Properties

Label 162.6.c.d.109.1
Level $162$
Weight $6$
Character 162.109
Analytic conductor $25.982$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.6.c.d.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-10.5000 + 18.1865i) q^{5} +(-37.0000 - 64.0859i) q^{7} +64.0000 q^{8} +84.0000 q^{10} +(-135.000 - 233.827i) q^{11} +(57.5000 - 99.5929i) q^{13} +(-148.000 + 256.344i) q^{14} +(-128.000 - 221.703i) q^{16} -861.000 q^{17} +1850.00 q^{19} +(-168.000 - 290.985i) q^{20} +(-540.000 + 935.307i) q^{22} +(-1809.00 + 3133.28i) q^{23} +(1342.00 + 2324.41i) q^{25} -460.000 q^{26} +1184.00 q^{28} +(-562.500 - 974.279i) q^{29} +(-2614.00 + 4527.58i) q^{31} +(-512.000 + 886.810i) q^{32} +(1722.00 + 2982.59i) q^{34} +1554.00 q^{35} +9917.00 q^{37} +(-3700.00 - 6408.59i) q^{38} +(-672.000 + 1163.94i) q^{40} +(-5379.00 + 9316.70i) q^{41} +(9857.00 + 17072.8i) q^{43} +4320.00 q^{44} +14472.0 q^{46} +(-4992.00 - 8646.40i) q^{47} +(5665.50 - 9812.93i) q^{49} +(5368.00 - 9297.65i) q^{50} +(920.000 + 1593.49i) q^{52} +36726.0 q^{53} +5670.00 q^{55} +(-2368.00 - 4101.50i) q^{56} +(-2250.00 + 3897.11i) q^{58} +(-13230.0 + 22915.0i) q^{59} +(26889.5 + 46574.0i) q^{61} +20912.0 q^{62} +4096.00 q^{64} +(1207.50 + 2091.45i) q^{65} +(6467.00 - 11201.2i) q^{67} +(6888.00 - 11930.4i) q^{68} +(-3108.00 - 5383.21i) q^{70} -4254.00 q^{71} -17521.0 q^{73} +(-19834.0 - 34353.5i) q^{74} +(-14800.0 + 25634.4i) q^{76} +(-9990.00 + 17303.2i) q^{77} +(18473.0 + 31996.2i) q^{79} +5376.00 q^{80} +43032.0 q^{82} +(38208.0 + 66178.2i) q^{83} +(9040.50 - 15658.6i) q^{85} +(39428.0 - 68291.3i) q^{86} +(-8640.00 - 14964.9i) q^{88} -45357.0 q^{89} -8510.00 q^{91} +(-28944.0 - 50132.5i) q^{92} +(-19968.0 + 34585.6i) q^{94} +(-19425.0 + 33645.1i) q^{95} +(-63787.0 - 110482. i) q^{97} -45324.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 16 q^{4} - 21 q^{5} - 74 q^{7} + 128 q^{8} + 168 q^{10} - 270 q^{11} + 115 q^{13} - 296 q^{14} - 256 q^{16} - 1722 q^{17} + 3700 q^{19} - 336 q^{20} - 1080 q^{22} - 3618 q^{23} + 2684 q^{25}+ \cdots - 90648 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −10.5000 + 18.1865i −0.187830 + 0.325331i −0.944526 0.328436i \(-0.893479\pi\)
0.756697 + 0.653766i \(0.226812\pi\)
\(6\) 0 0
\(7\) −37.0000 64.0859i −0.285402 0.494330i 0.687305 0.726369i \(-0.258794\pi\)
−0.972707 + 0.232039i \(0.925460\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 84.0000 0.265631
\(11\) −135.000 233.827i −0.336397 0.582657i 0.647355 0.762188i \(-0.275875\pi\)
−0.983752 + 0.179532i \(0.942542\pi\)
\(12\) 0 0
\(13\) 57.5000 99.5929i 0.0943647 0.163444i −0.814979 0.579491i \(-0.803251\pi\)
0.909343 + 0.416047i \(0.136585\pi\)
\(14\) −148.000 + 256.344i −0.201810 + 0.349544i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −861.000 −0.722572 −0.361286 0.932455i \(-0.617662\pi\)
−0.361286 + 0.932455i \(0.617662\pi\)
\(18\) 0 0
\(19\) 1850.00 1.17568 0.587838 0.808979i \(-0.299979\pi\)
0.587838 + 0.808979i \(0.299979\pi\)
\(20\) −168.000 290.985i −0.0939149 0.162665i
\(21\) 0 0
\(22\) −540.000 + 935.307i −0.237869 + 0.412000i
\(23\) −1809.00 + 3133.28i −0.713048 + 1.23504i 0.250659 + 0.968075i \(0.419353\pi\)
−0.963707 + 0.266961i \(0.913981\pi\)
