i
\(266\) 2153.27 2566.16i 0.0304323 0.0362678i
\(267\) 0 0
\(268\) −32566.1 11853.1i −0.453416 0.165030i
\(269\) 42480.3i 0.587061i −0.955950 0.293530i \(-0.905170\pi\)
0.955950 0.293530i \(-0.0948302\pi\)
\(270\) 0 0
\(271\) −30849.7 −0.420061 −0.210030 0.977695i \(-0.567356\pi\)
−0.210030 + 0.977695i \(0.567356\pi\)
\(272\) 2065.56 5675.07i 0.0279189 0.0767067i
\(273\) 0 0
\(274\) −54827.7 46005.9i −0.730296 0.612791i
\(275\) 113171. + 19955.1i 1.49648 + 0.263869i
\(276\) 0 0
\(277\) 59458.8 49891.9i 0.774920 0.650235i −0.167044 0.985949i \(-0.553422\pi\)
0.941964 + 0.335715i \(0.108978\pi\)
\(278\) 83771.3 48365.4i 1.08394 0.625814i
\(279\) 0 0
\(280\) 1127.48 1952.85i 0.0143811 0.0249089i
\(281\) −46919.7 + 8273.21i −0.594214 + 0.104776i −0.462664 0.886534i \(-0.653106\pi\)
−0.131550 + 0.991310i \(0.541995\pi\)
\(282\) 0 0
\(283\) −118630. + 43177.6i −1.48122 + 0.539121i −0.951122 0.308815i \(-0.900068\pi\)
−0.530100 + 0.847935i \(0.677845\pi\)
\(284\) −9950.84 27339.7i −0.123374 0.338967i
\(285\) 0 0
\(286\) 4085.60 + 23170.6i 0.0499487 + 0.283273i
\(287\) −18918.5 10922.6i −0.229679 0.132606i
\(288\) 0 0
\(289\) −37308.2 64619.8i −0.446693 0.773695i
\(290\) −5968.52 7113.00i −0.0709693 0.0845779i
\(291\) 0 0
\(292\) −4818.09 + 27324.7i −0.0565079 + 0.320472i
\(293\) 68264.2 81354.1i 0.795166 0.947642i −0.204346 0.978899i \(-0.565507\pi\)
0.999511 + 0.0312571i \(0.00995107\pi\)
\(294\) 0 0
\(295\) 24352.9 + 8863.74i 0.279838 + 0.101853i
\(296\) 19390.7i 0.221314i
\(297\) 0 0
\(298\) −37171.7 −0.418582
\(299\) −15069.8 + 41403.9i −0.168564 + 0.463126i
\(300\) 0 0
\(301\) −10749.4 9019.78i −0.118645 0.0995550i
\(302\) 80406.9 + 14177.9i 0.881616 + 0.155453i
\(303\) 0 0
\(304\) −2988.49 + 2507.64i −0.0323374 + 0.0271343i
\(305\) −6582.38 + 3800.34i −0.0707592 + 0.0408529i
\(306\) 0 0
\(307\) 36118.3 62558.7i 0.383222 0.663759i −0.608299 0.793708i \(-0.708148\pi\)
0.991521 + 0.129948i \(0.0414812\pi\)
\(308\) 29382.5 5180.93i 0.309733 0.0546143i
\(309\) 0 0
\(310\) −12162.8 + 4426.88i −0.126564 + 0.0460654i
\(311\) −17413.8 47844.0i −0.180041 0.494660i 0.816539 0.577291i \(-0.195890\pi\)
−0.996580 + 0.0826308i \(0.973668\pi\)
\(312\) 0 0
\(313\) −200.530 1137.26i −0.00204688 0.0116084i 0.983767 0.179449i \(-0.0574316\pi\)
−0.985814 + 0.167841i \(0.946320\pi\)
\(314\) 17922.7 + 10347.7i 0.181779 + 0.104950i
\(315\) 0 0
\(316\) 47768.4 + 82737.2i 0.478372 + 0.828565i
\(317\) −33975.0 40489.8i −0.338097 0.402928i 0.570030 0.821624i \(-0.306932\pi\)
−0.908126 + 0.418696i \(0.862487\pi\)
\(318\) 0 0
\(319\) 21333.8 120990.i 0.209646 1.18896i
\(320\) −1688.01 + 2011.69i −0.0164844 + 0.0196454i
\(321\) 0 0
\(322\) 52504.1 + 19109.9i 0.506386 + 0.184309i
\(323\) 5752.06i 0.0551338i
\(324\) 0 0
\(325\) −25945.7 −0.245639
\(326\) −50901.5 + 139851.i −0.478955 + 1.31592i
\(327\) 0 0
\(328\) 19488.4 + 16352.7i 0.181146 + 0.152000i
\(329\) −20593.2 3631.14i −0.190253 0.0335468i
\(330\) 0 0
\(331\) −77485.3 + 65017.9i −0.707235 + 0.593440i −0.923822 0.382823i \(-0.874952\pi\)
0.216587 + 0.976263i \(0.430507\pi\)
\(332\) −60109.4 + 34704.2i −0.545339 + 0.314852i
\(333\) 0 0
\(334\) 59459.9 102988.i 0.533005 0.923192i
\(335\) −21881.6 + 3858.31i −0.194980 + 0.0343802i
\(336\) 0 0
\(337\) −36057.9 + 13124.0i −0.317498 + 0.115560i −0.495853 0.868406i \(-0.665145\pi\)
0.178355 + 0.983966i \(0.442922\pi\)
\(338\) 25812.5 + 70919.2i 0.225942 + 0.620769i
\(339\) 0 0
\(340\) −672.361 3813.15i −0.00581627 0.0329857i
\(341\) −148312. 85627.7i −1.27546 0.736386i
\(342\) 0 0
\(343\) 42983.3 + 74449.3i 0.365352 + 0.632809i
\(344\) 10504.2 + 12518.4i 0.0887660 + 0.105787i
\(345\) 0 0
\(346\) −9262.12 + 52528.1i −0.0773674 + 0.438772i
\(347\) −75783.0 + 90314.6i −0.629379 + 0.750065i −0.982653 0.185455i \(-0.940624\pi\)
0.353273 + 0.935520i \(0.385069\pi\)
\(348\) 0 0
\(349\) −18625.5 6779.12i −0.152917 0.0556573i 0.264427 0.964406i \(-0.414817\pi\)
−0.417345 + 0.908748i \(0.637039\pi\)
\(350\) 32901.6i 0.268584i
\(351\) 0 0
\(352\) −34746.0 −0.280427
\(353\) −4271.08 + 11734.7i −0.0342759 + 0.0941722i −0.955650 0.294504i \(-0.904845\pi\)
0.921374 + 0.388677i \(0.127068\pi\)
\(354\) 0 0
\(355\) −14289.2 11990.1i −0.113384 0.0951406i
\(356\) −55725.7 9825.94i −0.439699 0.0775308i