\(24\) 0 0
\(25\) 1342.00 + 2324.41i 0.429440 + 0.743812i
\(26\) −460.000 −0.133452
\(27\) 0 0
\(28\) 1184.00 0.285402
\(29\) −562.500 974.279i −0.124202 0.215124i 0.797219 0.603690i \(-0.206304\pi\)
−0.921421 + 0.388567i \(0.872970\pi\)
\(30\) 0 0
\(31\) −2614.00 + 4527.58i −0.488541 + 0.846178i −0.999913 0.0131811i \(-0.995804\pi\)
0.511372 + 0.859360i \(0.329138\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1722.00 + 2982.59i 0.255468 + 0.442483i
\(35\) 1554.00 0.214428
\(36\) 0 0
\(37\) 9917.00 1.19090 0.595451 0.803392i \(-0.296973\pi\)
0.595451 + 0.803392i \(0.296973\pi\)
\(38\) −3700.00 6408.59i −0.415664 0.719952i
\(39\) 0 0
\(40\) −672.000 + 1163.94i −0.0664078 + 0.115022i
\(41\) −5379.00 + 9316.70i −0.499737 + 0.865571i −1.00000 0.000303132i \(-0.999904\pi\)
0.500262 + 0.865874i \(0.333237\pi\)
\(42\) 0 0
\(43\) 9857.00 + 17072.8i 0.812968 + 1.40810i 0.910778 + 0.412897i \(0.135483\pi\)
−0.0978093 + 0.995205i \(0.531184\pi\)
\(44\) 4320.00 0.336397
\(45\) 0 0
\(46\) 14472.0 1.00840
\(47\) −4992.00 8646.40i −0.329632 0.570940i 0.652806 0.757525i \(-0.273591\pi\)
−0.982439 + 0.186585i \(0.940258\pi\)
\(48\) 0 0
\(49\) 5665.50 9812.93i 0.337092 0.583860i
\(50\) 5368.00 9297.65i 0.303660 0.525954i
\(51\) 0 0
\(52\) 920.000 + 1593.49i 0.0471823 + 0.0817222i
\(53\) 36726.0 1.79591 0.897954 0.440090i \(-0.145053\pi\)
0.897954 + 0.440090i \(0.145053\pi\)
\(54\) 0 0
\(55\) 5670.00 0.252741
\(56\) −2368.00 4101.50i −0.100905 0.174772i
\(57\) 0 0
\(58\) −2250.00 + 3897.11i −0.0878239 + 0.152115i
\(59\) −13230.0 + 22915.0i −0.494800 + 0.857019i −0.999982 0.00599391i \(-0.998092\pi\)
0.505182 + 0.863013i \(0.331425\pi\)
\(60\) 0 0
\(61\) 26889.5 + 46574.0i 0.925248 + 1.60258i 0.791162 + 0.611607i \(0.209477\pi\)
0.134086 + 0.990970i \(0.457190\pi\)
\(62\) 20912.0 0.690902
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 1207.50 + 2091.45i 0.0354490 + 0.0613994i
\(66\) 0 0
\(67\) 6467.00 11201.2i 0.176001 0.304843i −0.764506 0.644617i \(-0.777017\pi\)
0.940507 + 0.339773i \(0.110350\pi\)
\(68\) 6888.00 11930.4i 0.180643 0.312883i
\(69\) 0 0
\(70\) −3108.00 5383.21i −0.0758116 0.131310i
\(71\) −4254.00 −0.100150 −0.0500751 0.998745i \(-0.515946\pi\)
−0.0500751 + 0.998745i \(0.515946\pi\)
\(72\) 0 0
\(73\) −17521.0 −0.384815 −0.192407 0.981315i \(-0.561630\pi\)
−0.192407 + 0.981315i \(0.561630\pi\)
\(74\) −19834.0 34353.5i −0.421047 0.729276i
\(75\) 0 0
\(76\) −14800.0 + 25634.4i −0.293919 + 0.509083i
\(77\) −9990.00 + 17303.2i −0.192017 + 0.332582i
\(78\) 0 0
\(79\) 18473.0 + 31996.2i 0.333020 + 0.576807i 0.983102 0.183057i \(-0.0585992\pi\)
−0.650083 + 0.759863i \(0.725266\pi\)
\(80\) 5376.00 0.0939149
\(81\) 0 0
\(82\) 43032.0 0.706735
\(83\) 38208.0 + 66178.2i 0.608778 + 1.05443i 0.991442 + 0.130547i \(0.0416734\pi\)
−0.382664 + 0.923888i \(0.624993\pi\)
\(84\) 0 0
\(85\) 9040.50 15658.6i 0.135720 0.235075i
\(86\) 39428.0 68291.3i 0.574855 0.995679i
\(87\) 0 0
\(88\) −8640.00 14964.9i −0.118934 0.206000i
\(89\) −45357.0 −0.606973 −0.303486 0.952836i \(-0.598151\pi\)
−0.303486 + 0.952836i \(0.598151\pi\)
\(90\) 0 0
\(91\) −8510.00 −0.107727
\(92\) −28944.0 50132.5i −0.356524 0.617518i
\(93\) 0 0
\(94\) −19968.0 + 34585.6i −0.233085 + 0.403716i
\(95\) −19425.0 + 33645.1i −0.220827 + 0.382483i
\(96\) 0 0
\(97\) −63787.0 110482.i −0.688340 1.19224i −0.972375 0.233425i \(-0.925007\pi\)
0.284035 0.958814i \(-0.408327\pi\)
\(98\) −45324.0 −0.476720
\(99\) 0 0
\(100\) −42944.0 −0.429440
\(101\) 39435.0 + 68303.4i 0.384661 + 0.666253i 0.991722 0.128403i \(-0.0409849\pi\)
−0.607061 + 0.794655i \(0.707652\pi\)
\(102\) 0 0
\(103\) 8744.00 15145.1i 0.0812114 0.140662i −0.822559 0.568680i \(-0.807454\pi\)
0.903771 + 0.428017i \(0.140788\pi\)
\(104\) 3680.00 6373.95i 0.0333630 0.0577863i
\(105\) 0 0
\(106\) −73452.0 127223.i −0.634949 1.09976i
\(107\) −134364. −1.13455 −0.567275 0.823529i \(-0.692002\pi\)
−0.567275 + 0.823529i \(0.692002\pi\)
\(108\) 0 0
\(109\) −123487. −0.995531 −0.497766 0.867312i \(-0.665846\pi\)
−0.497766 + 0.867312i \(0.665846\pi\)
\(110\) −11340.0 19641.5i −0.0893576 0.154772i
\(111\) 0 0
\(112\) −9472.00 + 16406.0i −0.0713504 + 0.123583i
\(113\) −87019.5 + 150722.i −0.641092 + 1.11040i 0.344097 + 0.938934i \(0.388185\pi\)
−0.985189 + 0.171470i \(0.945148\pi\)
\(114\) 0 0
\(115\) −37989.0 65798.9i −0.267863 0.463953i
\(116\) 18000.0 0.124202
\(117\) 0 0
\(118\) 105840. 0.699753
\(119\) 31857.0 + 55177.9i 0.206223 + 0.357189i
\(120\) 0 0
\(121\) 44075.5 76341.0i 0.273674 0.474018i
\(122\) 107558. 186296.i 0.654249 1.13319i
\(123\) 0 0
\(124\) −41824.0 72441.3i −0.244271 0.423089i
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) −312982. −1.72191 −0.860954 0.508682i \(-0.830133\pi\)
−0.860954 + 0.508682i \(0.830133\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 4830.00 8365.81i 0.0250662 0.0434160i
\(131\) 52905.0 91634.1i 0.269351 0.466529i −0.699343 0.714786i \(-0.746524\pi\)
0.968694 + 0.248256i \(0.0798575\pi\)
\(132\) 0 0
\(133\) −68450.0 118559.i −0.335540 0.581172i
\(134\) −51736.0 −0.248903
\(135\) 0 0
\(136\) −55104.0 −0.255468
\(137\) 142240. + 246368.i 0.647473 + 1.12146i 0.983724 + 0.179684i \(0.0575076\pi\)
−0.336251 + 0.941772i \(0.609159\pi\)
\(138\) 0 0
\(139\) 81164.0 140580.i 0.356309 0.617145i −0.631032 0.775757i \(-0.717368\pi\)
0.987341 + 0.158612i \(0.0507018\pi\)
\(140\) −12432.0 + 21532.9i −0.0536069 + 0.0928499i
\(141\) 0 0
\(142\) 8508.00 + 14736.3i 0.0354084 + 0.0613292i
\(143\) −31050.0 −0.126976
\(144\) 0 0
\(145\) 23625.0 0.0933151
\(146\) 35042.0 + 60694.5i 0.136053 + 0.235650i
\(147\) 0 0
\(148\) −79336.0 + 137414.i −0.297725 + 0.515676i
\(149\) 135356. 234443.i 0.499471 0.865109i −0.500529 0.865720i \(-0.666861\pi\)
1.00000 0.000610783i \(0.000194418\pi\)
\(150\) 0 0
\(151\) 8426.00 + 14594.3i 0.0300732 + 0.0520882i 0.880670 0.473730i \(-0.157093\pi\)
−0.850597 + 0.525818i \(0.823759\pi\)
\(152\) 118400. 0.415664
\(153\) 0 0
\(154\) 79920.0 0.271552
\(155\) −54894.0 95079.2i −0.183525 0.317875i
\(156\) 0 0
\(157\) −123686. + 214231.i −0.400473 + 0.693639i −0.993783 0.111335i \(-0.964487\pi\)
0.593310 + 0.804974i \(0.297821\pi\)
\(158\) 73892.0 127985.i 0.235480 0.407864i
\(159\) 0 0
\(160\) −10752.0 18623.0i −0.0332039 0.0575109i
\(161\) 267732. 0.814021
\(162\) 0 0
\(163\) −200116. −0.589947 −0.294973 0.955505i \(-0.595311\pi\)
−0.294973 + 0.955505i \(0.595311\pi\)