\(357\) 0 0
\(358\) 37489.1 31457.1i 0.292508 0.245444i
\(359\) −97479.4 + 56279.7i −0.756352 + 0.436680i −0.827984 0.560751i \(-0.810512\pi\)
0.0716326 + 0.997431i \(0.477179\pi\)
\(360\) 0 0
\(361\) 63302.7 109643.i 0.485744 0.841334i
\(362\) 105755. 18647.5i 0.807022 0.142300i
\(363\) 0 0
\(364\) −6330.00 + 2303.93i −0.0477751 + 0.0173887i
\(365\) 6084.20 + 16716.2i 0.0456686 + 0.125473i
\(366\) 0 0
\(367\) 25811.4 + 146384.i 0.191637 + 1.08683i 0.917127 + 0.398595i \(0.130502\pi\)
−0.725490 + 0.688232i \(0.758387\pi\)
\(368\) −56351.5 32534.6i −0.416112 0.240242i
\(369\) 0 0
\(370\) −6215.99 10766.4i −0.0454053 0.0786443i
\(371\) −1121.26 1336.26i −0.00814624 0.00970831i
\(372\) 0 0
\(373\) −10264.1 + 58210.6i −0.0737740 + 0.418393i 0.925445 + 0.378882i \(0.123691\pi\)
−0.999219 + 0.0395114i \(0.987420\pi\)
\(374\) 32930.4 39245.0i 0.235426 0.280570i
\(375\) 0 0
\(376\) 22883.7 + 8328.98i 0.161864 + 0.0589137i
\(377\) 27738.2i 0.195162i
\(378\) 0 0
\(379\) −209594. −1.45915 −0.729576 0.683900i \(-0.760282\pi\)
−0.729576 + 0.683900i \(0.760282\pi\)
\(380\) −855.454 + 2350.34i −0.00592420 + 0.0162766i
\(381\) 0 0
\(382\) 12251.2 + 10279.9i 0.0839558 + 0.0704473i
\(383\) −161840. 28536.8i −1.10329 0.194540i −0.407796 0.913073i \(-0.633703\pi\)
−0.695493 + 0.718533i \(0.744814\pi\)
\(384\) 0 0
\(385\) 14653.4 12295.7i 0.0988592 0.0829527i
\(386\) −25907.3 + 14957.6i −0.173879 + 0.100389i
\(387\) 0 0
\(388\) −58194.8 + 100796.i −0.386564 + 0.669548i
\(389\) −175561. + 30956.1i −1.16019 + 0.204572i −0.720419 0.693540i \(-0.756050\pi\)
−0.439768 + 0.898112i \(0.644939\pi\)
\(390\) 0 0
\(391\) 90154.2 32813.5i 0.589702 0.214634i
\(392\) −15659.8 43025.0i −0.101909 0.279994i
\(393\) 0 0
\(394\) 21895.5 + 124176.i 0.141047 + 0.799916i
\(395\) 53045.4 + 30625.8i 0.339980 + 0.196288i
\(396\) 0 0
\(397\) 120672. + 209010.i 0.765642 + 1.32613i 0.939907 + 0.341432i \(0.110912\pi\)
−0.174265 + 0.984699i \(0.555755\pi\)
\(398\) −54760.8 65261.4i −0.345704 0.411993i
\(399\) 0 0
\(400\) 6653.56 37734.2i 0.0415848 0.235839i
\(401\) 107640. 128280.i 0.669399 0.797759i −0.319303 0.947653i \(-0.603449\pi\)
0.988702 + 0.149894i \(0.0478933\pi\)
\(402\) 0 0
\(403\) 36333.8 + 13224.4i 0.223718 + 0.0814267i
\(404\) 137726.i 0.843829i
\(405\) 0 0
\(406\) 35174.6 0.213392
\(407\) 56258.7 154570.i 0.339626 0.933115i
\(408\) 0 0
\(409\) −73785.3 61913.3i −0.441086 0.370115i 0.395029 0.918668i \(-0.370734\pi\)
−0.836116 + 0.548553i \(0.815179\pi\)
\(410\) 16062.8 + 2832.31i 0.0955550 + 0.0168489i
\(411\) 0 0
\(412\) −73325.2 + 61527.2i −0.431975 + 0.362470i
\(413\) −85021.1 + 49087.0i −0.498456 + 0.287784i
\(414\) 0 0
\(415\) −22250.0 + 38538.0i −0.129191 + 0.223766i
\(416\) 7725.69 1362.25i 0.0446427 0.00787171i
\(417\) 0 0
\(418\) −31097.7 + 11318.7i −0.177982 + 0.0647802i
\(419\) 83738.8 + 230070.i 0.476978 + 1.31049i 0.912046 + 0.410089i \(0.134502\pi\)
−0.435067 + 0.900398i \(0.643275\pi\)
\(420\) 0 0
\(421\) 1058.47 + 6002.86i 0.00597191 + 0.0338684i 0.987648 0.156688i \(-0.0500818\pi\)
−0.981676 + 0.190557i \(0.938971\pi\)
\(422\) 117431. + 67798.7i 0.659412 + 0.380712i
\(423\) 0 0
\(424\) 1015.72 + 1759.28i 0.00564993 + 0.00978597i
\(425\) 36314.2 + 43277.6i 0.201048 + 0.239599i
\(426\) 0 0
\(427\) 4999.80 28355.3i 0.0274219 0.155517i
\(428\) 66476.0 79223.0i 0.362892 0.432478i
\(429\) 0 0
\(430\) 9845.30 + 3583.40i 0.0532466 + 0.0193802i
\(431\) 72233.2i 0.388850i 0.980917 + 0.194425i \(0.0622841\pi\)
−0.980917 + 0.194425i \(0.937716\pi\)
\(432\) 0 0
\(433\) −160967. −0.858542 −0.429271 0.903176i \(-0.641229\pi\)
−0.429271 + 0.903176i \(0.641229\pi\)
\(434\) 16769.8 46074.7i 0.0890326 0.244615i
\(435\) 0 0
\(436\) 101261. + 84968.2i 0.532684 + 0.446975i
\(437\) −61033.0 10761.8i −0.319596 0.0563535i
\(438\) 0 0
\(439\) 178670. 149922.i 0.927093 0.777924i −0.0482000 0.998838i \(-0.515348\pi\)
0.975293 + 0.220914i \(0.0709040\pi\)
\(440\) −19292.2 + 11138.4i −0.0996500 + 0.0575329i
\(441\) 0 0
\(442\) −5783.37 + 10017.1i −0.0296030 + 0.0512740i
\(443\) −34326.5 + 6052.68i −0.174913 + 0.0308418i −0.260418 0.965496i \(-0.583861\pi\)
0.0855057 + 0.996338i \(0.472749\pi\)
\(444\) 0 0
\(445\) −34090.8 + 12408.0i −0.172154 + 0.0626588i
\(446\) 77783.7 + 213709.i 0.391038 + 1.07437i
\(447\) 0 0
\(448\) −1727.46 9796.90i −0.00860700 0.0488127i
\(449\) 119602. + 69052.5i 0.593263 + 0.342521i 0.766387 0.642379i \(-0.222053\pi\)
−0.173123 + 0.984900i \(0.555386\pi\)
\(450\) 0 0
\(451\) 107904. + 186895.i 0.530499 + 0.918852i
\(452\) −74008.3 88199.6i −0.362246 0.431708i
\(453\) 0 0
\(454\) 2943.03 16690.7i 0.0142785 0.0809774i
\(455\) −2776.08 + 3308.41i −0.0134094 + 0.0159807i
\(456\) 0 0
\(457\) −53409.5 19439.5i −0.255733 0.0930790i 0.210973 0.977492i \(-0.432337\pi\)
−0.466705 + 0.884413i \(0.654559\pi\)
\(458\) 169684.i 0.808926i
\(459\) 0 0
\(460\) −41717.9 −0.197154
\(461\) 89999.7 247272.i 0.423486 1.16352i −0.526212 0.850353i \(-0.676388\pi\)
0.949698 0.313166i \(-0.101390\pi\)
\(462\) 0 0
\(463\) 63765.2 + 53505.3i 0.297455 + 0.249595i 0.779284 0.626671i \(-0.215583\pi\)
−0.481829 + 0.876265i \(0.660027\pi\)
\(464\) −40341.2 7113.24i −0.187375 0.0330393i
\(465\) 0 0
\(466\) −43438.8 + 36449.5i −0.200035 + 0.167849i
\(467\) 151774. 87626.6i 0.695926 0.401793i −0.109902 0.993942i \(-0.535054\pi\)
0.805828 + 0.592150i \(0.201721\pi\)
\(468\) 0 0
\(469\) 42085.1 72893.4i 0.191330 0.331393i
\(470\) 15375.8 2711.17i 0.0696054 0.0122733i
\(471\) 0 0
\(472\) 107436. 39103.5i 0.482242 0.175522i
\(473\) 47412.5 + 130265.i 0.211919 + 0.582244i
\(474\) 0 0
\(475\) −6337.13 35939.6i −0.0280870 0.159289i
\(476\) 12702.6 + 7333.86i 0.0560634 + 0.0323682i
\(477\) 0 0
\(478\) −88059.5 152524.i −0.385408 0.667546i
\(479\) 139259. + 165962.i 0.606949 + 0.723334i 0.978768 0.204971i \(-0.0657101\pi\)
−0.371819 + 0.928305i \(0.621266\pi\)
\(480\) 0 0
\(481\) −6448.95 + 36573.8i −0.0278740 + 0.158081i
\(482\) −27248.9 + 32474.0i −0.117289 + 0.139779i
\(483\) 0 0
\(484\) −166908. 60749.4i −0.712501 0.259329i
\(485\) 74621.1i 0.317233i
\(486\) 0 0
\(487\) −129523. −0.546122 −0.273061 0.961997i \(-0.588036\pi\)
−0.273061 + 0.961997i \(0.588036\pi\)
\(488\) −11468.4 + 31509.1i −0.0481573 + 0.132311i
\(489\) 0 0
\(490\) −22487.2 18869.0i −0.0936577 0.0785882i
\(491\) −346984. 61182.7i −1.43928 0.253785i −0.601101 0.799173i \(-0.705271\pi\)
−0.838184 + 0.545388i \(0.816382\pi\)
\(492\) 0 0
\(493\) 46267.5 38823.0i 0.190363 0.159733i
\(494\) 6470.75 3735.89i 0.0265155 0.0153088i
\(495\) 0 0
\(496\) −28550.5 + 49451.0i −0.116052 + 0.201007i
\(497\) 69588.4 12270.3i 0.281724 0.0496756i
\(498\) 0 0
\(499\) 219353. 79838.1i 0.880934 0.320634i 0.138347 0.990384i \(-0.455821\pi\)
0.742587 + 0.669750i \(0.233599\pi\)
\(500\) −17173.2 47183.0i −0.0686928 0.188732i
\(501\) 0 0
\(502\) −8211.51 46569.8i −0.0325848 0.184798i
\(503\) −5161.57 2980.04i −0.0204008 0.0117784i 0.489765 0.871855i \(-0.337083\pi\)
−0.510166 + 0.860076i \(0.670416\pi\)
\(504\) 0 0
\(505\) 44150.4 + 76470.7i 0.173122 + 0.299856i
\(506\) −354803. 422838.i −1.38576 1.65148i
\(507\) 0 0
\(508\) 18683.8 105961.i 0.0724000 0.410601i
\(509\) −30884.6 + 36806.9i −0.119208 + 0.142067i −0.822348 0.568985i \(-0.807336\pi\)
0.703140 + 0.711052i \(0.251781\pi\)
\(510\) 0 0
\(511\) −63323.9 23048.0i −0.242508 0.0882657i
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) −54148.7 −0.204956
\(515\) −20989.3 + 57667.6i −0.0791377 + 0.217429i
\(516\) 0 0
\(517\) 158248. + 132786.i 0.592050 + 0.496789i
\(518\) 46379.1 + 8177.88i 0.172847 + 0.0304776i
\(519\) 0 0
\(520\) 3852.89 3232.96i 0.0142489 0.0119562i
\(521\) 288557. 166598.i 1.06305 0.613755i 0.136779 0.990602i \(-0.456325\pi\)
0.926276 + 0.376847i \(0.122992\pi\)
\(522\) 0 0
\(523\) −127621. + 221045.i −0.466571 + 0.808124i −0.999271 0.0381799i \(-0.987844\pi\)
0.532700 + 0.846304i \(0.321177\pi\)
\(524\) 204042. 35978.2i 0.743118 0.131032i
\(525\) 0 0
\(526\) 335298. 122039.i 1.21188 0.441088i
\(527\) −28795.3 79114.4i −0.103681 0.284862i
\(528\) 0 0
\(529\) −130904. 742396.i −0.467782 2.65292i
\(530\) 1127.93 + 651.211i 0.00401542 + 0.00231830i
\(531\) 0 0
\(532\) −4737.46 8205.52i −0.0167387 0.0289923i
\(533\) −31319.6 37325.2i −0.110246 0.131386i
\(534\) 0 0
\(535\) 11513.7 65297.4i 0.0402260 0.228133i
\(536\) −63007.6 + 75089.5i −0.219312 + 0.261366i
\(537\) 0 0
\(538\) −112906. 41094.6i −0.390080 0.141978i
\(539\) 388401.i 1.33691i
\(540\) 0 0
\(541\) 34518.5 0.117939 0.0589695 0.998260i \(-0.481219\pi\)