\(164\) −86064.0 149067.i −0.249869 0.432785i
\(165\) 0 0
\(166\) 152832. 264713.i 0.430471 0.745598i
\(167\) −7059.00 + 12226.5i −0.0195863 + 0.0339244i −0.875652 0.482942i \(-0.839568\pi\)
0.856066 + 0.516866i \(0.172902\pi\)
\(168\) 0 0
\(169\) 179034. + 310096.i 0.482191 + 0.835179i
\(170\) −72324.0 −0.191938
\(171\) 0 0
\(172\) −315424. −0.812968
\(173\) 24199.5 + 41914.8i 0.0614740 + 0.106476i 0.895124 0.445816i \(-0.147087\pi\)
−0.833651 + 0.552292i \(0.813753\pi\)
\(174\) 0 0
\(175\) 99308.0 172007.i 0.245126 0.424570i
\(176\) −34560.0 + 59859.7i −0.0840992 + 0.145664i
\(177\) 0 0
\(178\) 90714.0 + 157121.i 0.214597 + 0.371693i
\(179\) 375396. 0.875703 0.437852 0.899047i \(-0.355739\pi\)
0.437852 + 0.899047i \(0.355739\pi\)
\(180\) 0 0
\(181\) 440702. 0.999882 0.499941 0.866060i \(-0.333355\pi\)
0.499941 + 0.866060i \(0.333355\pi\)
\(182\) 17020.0 + 29479.5i 0.0380874 + 0.0659693i
\(183\) 0 0
\(184\) −115776. + 200530.i −0.252101 + 0.436651i
\(185\) −104128. + 180356.i −0.223687 + 0.387437i
\(186\) 0 0
\(187\) 116235. + 201325.i 0.243071 + 0.421011i
\(188\) 159744. 0.329632
\(189\) 0 0
\(190\) 155400. 0.312296
\(191\) −243489. 421735.i −0.482943 0.836482i 0.516865 0.856067i \(-0.327099\pi\)
−0.999808 + 0.0195849i \(0.993766\pi\)
\(192\) 0 0
\(193\) 52092.5 90226.9i 0.100666 0.174358i −0.811293 0.584639i \(-0.801236\pi\)
0.911959 + 0.410281i \(0.134569\pi\)
\(194\) −255148. + 441929.i −0.486730 + 0.843041i
\(195\) 0 0
\(196\) 90648.0 + 157007.i 0.168546 + 0.291930i
\(197\) 39369.0 0.0722751 0.0361376 0.999347i \(-0.488495\pi\)
0.0361376 + 0.999347i \(0.488495\pi\)
\(198\) 0 0
\(199\) 952484. 1.70500 0.852501 0.522725i \(-0.175085\pi\)
0.852501 + 0.522725i \(0.175085\pi\)
\(200\) 85888.0 + 148762.i 0.151830 + 0.262977i
\(201\) 0 0
\(202\) 157740. 273214.i 0.271997 0.471112i
\(203\) −41625.0 + 72096.6i −0.0708948 + 0.122793i
\(204\) 0 0
\(205\) −112959. 195651.i −0.187731 0.325160i
\(206\) −69952.0 −0.114850
\(207\) 0 0
\(208\) −29440.0 −0.0471823
\(209\) −249750. 432580.i −0.395494 0.685016i
\(210\) 0 0
\(211\) −220555. + 382012.i −0.341044 + 0.590706i −0.984627 0.174671i \(-0.944114\pi\)
0.643583 + 0.765377i \(0.277447\pi\)
\(212\) −293808. + 508890.i −0.448977 + 0.777651i
\(213\) 0 0
\(214\) 268728. + 465451.i 0.401124 + 0.694767i
\(215\) −413994. −0.610798
\(216\) 0 0
\(217\) 386872. 0.557722
\(218\) 246974. + 427772.i 0.351974 + 0.609636i
\(219\) 0 0
\(220\) −45360.0 + 78565.8i −0.0631853 + 0.109440i
\(221\) −49507.5 + 85749.5i −0.0681852 + 0.118100i
\(222\) 0 0
\(223\) 412553. + 714563.i 0.555543 + 0.962229i 0.997861 + 0.0653703i \(0.0208229\pi\)
−0.442318 + 0.896858i \(0.645844\pi\)
\(224\) 75776.0 0.100905
\(225\) 0 0
\(226\) 696156. 0.906641
\(227\) −577851. 1.00087e6i −0.744305 1.28917i −0.950519 0.310668i \(-0.899447\pi\)
0.206213 0.978507i \(-0.433886\pi\)
\(228\) 0 0
\(229\) −671678. + 1.16338e6i −0.846394 + 1.46600i 0.0380105 + 0.999277i \(0.487898\pi\)
−0.884405 + 0.466721i \(0.845435\pi\)
\(230\) −151956. + 263196.i −0.189408 + 0.328064i
\(231\) 0 0
\(232\) −36000.0 62353.8i −0.0439119 0.0760577i
\(233\) 1.07555e6 1.29790 0.648950 0.760831i \(-0.275208\pi\)
0.648950 + 0.760831i \(0.275208\pi\)