0.0589695 + 0.998260i \(0.481219\pi\)
\(542\) −29843.3 + 81993.8i −0.101589 + 0.279115i
\(543\) 0 0
\(544\) −13085.3 10979.9i −0.0442167 0.0371022i
\(545\) 83461.7 + 14716.6i 0.280992 + 0.0495465i
\(546\) 0 0
\(547\) 180274. 151268.i 0.602501 0.505559i −0.289747 0.957103i \(-0.593571\pi\)
0.892249 + 0.451544i \(0.149127\pi\)
\(548\) −175316. + 101219.i −0.583796 + 0.337055i
\(549\) 0 0
\(550\) 162517. 281488.i 0.537247 0.930539i
\(551\) −38422.6 + 6774.94i −0.126556 + 0.0223153i
\(552\) 0 0
\(553\) −218039. + 79359.6i −0.712990 + 0.259507i
\(554\) −75086.0 206297.i −0.244647 0.672161i
\(555\) 0 0
\(556\) −47509.4 269439.i −0.153685 0.871589i
\(557\) 416788. + 240633.i 1.34340 + 0.775612i 0.987305 0.158838i \(-0.0507747\pi\)
0.356095 + 0.934450i \(0.384108\pi\)
\(558\) 0 0
\(559\) −15649.2 27105.2i −0.0500804 0.0867419i
\(560\) −4099.70 4885.83i −0.0130730 0.0155798i
\(561\) 0 0
\(562\) −23400.2 + 132709.i −0.0740877 + 0.420172i
\(563\) −240474. + 286585.i −0.758666 + 0.904143i −0.997763 0.0668529i \(-0.978704\pi\)
0.239097 + 0.970996i \(0.423149\pi\)
\(564\) 0 0
\(565\) −69365.8 25247.1i −0.217294 0.0790887i
\(566\) 357069.i 1.11460i
\(567\) 0 0
\(568\) −82291.2 −0.255068
\(569\) 151449. 416102.i 0.467779 1.28521i −0.451733 0.892153i \(-0.649194\pi\)
0.919513 0.393060i \(-0.128584\pi\)
\(570\) 0 0
\(571\) −199526. 167422.i −0.611967 0.513501i 0.283300 0.959031i \(-0.408571\pi\)
−0.895267 + 0.445530i \(0.853015\pi\)
\(572\) 65536.3 + 11555.8i 0.200304 + 0.0353190i
\(573\) 0 0
\(574\) −47331.9 + 39716.2i −0.143658 + 0.120544i
\(575\) 527145. 304347.i 1.59439 0.920521i
\(576\) 0 0
\(577\) −247397. + 428504.i −0.743093 + 1.28707i 0.207988 + 0.978131i \(0.433309\pi\)
−0.951081 + 0.308943i \(0.900025\pi\)
\(578\) −207841. + 36648.0i −0.622122 + 0.109697i
\(579\) 0 0
\(580\) −24679.1 + 8982.47i −0.0733624 + 0.0267017i
\(581\) −57655.6 158407.i −0.170800 0.469270i
\(582\) 0 0
\(583\) 2992.40 + 16970.8i 0.00880406 + 0.0499303i
\(584\) 67964.2 + 39239.1i 0.199276 + 0.115052i
\(585\) 0 0
\(586\) −150190. 260136.i −0.437366 0.757540i
\(587\) 354984. + 423054.i 1.03023 + 1.22778i 0.973333 + 0.229396i \(0.0736751\pi\)
0.0568935 + 0.998380i \(0.481880\pi\)
\(588\) 0 0
\(589\) −9443.93 + 53559.2i −0.0272221 + 0.154384i
\(590\) 47117.0 56151.9i 0.135355 0.161310i
\(591\) 0 0
\(592\) −51537.6 18758.1i −0.147055 0.0535237i
\(593\) 328016.i 0.932795i 0.884575 + 0.466398i \(0.154448\pi\)
−0.884575 + 0.466398i \(0.845552\pi\)
\(594\) 0 0
\(595\) 9403.93 0.0265629
\(596\) −35959.1 + 98796.9i −0.101232 + 0.278132i
\(597\) 0 0
\(598\) 95467.3 + 80106.6i 0.266964 + 0.224009i
\(599\) −57137.5 10074.9i −0.159246 0.0280793i 0.0934568 0.995623i \(-0.470208\pi\)
−0.252703 + 0.967544i \(0.581319\pi\)
\(600\) 0 0
\(601\) −389939. + 327197.i −1.07956 + 0.905860i −0.995884 0.0906334i \(-0.971111\pi\)
−0.0836770 + 0.996493i \(0.526666\pi\)
\(602\) −34371.9 + 19844.7i −0.0948443 + 0.0547584i
\(603\) 0 0
\(604\) 115467. 199994.i 0.316507 0.548206i
\(605\) −112147. + 19774.6i −0.306393 + 0.0540253i
\(606\) 0 0
\(607\) 341371. 124249.i 0.926508 0.337221i 0.165683 0.986179i \(-0.447017\pi\)
0.760825 + 0.648958i \(0.224795\pi\)
\(608\) 3773.94 + 10368.8i 0.0102091 + 0.0280493i
\(609\) 0 0
\(610\) 3733.08 + 21171.4i 0.0100325 + 0.0568969i
\(611\) −40392.1 23320.4i −0.108197 0.0624674i
\(612\) 0 0
\(613\) 239790. + 415328.i 0.638130 + 1.10527i 0.985843 + 0.167673i \(0.0536252\pi\)
−0.347712 + 0.937601i \(0.613041\pi\)
\(614\) −131332. 156515.i −0.348363 0.415163i
\(615\) 0 0
\(616\) 14653.9 83106.3i 0.0386181 0.219014i
\(617\) −150790. + 179704.i −0.396097 + 0.472049i −0.926826 0.375492i \(-0.877474\pi\)
0.530729 + 0.847542i \(0.321918\pi\)
\(618\) 0 0
\(619\) −16381.6 5962.41i −0.0427538 0.0155611i 0.320555 0.947230i \(-0.396131\pi\)
−0.363309 + 0.931669i \(0.618353\pi\)
\(620\) 36609.3i 0.0952375i
\(621\) 0 0
\(622\) −144008. −0.372225
\(623\) 47003.8 129142.i 0.121104 0.332729i
\(624\) 0 0
\(625\) 261980. + 219828.i 0.670670 + 0.562759i
\(626\) −3216.67 567.186i −0.00820839 0.00144736i
\(627\) 0 0
\(628\) 44840.7 37625.8i 0.113698 0.0954039i
\(629\) 70031.6 40432.8i 0.177008 0.102196i
\(630\) 0 0
\(631\) 651.357 1128.18i 0.00163591 0.00283348i −0.865206 0.501416i \(-0.832813\pi\)