\(234\) 0 0
\(235\) 209664. 0.247659
\(236\) −211680. 366641.i −0.247400 0.428509i
\(237\) 0 0
\(238\) 127428. 220712.i 0.145822 0.252571i
\(239\) −18048.0 + 31260.1i −0.0204378 + 0.0353993i −0.876063 0.482196i \(-0.839839\pi\)
0.855626 + 0.517595i \(0.173173\pi\)
\(240\) 0 0
\(241\) −36437.5 63111.6i −0.0404116 0.0699949i 0.845112 0.534589i \(-0.179534\pi\)
−0.885524 + 0.464594i \(0.846200\pi\)
\(242\) −352604. −0.387034
\(243\) 0 0
\(244\) −860464. −0.925248
\(245\) 118976. + 206072.i 0.126632 + 0.219332i
\(246\) 0 0
\(247\) 106375. 184247.i 0.110942 0.192158i
\(248\) −167296. + 289765.i −0.172725 + 0.299169i
\(249\) 0 0
\(250\) 243978. + 422582.i 0.246888 + 0.427623i
\(251\) −1.65869e6 −1.66181 −0.830906 0.556413i \(-0.812177\pi\)
−0.830906 + 0.556413i \(0.812177\pi\)
\(252\) 0 0
\(253\) 976860. 0.959469
\(254\) 625964. + 1.08420e6i 0.608787 + 1.05445i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 397090. 687781.i 0.375022 0.649557i −0.615308 0.788287i \(-0.710969\pi\)
0.990330 + 0.138729i \(0.0443018\pi\)
\(258\) 0 0
\(259\) −366929. 635540.i −0.339885 0.588699i
\(260\) −38640.0 −0.0354490
\(261\) 0 0
\(262\) −423240. −0.380920
\(263\) −795396. 1.37767e6i −0.709078 1.22816i −0.965200 0.261515i \(-0.915778\pi\)
0.256121 0.966645i \(-0.417555\pi\)
\(264\) 0 0
\(265\) −385623. + 667919.i −0.337325 + 0.584264i
\(266\) −273800. + 474236.i −0.237263 + 0.410951i
\(267\) 0 0
\(268\) 103472. + 179219.i 0.0880006 + 0.152422i
\(269\) 1.57975e6 1.33109 0.665545 0.746358i \(-0.268199\pi\)
0.665545 + 0.746358i \(0.268199\pi\)
\(270\) 0 0
\(271\) −415762. −0.343892 −0.171946 0.985106i \(-0.555005\pi\)
−0.171946 + 0.985106i \(0.555005\pi\)
\(272\) 110208. + 190886.i 0.0903214 + 0.156441i
\(273\) 0 0
\(274\) 568962. 985471.i 0.457833 0.792990i
\(275\) 362340. 627591.i 0.288925 0.500432i
\(276\) 0 0
\(277\) −281203. 487058.i −0.220202 0.381400i 0.734667 0.678427i \(-0.237338\pi\)
−0.954869 + 0.297027i \(0.904005\pi\)
\(278\) −649312. −0.503897
\(279\) 0 0
\(280\) 99456.0 0.0758116
\(281\) 1.21331e6 + 2.10152e6i 0.916657 + 1.58770i 0.804457 + 0.594011i \(0.202456\pi\)
0.112200 + 0.993686i \(0.464210\pi\)
\(282\) 0 0
\(283\) 601466. 1.04177e6i 0.446421 0.773225i −0.551729 0.834024i \(-0.686032\pi\)
0.998150 + 0.0607992i \(0.0193649\pi\)
\(284\) 34032.0 58945.2i 0.0250375 0.0433663i
\(285\) 0 0
\(286\) 62100.0 + 107560.i 0.0448928 + 0.0777566i
\(287\) 796092. 0.570504
\(288\) 0 0
\(289\) −678536. −0.477890
\(290\) −47250.0 81839.4i −0.0329919 0.0571436i
\(291\) 0 0
\(292\) 140168. 242778.i 0.0962037 0.166630i
\(293\) 336236. 582377.i 0.228810 0.396310i −0.728646 0.684891i \(-0.759850\pi\)
0.957456 + 0.288581i \(0.0931833\pi\)
\(294\) 0 0
\(295\) −277830. 481216.i −0.185876 0.321947i
\(296\) 634688. 0.421047
\(297\) 0 0
\(298\) −1.08284e6 −0.706359
\(299\) 208035. + 360327.i 0.134573 + 0.233088i
\(300\) 0 0
\(301\) 729418. 1.26339e6i 0.464045 0.803750i
\(302\) 33704.0 58377.0i 0.0212649 0.0368320i
\(303\) 0 0
\(304\) −236800. 410150.i −0.146960 0.254541i
\(305\) −1.12936e6 −0.695156
\(306\) 0 0
\(307\) −2.79488e6 −1.69245 −0.846226 0.532823i \(-0.821131\pi\)
−0.846226 + 0.532823i \(0.821131\pi\)
\(308\) −159840. 276851.i −0.0960083 0.166291i
\(309\) 0 0
\(310\) −219576. + 380317.i −0.129772 + 0.224772i
\(311\) 1.52980e6 2.64968e6i 0.896876 1.55344i 0.0654112 0.997858i \(-0.479164\pi\)
0.831465 0.555577i \(-0.187503\pi\)
\(312\) 0 0
\(313\) −1.31737e6 2.28175e6i −0.760059 1.31646i −0.942820 0.333304i \(-0.891837\pi\)
0.182760 0.983157i \(-0.441497\pi\)
\(314\) 989492. 0.566354
\(315\) 0 0
\(316\) −591136. −0.333020
\(317\) −404188. 700075.i −0.225910 0.391288i 0.730682 0.682718i \(-0.239202\pi\)
−0.956592 + 0.291430i \(0.905869\pi\)
\(318\) 0 0
\(319\) −151875. + 263055.i −0.0835621 + 0.144734i
\(320\) −43008.0 + 74492.0i −0.0234787 + 0.0406663i
\(321\) 0 0
\(322\) −535464. 927451.i −0.287800 0.498484i
\(323\) −1.59285e6 −0.849510
\(324\) 0 0
\(325\) 308660. 0.162096
\(326\) 400232. + 693222.i 0.208578 + 0.361267i
\(327\) 0 0
\(328\) −344256. + 596269.i −0.176684 + 0.306025i
\(329\) −369408. + 639833.i −0.188155 + 0.325895i
\(330\) 0 0
\(331\) 426839. + 739307.i 0.214138 + 0.370898i 0.953006 0.302953i \(-0.0979724\pi\)
−0.738867 + 0.673851i \(0.764639\pi\)
\(332\) −1.22266e6 −0.608778
\(333\) 0 0
\(334\) 56472.0 0.0276992
\(335\) 135807. + 235225.i 0.0661165 + 0.114517i
\(336\) 0 0
\(337\) −148939. + 257970.i −0.0714387 + 0.123735i −0.899532 0.436855i \(-0.856092\pi\)
0.828093 + 0.560590i \(0.189426\pi\)
\(338\) 716136. 1.24038e6i 0.340960 0.590560i
\(339\) 0 0
\(340\) 144648. + 250538.i 0.0678602 + 0.117537i
\(341\) 1.41156e6 0.657375
\(342\) 0 0
\(343\) −2.08221e6 −0.955630
\(344\) 630848. + 1.09266e6i 0.287428 + 0.497839i
\(345\) 0 0
\(346\) 96798.0 167659.i 0.0434686 0.0752899i
\(347\) −44373.0 + 76856.3i −0.0197831 + 0.0342654i −0.875747 0.482769i \(-0.839631\pi\)
0.855964 + 0.517035i \(0.172964\pi\)
\(348\) 0 0
\(349\) −1.18087e6 2.04533e6i −0.518967 0.898877i −0.999757 0.0220413i \(-0.992983\pi\)
0.480790 0.876836i \(-0.340350\pi\)
\(350\) −794464. −0.346660
\(351\) 0 0
\(352\) 276480. 0.118934
\(353\) 1.93038e6 + 3.34352e6i 0.824530 + 1.42813i 0.902278 + 0.431156i \(0.141894\pi\)
−0.0777471 + 0.996973i \(0.524773\pi\)
\(354\) 0 0
\(355\) 44667.0 77365.5i 0.0188112 0.0325819i
\(356\) 362856. 628485.i 0.151743 0.262827i
\(357\) 0 0
\(358\) −750792. 1.30041e6i −0.309608 0.536257i
\(359\) −3.74852e6 −1.53505 −0.767527 0.641017i \(-0.778513\pi\)
−0.767527 + 0.641017i \(0.778513\pi\)
\(360\) 0 0
\(361\) 946401. 0.382215
\(362\) −881404. 1.52664e6i −0.353512 0.612300i
\(363\) 0 0
\(364\) 68080.0 117918.i 0.0269318 0.0466473i
\(365\) 183970. 318646.i 0.0722796 0.125192i
\(366\) 0 0
\(367\) 1.33170e6 + 2.30657e6i 0.516107 + 0.893924i 0.999825 + 0.0187000i \(0.00595273\pi\)
−0.483718 + 0.875224i \(0.660714\pi\)
\(368\) 926208. 0.356524
\(369\) 0 0
\(370\) 833028. 0.316341
\(371\) −1.35886e6 2.35362e6i −0.512555 0.887772i
\(372\) 0 0
\(373\) −479935. + 831272.i −0.178612 + 0.309365i −0.941405 0.337277i \(-0.890494\pi\)
0.762793 + 0.646642i \(0.223827\pi\)
\(374\) 464940. 805300.i 0.171877 0.297700i
\(375\) 0 0
\(376\) −319488. 553369.i −0.116543 0.201858i
\(377\) −129375. −0.0468810
\(378\) 0 0
\(379\) −193780. −0.0692964 −0.0346482 0.999400i \(-0.511031\pi\)
−0.0346482 + 0.999400i \(0.511031\pi\)
\(380\) −310800. 538321.i −0.110413 0.191242i
\(381\) 0 0