0.866842 + 0.498583i \(0.166146\pi\)
\(632\) 266113. 46923.0i 0.666243 0.117477i
\(633\) 0 0
\(634\) −140483. + 51131.5i −0.349498 + 0.127207i
\(635\) −23593.6 64822.9i −0.0585122 0.160761i
\(636\) 0 0
\(637\) 15227.6 + 86359.9i 0.0375277 + 0.212830i
\(638\) −300935. 173745.i −0.739318 0.426845i
\(639\) 0 0
\(640\) 3713.83 + 6432.54i 0.00906697 + 0.0157044i
\(641\) 215844. + 257233.i 0.525321 + 0.626053i 0.961830 0.273647i \(-0.0882300\pi\)
−0.436510 + 0.899700i \(0.643786\pi\)
\(642\) 0 0
\(643\) −56802.7 + 322144.i −0.137387 + 0.779162i 0.835780 + 0.549064i \(0.185016\pi\)
−0.973167 + 0.230098i \(0.926095\pi\)
\(644\) 101583. 121062.i 0.244934 0.291900i
\(645\) 0 0
\(646\) −15288.1 5564.42i −0.0366344 0.0133338i
\(647\) 752100.i 1.79666i −0.439317 0.898332i \(-0.644779\pi\)
0.439317 0.898332i \(-0.355221\pi\)
\(648\) 0 0
\(649\) 969859. 2.30260
\(650\) −25099.3 + 68959.7i −0.0594066 + 0.163218i
\(651\) 0 0
\(652\) 322461. + 270577.i 0.758547 + 0.636496i
\(653\) −222492. 39231.3i −0.521781 0.0920040i −0.0934464 0.995624i \(-0.529788\pi\)
−0.428334 + 0.903620i \(0.640899\pi\)
\(654\) 0 0
\(655\) 101758. 85385.3i 0.237185 0.199022i
\(656\) 62315.9 35978.1i 0.144807 0.0836046i
\(657\) 0 0
\(658\) −29572.5 + 51221.0i −0.0683024 + 0.118303i
\(659\) 264436. 46627.3i 0.608906 0.107367i 0.139311 0.990249i \(-0.455511\pi\)
0.469595 + 0.882882i \(0.344400\pi\)
\(660\) 0 0
\(661\) −616713. + 224465.i −1.41150 + 0.513743i −0.931569 0.363565i \(-0.881559\pi\)
−0.479928 + 0.877308i \(0.659337\pi\)
\(662\) 97850.3 + 268842.i 0.223278 + 0.613452i
\(663\) 0 0
\(664\) 34090.0 + 193334.i 0.0773199 + 0.438503i
\(665\) −5260.82 3037.33i −0.0118962 0.00686830i
\(666\) 0 0
\(667\) −325373. 563563.i −0.731359 1.26675i
\(668\) −216205. 257664.i −0.484522 0.577431i
\(669\) 0 0
\(670\) −10913.0 + 61890.5i −0.0243104 + 0.137871i
\(671\) −182836. + 217896.i −0.406086 + 0.483954i
\(672\) 0 0
\(673\) 174713. + 63590.5i 0.385741 + 0.140398i 0.527609 0.849487i \(-0.323089\pi\)
−0.141868 + 0.989886i \(0.545311\pi\)
\(674\) 108532.i 0.238913i
\(675\) 0 0
\(676\) 213463. 0.467121
\(677\) −148682. + 408499.i −0.324399 + 0.891279i 0.665102 + 0.746753i \(0.268388\pi\)
−0.989501 + 0.144526i \(0.953834\pi\)
\(678\) 0 0
\(679\) −216544. 181702.i −0.469685 0.394112i
\(680\) −10785.2 1901.72i −0.0233244 0.00411272i
\(681\) 0 0
\(682\) −371059. + 311356.i −0.797765 + 0.669404i
\(683\) −566595. + 327124.i −1.21460 + 0.701247i −0.963757 0.266782i \(-0.914040\pi\)
−0.250838 + 0.968029i \(0.580706\pi\)
\(684\) 0 0
\(685\) −64894.6 + 112401.i −0.138302 + 0.239545i
\(686\) 239456. 42222.6i 0.508837 0.0897216i
\(687\) 0 0
\(688\) 43433.7 15808.6i 0.0917593 0.0333976i
\(689\) −1330.71 3656.09i −0.00280313 0.00770155i
\(690\) 0 0
\(691\) 39018.0 + 221282.i 0.0817163 + 0.463436i 0.998017 + 0.0629453i \(0.0200494\pi\)
−0.916301 + 0.400491i \(0.868840\pi\)
\(692\) 130652. + 75431.9i 0.272837 + 0.157523i
\(693\) 0 0
\(694\) 166732. + 288788.i 0.346178 + 0.599599i
\(695\) −112752. 134373.i −0.233429 0.278190i
\(696\) 0 0
\(697\) −18423.1 + 104483.i −0.0379226 + 0.215070i
\(698\) −36035.8 + 42945.8i −0.0739645 + 0.0881474i
\(699\) 0 0
\(700\) 87447.5 + 31828.3i 0.178464 + 0.0649557i
\(701\) 603832.i 1.22880i 0.788996 + 0.614399i \(0.210601\pi\)
−0.788996 + 0.614399i \(0.789399\pi\)
\(702\) 0 0
\(703\) −52236.8 −0.105698
\(704\) −33612.6 + 92349.8i −0.0678198 + 0.186333i
\(705\) 0 0
\(706\) 27057.4 + 22703.8i 0.0542845 + 0.0455501i
\(707\) −329417. 58085.1i −0.659033 0.116205i
\(708\) 0 0
\(709\) 354385. 297365.i 0.704991 0.591557i −0.218198 0.975905i \(-0.570018\pi\)
0.923189 + 0.384347i \(0.125573\pi\)
\(710\) −45691.0 + 26379.7i −0.0906388 + 0.0523303i
\(711\) 0 0
\(712\) −80023.7 + 138605.i −0.157855 + 0.273413i
\(713\) −893328. + 157518.i −1.75724 + 0.309849i
\(714\) 0 0
\(715\) 40092.5 14592.5i 0.0784244 0.0285442i
\(716\) −47342.1 130071.i −0.0923467 0.253720i
\(717\) 0 0
\(718\) 55283.7 + 313530.i 0.107238 + 0.608176i
\(719\) −328988. 189941.i −0.636389 0.367419i 0.146833 0.989161i \(-0.453092\pi\)
−0.783222 + 0.621742i \(0.786425\pi\)
\(720\) 0 0
\(721\) −116238. 201330.i −0.223602 0.387291i
\(722\) −230178. 274316.i −0.441560 0.526231i
\(723\) 0 0
\(724\) 52743.2 299121.i 0.100621 0.570650i