\(382\) −973956. + 1.68694e6i −0.341492 + 0.591482i
\(383\) −2.77696e6 + 4.80984e6i −0.967327 + 1.67546i −0.264100 + 0.964495i \(0.585075\pi\)
−0.703228 + 0.710965i \(0.748259\pi\)
\(384\) 0 0
\(385\) −209790. 363367.i −0.0721328 0.124938i
\(386\) −416740. −0.142363
\(387\) 0 0
\(388\) 2.04118e6 0.688340
\(389\) 2.41398e6 + 4.18113e6i 0.808833 + 1.40094i 0.913672 + 0.406451i \(0.133234\pi\)
−0.104839 + 0.994489i \(0.533433\pi\)
\(390\) 0 0
\(391\) 1.55755e6 2.69775e6i 0.515228 0.892402i
\(392\) 362592. 628028.i 0.119180 0.206426i
\(393\) 0 0
\(394\) −78738.0 136378.i −0.0255531 0.0442593i
\(395\) −775866. −0.250204
\(396\) 0 0
\(397\) 313409. 0.0998011 0.0499005 0.998754i \(-0.484110\pi\)
0.0499005 + 0.998754i \(0.484110\pi\)
\(398\) −1.90497e6 3.29950e6i −0.602809 1.04410i
\(399\) 0 0
\(400\) 343552. 595050.i 0.107360 0.185953i
\(401\) −2.64145e6 + 4.57512e6i −0.820316 + 1.42083i 0.0851315 + 0.996370i \(0.472869\pi\)
−0.905447 + 0.424459i \(0.860464\pi\)
\(402\) 0 0
\(403\) 300610. + 520672.i 0.0922021 + 0.159699i
\(404\) −1.26192e6 −0.384661
\(405\) 0 0
\(406\) 333000. 0.100260
\(407\) −1.33880e6 2.31886e6i −0.400616 0.693887i
\(408\) 0 0
\(409\) −2.29406e6 + 3.97342e6i −0.678104 + 1.17451i 0.297448 + 0.954738i \(0.403865\pi\)
−0.975551 + 0.219772i \(0.929469\pi\)
\(410\) −451836. + 782603.i −0.132746 + 0.229923i
\(411\) 0 0
\(412\) 139904. + 242321.i 0.0406057 + 0.0703312i
\(413\) 1.95804e6 0.564867
\(414\) 0 0
\(415\) −1.60474e6 −0.457387
\(416\) 58880.0 + 101983.i 0.0166815 + 0.0288932i
\(417\) 0 0
\(418\) −999000. + 1.73032e6i −0.279656 + 0.484379i
\(419\) 1.18349e6 2.04986e6i 0.329328 0.570413i −0.653051 0.757314i \(-0.726511\pi\)
0.982379 + 0.186901i \(0.0598444\pi\)
\(420\) 0 0
\(421\) 227398. + 393864.i 0.0625289 + 0.108303i 0.895595 0.444870i \(-0.146750\pi\)
−0.833066 + 0.553173i \(0.813417\pi\)
\(422\) 1.76444e6 0.482309
\(423\) 0 0
\(424\) 2.35046e6 0.634949
\(425\) −1.15546e6 2.00132e6i −0.310301 0.537457i
\(426\) 0 0
\(427\) 1.98982e6 3.44647e6i 0.528135 0.914756i
\(428\) 1.07491e6 1.86180e6i 0.283637 0.491274i
\(429\) 0 0
\(430\) 827988. + 1.43412e6i 0.215950 + 0.374036i
\(431\) 1.26286e6 0.327462 0.163731 0.986505i \(-0.447647\pi\)
0.163731 + 0.986505i \(0.447647\pi\)
\(432\) 0 0
\(433\) 5.48900e6 1.40693 0.703467 0.710728i \(-0.251634\pi\)
0.703467 + 0.710728i \(0.251634\pi\)
\(434\) −773744. 1.34016e6i −0.197185 0.341534i
\(435\) 0 0
\(436\) 987896. 1.71109e6i 0.248883 0.431078i
\(437\) −3.34665e6 + 5.79657e6i −0.838314 + 1.45200i
\(438\) 0 0
\(439\) 3.05822e6 + 5.29699e6i 0.757369 + 1.31180i 0.944188 + 0.329407i \(0.106849\pi\)
−0.186819 + 0.982394i \(0.559818\pi\)
\(440\) 362880. 0.0893576
\(441\) 0 0
\(442\) 396060. 0.0964285
\(443\) −369600. 640166.i −0.0894793 0.154983i 0.817812 0.575486i \(-0.195187\pi\)
−0.907291 + 0.420503i \(0.861854\pi\)
\(444\) 0 0
\(445\) 476249. 824887.i 0.114008 0.197467i
\(446\) 1.65021e6 2.85825e6i 0.392828 0.680398i
\(447\) 0 0
\(448\) −151552. 262496.i −0.0356752 0.0617913i
\(449\) 7.31432e6 1.71221 0.856107 0.516799i \(-0.172876\pi\)
0.856107 + 0.516799i \(0.172876\pi\)
\(450\) 0 0
\(451\) 2.90466e6 0.672441
\(452\) −1.39231e6 2.41156e6i −0.320546 0.555202i
\(453\) 0 0