\(725\) 246314. 293545.i 0.468611 0.558469i
\(726\) 0 0
\(727\) 846871. + 308236.i 1.60232 + 0.583195i 0.979900 0.199491i \(-0.0639288\pi\)
0.622416 + 0.782686i \(0.286151\pi\)
\(728\) 19053.0i 0.0359501i
\(729\) 0 0
\(730\) 50314.9 0.0944171
\(731\) −23308.7 + 64040.1i −0.0436197 + 0.119844i
\(732\) 0 0
\(733\) −218418. 183275.i −0.406519 0.341110i 0.416488 0.909141i \(-0.363261\pi\)
−0.823007 + 0.568031i \(0.807705\pi\)
\(734\) 414036. + 73005.6i 0.768503 + 0.135508i
\(735\) 0 0
\(736\) −140985. + 118301.i −0.260267 + 0.218390i
\(737\) −720114. + 415758.i −1.32576 + 0.765430i
\(738\) 0 0
\(739\) −274476. + 475407.i −0.502593 + 0.870516i 0.497403 + 0.867520i \(0.334287\pi\)
−0.999996 + 0.00299630i \(0.999046\pi\)
\(740\) −34628.7 + 6105.98i −0.0632373 + 0.0111504i
\(741\) 0 0
\(742\) −4636.26 + 1687.46i −0.00842094 + 0.00306497i
\(743\) −109924. 302013.i −0.199120 0.547077i 0.799439 0.600747i \(-0.205130\pi\)
−0.998559 + 0.0536701i \(0.982908\pi\)
\(744\) 0 0
\(745\) 11705.1 + 66382.9i 0.0210893 + 0.119603i
\(746\) 144786. + 83592.2i 0.260165 + 0.150206i
\(747\) 0 0
\(748\) −72451.1 125489.i −0.129492 0.224286i
\(749\) 161452. + 192410.i 0.287792 + 0.342977i
\(750\) 0 0
\(751\) 78371.5 444467.i 0.138956 0.788060i −0.833066 0.553173i \(-0.813417\pi\)
0.972023 0.234887i \(-0.0754721\pi\)
\(752\) 44274.4 52764.2i 0.0782919 0.0933047i
\(753\) 0 0
\(754\) 73723.9 + 26833.3i 0.129678 + 0.0471989i
\(755\) 148059.i 0.259741i
\(756\) 0 0
\(757\) 374377. 0.653307 0.326654 0.945144i \(-0.394079\pi\)
0.326654 + 0.945144i \(0.394079\pi\)
\(758\) −202757. + 557070.i −0.352888 + 0.969552i
\(759\) 0 0
\(760\) 5419.31 + 4547.34i 0.00938246 + 0.00787282i
\(761\) 731243. + 128938.i 1.26268 + 0.222644i 0.764609 0.644494i \(-0.222932\pi\)
0.498068 + 0.867138i \(0.334043\pi\)
\(762\) 0 0
\(763\) −245935. + 206364.i −0.422446 + 0.354474i
\(764\) 39174.1 22617.2i 0.0671139 0.0387482i
\(765\) 0 0
\(766\) −232408. + 402542.i −0.396089 + 0.686046i
\(767\) −215646. + 38024.2i −0.366564 + 0.0646352i
\(768\) 0 0
\(769\) −321031. + 116846.i −0.542868 + 0.197588i −0.598875 0.800843i \(-0.704385\pi\)
0.0560069 + 0.998430i \(0.482163\pi\)
\(770\) −18504.7 50841.1i −0.0312104 0.0857499i
\(771\) 0 0
\(772\) 14692.9 + 83327.5i 0.0246532 + 0.139815i
\(773\) −535928. 309418.i −0.896908 0.517830i −0.0207121 0.999785i \(-0.506593\pi\)
−0.876196 + 0.481956i \(0.839927\pi\)
\(774\) 0 0
\(775\) −267078. 462593.i −0.444667 0.770186i
\(776\) 211605. + 252182.i 0.351401 + 0.418784i
\(777\) 0 0
\(778\) −87557.0 + 496560.i −0.144654 + 0.820375i
\(779\) 44052.8 52500.1i 0.0725936 0.0865137i
\(780\) 0 0
\(781\) −655970. 238754.i −1.07543 0.391424i
\(782\) 271360.i 0.443743i
\(783\) 0 0
\(784\) −129503. −0.210692
\(785\) 12835.6 35265.6i 0.0208294 0.0572284i
\(786\) 0 0
\(787\) −617155. 517854.i −0.996425 0.836100i −0.00993977 0.999951i \(-0.503164\pi\)
−0.986485 + 0.163851i \(0.947608\pi\)
\(788\) 351222. + 61929.9i 0.565626 + 0.0997351i
\(789\) 0 0
\(790\) 132714. 111360.i 0.212648 0.178433i
\(791\) 242170. 139817.i 0.387051 0.223464i
\(792\) 0 0
\(793\) 32110.4 55616.9i 0.0510622 0.0884423i
\(794\) 672254. 118536.i 1.06633 0.188023i
\(795\) 0 0
\(796\) −226430. + 82413.7i −0.357361 + 0.130069i
\(797\) 52138.6 + 143250.i 0.0820810 + 0.225516i 0.973943 0.226791i \(-0.0728235\pi\)
−0.891862 + 0.452307i \(0.850601\pi\)
\(798\) 0 0
\(799\) 17635.2 + 100014.i 0.0276240 + 0.156664i
\(800\) −93855.5 54187.5i −0.146649 0.0846680i
\(801\) 0 0
\(802\) −236822. 410187.i −0.368190 0.637725i
\(803\) 427920. + 509975.i 0.663638 + 0.790893i
\(804\) 0 0
\(805\) 17594.2 99781.7i 0.0271505 0.153978i
\(806\) 70297.1 83776.9i 0.108210 0.128960i
\(807\) 0 0
\(808\) 366057. + 133234.i 0.560693 + 0.204076i
\(809\) 30402.2i 0.0464524i 0.999730 + 0.0232262i \(0.00739379\pi\)
−0.999730 + 0.0232262i \(0.992606\pi\)
\(810\) 0 0
\(811\) 87579.6 0.133156 0.0665781 0.997781i \(-0.478792\pi\)
0.0665781 + 0.997781i \(0.478792\pi\)
\(812\) 34027.2 93488.9i 0.0516076 0.141791i
\(813\) 0 0
\(814\) −356400. 299055.i −0.537884 0.451338i
\(815\) 265780. + 46864.1i 0.400135 + 0.0705546i
\(816\) 0 0
\(817\) 33723.5 28297.4i 0.0505230 0.0423938i
\(818\) −235935. + 136217.i −0.352602 + 0.203575i
\(819\) 0 0
\(820\) 23066.7 39952.6i 0.0343050 0.0594180i
\(821\) −409876. + 72272.2i −0.608088 + 0.107222i −0.469209 0.883087i \(-0.655461\pi\)
−0.138879 + 0.990309i \(0.544350\pi\)
\(822\) 0 0
\(823\) 336875. 122612.i 0.497357 0.181023i −0.0811476 0.996702i \(-0.525859\pi\)
0.578505 + 0.815679i \(0.303636\pi\)
\(824\) 92596.8 + 254408.i 0.136377 + 0.374693i
\(825\) 0 0
\(826\) 48218.2 + 273459.i 0.0706726 + 0.400804i
\(827\) −110271. 63665.1i −0.161232 0.0930873i 0.417213 0.908809i \(-0.363007\pi\)
−0.578445 + 0.815721i \(0.696340\pi\)
\(828\) 0 0
\(829\) −588999. 1.02018e6i −0.857049 1.48445i −0.874731 0.484608i \(-0.838962\pi\)
0.0176826 0.999844i \(-0.494371\pi\)
\(830\) 80904.3 + 96418.0i 0.117440 + 0.139959i
\(831\) 0 0
\(832\) 3853.02 21851.5i 0.00556614 0.0315672i
\(833\) 122736. 146271.i 0.176882 0.210799i
\(834\) 0 0
\(835\) −202643. 73756.1i −0.290642 0.105785i
\(836\) 93602.6i 0.133929i
\(837\) 0 0
\(838\) 692500. 0.986125
\(839\) 216016. 593500.i 0.306876 0.843135i −0.686385 0.727238i \(-0.740804\pi\)
0.993261 0.115897i \(-0.0369742\pi\)
\(840\) 0 0
\(841\) 227983. + 191301.i 0.322338 + 0.270474i
\(842\) 16978.7 + 2993.80i 0.0239486 + 0.00422278i
\(843\) 0 0
\(844\) 293799. 246527.i 0.412444 0.346082i
\(845\) 118522. 68428.9i 0.165992 0.0958355i
\(846\) 0 0
\(847\) 215694. 373593.i 0.300657 0.520753i
\(848\) 5658.50 997.747i 0.00786882 0.00138749i
\(849\) 0 0
\(850\) 150155. 54652.0i 0.207827 0.0756429i
\(851\) −297992. 818727.i −0.411477 1.13052i
\(852\) 0 0
\(853\) 96556.7 + 547600.i 0.132704 + 0.752602i 0.976431 + 0.215830i \(0.0692456\pi\)
−0.843727 + 0.536773i \(0.819643\pi\)
\(854\) −70527.5 40719.1i −0.0967036 0.0558318i
\(855\) 0 0
\(856\) −146256. 253322.i −0.199602 0.345721i
\(857\) −313067. 373098.i −0.426260 0.507997i 0.509579 0.860424i \(-0.329801\pi\)
−0.935840 + 0.352426i \(0.885357\pi\)
\(858\) 0 0
\(859\) 239511. 1.35834e6i 0.324593 1.84086i −0.187923 0.982184i \(-0.560176\pi\)
0.512517 0.858677i \(-0.328713\pi\)
\(860\) 19048.3 22700.8i 0.0257548 0.0306934i
\(861\) 0 0
\(862\) 191985. + 69876.9i 0.258377 + 0.0940414i
\(863\) 1.17778e6i 1.58140i −0.612203 0.790701i \(-0.709716\pi\)
0.612203 0.790701i \(-0.290284\pi\)
\(864\) 0 0
\(865\) 96723.5 0.129271
\(866\) −155716. + 427827.i −0.207634 + 0.570469i
\(867\) 0 0
\(868\) −106237. 89143.4i −0.141006 0.118318i
\(869\) 2.25742e6 + 398044.i 2.98932 + 0.527098i
\(870\) 0 0
\(871\) 143815. 120675.i 0.189570 0.159068i
\(872\) 323791. 186941.i 0.425825 0.245850i
\(873\) 0 0
\(874\) −87645.2 + 151806.i −0.114737 + 0.198731i
\(875\) 120096. 21176.2i 0.156860 0.0276586i
\(876\) 0 0
\(877\) −324912. + 118258.i −0.422442 + 0.153756i −0.544489 0.838768i \(-0.683276\pi\)
0.122047 + 0.992524i \(0.461054\pi\)
\(878\) −225629. 619911.i −0.292689 0.804156i
\(879\) 0 0
\(880\) 10941.3 + 62050.9i 0.0141287 + 0.0801278i
\(881\) −222148. 128257.i −0.286214 0.165245i 0.350019 0.936742i \(-0.386175\pi\)
−0.636233 + 0.771497i \(0.719508\pi\)
\(882\) 0 0
\(883\) −74906.9 129742.i −0.0960727 0.166403i 0.813983 0.580889i \(-0.197295\pi\)
−0.910056 + 0.414486i \(0.863961\pi\)
\(884\) 21029.2 + 25061.7i 0.0269103 + 0.0320705i
\(885\) 0 0
\(886\) −17119.6 + 97089.9i −0.0218085 + 0.123682i
\(887\) −80550.3 + 95996.1i −0.102381 + 0.122013i −0.814802 0.579739i \(-0.803154\pi\)
0.712421 + 0.701753i \(0.247599\pi\)
\(888\) 0 0
\(889\) 245561. + 89376.8i 0.310710 + 0.113089i
\(890\) 102611.i 0.129544i
\(891\) 0 0
\(892\) 643253. 0.808448
\(893\) 22437.5 61646.6i 0.0281366 0.0773047i
\(894\) 0 0
\(895\) −67982.4 57044.0i −0.0848692 0.0712138i
\(896\) −27709.8 4885.99i −0.0345158 0.00608607i
\(897\) 0 0
\(898\) 299232. 251086.i 0.371070 0.311365i
\(899\) −494552. + 285530.i −0.611917 + 0.353291i
\(900\) 0 0
\(901\) −4235.89 + 7336.78i −0.00521790 + 0.00903766i
\(902\) 601124. 105994.i 0.738842 0.130278i
\(903\) 0 0
\(904\) −306016. + 111381.i −0.374461 + 0.136293i
\(905\) −66603.1 182991.i −0.0813200 0.223425i
\(906\) 0 0
\(907\) 105824. + 600156.i 0.128638 + 0.729540i 0.979081 + 0.203473i \(0.0652229\pi\)
−0.850443 + 0.526067i \(0.823666\pi\)
\(908\) −41514.5 23968.4i −0.0503533 0.0290715i
\(909\) 0 0
\(910\) 6107.73 + 10578.9i 0.00737560 + 0.0127749i
\(911\) 127258. + 151660.i 0.153337 + 0.182740i 0.837245 0.546829i \(-0.184165\pi\)
−0.683907 + 0.729569i \(0.739721\pi\)
\(912\) 0 0
\(913\) −289183. + 1.64004e6i −0.346921 + 1.96749i
\(914\) −103334. + 123149.i −0.123695 + 0.147414i
\(915\) 0 0
\(916\) −450994. 164148.i −0.537502 0.195635i
\(917\) 503207.i 0.598422i
\(918\) 0 0
\(919\) 863627. 1.02258 0.511288 0.859410i \(-0.329169\pi\)
0.511288 + 0.859410i \(0.329169\pi\)
\(920\) −40357.0 + 110880.i −0.0476807 + 0.131002i
\(921\) 0 0
\(922\) −570149. 478412.i −0.670698 0.562782i
\(923\) 155214. + 27368.4i 0.182191 + 0.0321252i
\(924\) 0 0
\(925\) 393022. 329784.i 0.459339 0.385431i
\(926\) 203894. 117718.i 0.237784 0.137285i
\(927\) 0 0
\(928\) −57931.1 + 100340.i −0.0672692 + 0.116514i
\(929\) 322288. 56828.1i 0.373433 0.0658464i 0.0162181 0.999868i \(-0.494837\pi\)
0.357215 + 0.934022i \(0.383726\pi\)
\(930\) 0 0
\(931\) −115905. + 42186.1i −0.133722 + 0.0486710i
\(932\) 54855.6 + 150715.i 0.0631523 + 0.173509i
\(933\) 0 0
\(934\) −86075.8 488160.i −0.0986705 0.559588i
\(935\) −80454.9 46450.7i −0.0920300 0.0531336i
\(936\) 0 0
\(937\) −50931.2 88215.4i −0.0580102 0.100477i 0.835562 0.549396i \(-0.185142\pi\)
−0.893572 + 0.448920i \(0.851809\pi\)
\(938\) −153028. 182371.i −0.173926 0.207277i
\(939\) 0 0
\(940\) 7668.36 43489.4i 0.00867854 0.0492184i
\(941\) 488850. 582589.i 0.552073 0.657935i −0.415776 0.909467i \(-0.636490\pi\)
0.967849 + 0.251532i \(0.0809345\pi\)
\(942\) 0 0
\(943\) 1.07416e6 + 390962.i 1.20794 + 0.439654i
\(944\) 323377.i 0.362881i
\(945\) 0 0
\(946\) 392090. 0.438131
\(947\) 63701.5 175018.i 0.0710313 0.195157i −0.899097 0.437750i \(-0.855776\pi\)
0.970128 + 0.242593i \(0.0779979\pi\)
\(948\) 0 0
\(949\) −115141. 96614.6i −0.127849 0.107278i
\(950\) −101653. 17924.1i −0.112634 0.0198605i
\(951\) 0 0
\(952\) 31780.6 26667.1i 0.0350661 0.0294240i
\(953\) 108706. 62761.3i 0.119692 0.0691044i −0.438959 0.898507i \(-0.644653\pi\)
0.558651 + 0.829403i \(0.311319\pi\)
\(954\) 0 0
\(955\) 14500.6 25115.7i 0.0158993 0.0275384i
\(956\) −490572. + 86501.1i −0.536768 + 0.0946468i
\(957\) 0 0
\(958\) 575820. 209581.i 0.627416 0.228361i
\(959\) −168159. 462013.i −0.182845 0.502363i
\(960\) 0 0
\(961\) −22138.7 125555.i −0.0239721 0.135953i
\(962\) 90969.3 + 52521.1i 0.0982980 + 0.0567524i
\(963\) 0 0
\(964\) 59951.1 + 103838.i 0.0645124 + 0.111739i
\(965\) 34869.9 + 41556.4i 0.0374452 + 0.0446255i
\(966\) 0 0
\(967\) 144529. 819663.i 0.154561 0.876562i −0.804624 0.593784i \(-0.797633\pi\)
0.959186 0.282777i \(-0.0912557\pi\)
\(968\) −322926. + 384848.i −0.344629 + 0.410713i
\(969\) 0 0
\(970\) 198332. + 72186.8i 0.210789 + 0.0767211i
\(971\) 1.10420e6i 1.17114i 0.810623 + 0.585569i \(0.199129\pi\)
−0.810623 + 0.585569i \(0.800871\pi\)
\(972\) 0 0
\(973\) 664488. 0.701878
\(974\) −125298. + 344253.i −0.132077 + 0.362878i
\(975\) 0 0
\(976\) 72652.3 + 60962.5i 0.0762693 + 0.0639975i
\(977\) −890467. 157013.i −0.932886 0.164493i −0.313508 0.949586i \(-0.601504\pi\)
−0.619378 + 0.785093i \(0.712615\pi\)
\(978\) 0 0
\(979\) −1.04003e6 + 872693.i −1.08513 + 0.910534i
\(980\) −71904.7 + 41514.2i −0.0748696 + 0.0432260i
\(981\) 0 0
\(982\) −498280. + 863046.i −0.516714 + 0.894975i
\(983\) −154152. + 27181.2i −0.159530 + 0.0281295i −0.252843 0.967507i \(-0.581366\pi\)
0.0933126 + 0.995637i \(0.470254\pi\)
\(984\) 0 0
\(985\) 214864. 78204.0i 0.221458 0.0806040i
\(986\) −58427.7 160529.i −0.0600987 0.165120i
\(987\) 0 0
\(988\) −3669.77 20812.3i −0.00375946 0.0213209i
\(989\) 635897. + 367135.i 0.650121 + 0.375348i
\(990\) 0 0
\(991\) −667891. 1.15682e6i −0.680077 1.17793i −0.974957 0.222394i \(-0.928613\pi\)
0.294880 0.955534i \(-0.404720\pi\)
\(992\) 103814. + 123721.i 0.105495 + 0.125725i
\(993\) 0 0
\(994\) 34705.7 196826.i 0.0351260 0.199209i
\(995\) −99302.9 + 118345.i −0.100303 + 0.119537i
\(996\) 0 0
\(997\) −1.56730e6 570450.i −1.57675 0.573888i −0.602253 0.798306i \(-0.705730\pi\)
−0.974493 + 0.224417i \(0.927952\pi\)
\(998\) 660243.i 0.662891i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.f.a.17.9 72
3.2 odd 2 54.5.f.a.23.1 72
27.7 even 9 54.5.f.a.47.1 yes 72
27.20 odd 18 inner 162.5.f.a.143.9 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.5.f.a.23.1 72 3.2 odd 2
54.5.f.a.47.1 yes 72 27.7 even 9
162.5.f.a.17.9 72 1.1 even 1 trivial
162.5.f.a.143.9 72 27.20 odd 18 inner