\(454\) −2.31140e6 + 4.00347e6i −0.526303 + 0.911584i
\(455\) 89355.0 154767.i 0.0202344 0.0350470i
\(456\) 0 0
\(457\) 3.84452e6 + 6.65890e6i 0.861096 + 1.49146i 0.870872 + 0.491509i \(0.163555\pi\)
−0.00977649 + 0.999952i \(0.503112\pi\)
\(458\) 5.37343e6 1.19698
\(459\) 0 0
\(460\) 1.21565e6 0.267863
\(461\) 2.96968e6 + 5.14365e6i 0.650816 + 1.12725i 0.982925 + 0.184005i \(0.0589063\pi\)
−0.332110 + 0.943241i \(0.607760\pi\)
\(462\) 0 0
\(463\) 227978. 394869.i 0.0494243 0.0856054i −0.840255 0.542192i \(-0.817595\pi\)
0.889679 + 0.456586i \(0.150928\pi\)
\(464\) −144000. + 249415.i −0.0310504 + 0.0537809i
\(465\) 0 0
\(466\) −2.15110e6 3.72582e6i −0.458877 0.794798i
\(467\) −5.97097e6 −1.26693 −0.633465 0.773771i \(-0.718368\pi\)
−0.633465 + 0.773771i \(0.718368\pi\)
\(468\) 0 0
\(469\) −957116. −0.200924
\(470\) −419328. 726297.i −0.0875607 0.151660i
\(471\) 0 0
\(472\) −846720. + 1.46656e6i −0.174938 + 0.303002i
\(473\) 2.66139e6 4.60966e6i 0.546960 0.947363i
\(474\) 0 0
\(475\) 2.48270e6 + 4.30016e6i 0.504882 + 0.874482i
\(476\) −1.01942e6 −0.206223
\(477\) 0 0
\(478\) 144384. 0.0289034
\(479\) −2.12420e6 3.67921e6i −0.423015 0.732683i 0.573218 0.819403i \(-0.305695\pi\)
−0.996233 + 0.0867198i \(0.972362\pi\)
\(480\) 0 0
\(481\) 570228. 987663.i 0.112379 0.194646i
\(482\) −145750. + 252446.i −0.0285753 + 0.0494939i
\(483\) 0 0
\(484\) 705208. + 1.22146e6i 0.136837 + 0.237009i
\(485\) 2.67905e6 0.517163
\(486\) 0 0
\(487\) −1.04048e6 −0.198797 −0.0993985 0.995048i \(-0.531692\pi\)
−0.0993985 + 0.995048i \(0.531692\pi\)
\(488\) 1.72093e6 + 2.98073e6i 0.327125 + 0.566596i
\(489\) 0 0
\(490\) 475902. 824286.i 0.0895421 0.155091i
\(491\) −2.77849e6 + 4.81248e6i −0.520122 + 0.900877i 0.479605 + 0.877485i \(0.340780\pi\)
−0.999726 + 0.0233925i \(0.992553\pi\)
\(492\) 0 0
\(493\) 484312. + 838854.i 0.0897446 + 0.155442i
\(494\) −851000. −0.156896
\(495\) 0 0
\(496\) 1.33837e6 0.244271
\(497\) 157398. + 272621.i 0.0285830 + 0.0495073i
\(498\) 0 0
\(499\) 176639. 305948.i 0.0317567 0.0550042i −0.849710 0.527250i \(-0.823223\pi\)
0.881467 + 0.472246i \(0.156556\pi\)
\(500\) 975912. 1.69033e6i 0.174576 0.302375i
\(501\) 0 0
\(502\) 3.31739e6 + 5.74588e6i 0.587539 + 1.01765i
\(503\) 4.21978e6 0.743651 0.371826 0.928303i \(-0.378732\pi\)
0.371826 + 0.928303i \(0.378732\pi\)
\(504\) 0 0
\(505\) −1.65627e6 −0.289003
\(506\) −1.95372e6 3.38394e6i −0.339224 0.587552i
\(507\) 0 0
\(508\) 2.50386e6 4.33681e6i 0.430477 0.745608i
\(509\) −173067. + 299761.i −0.0296087 + 0.0512838i −0.880450 0.474139i \(-0.842759\pi\)
0.850841 + 0.525423i \(0.176093\pi\)
\(510\) 0 0
\(511\) 648277. + 1.12285e6i 0.109827 + 0.190226i
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −3.17672e6 −0.530361
\(515\) 183624. + 318046.i 0.0305078 + 0.0528411i
\(516\) 0 0
\(517\) −1.34784e6 + 2.33453e6i −0.221775 + 0.384125i
\(518\) −1.46772e6 + 2.54216e6i −0.240335 + 0.416273i
\(519\) 0 0
\(520\) 77280.0 + 133853.i 0.0125331 + 0.0217080i
\(521\) 1.90025e6 0.306703 0.153351 0.988172i \(-0.450993\pi\)
0.153351 + 0.988172i \(0.450993\pi\)
\(522\) 0 0
\(523\) −5.16589e6 −0.825831 −0.412915 0.910769i \(-0.635489\pi\)
−0.412915 + 0.910769i \(0.635489\pi\)
\(524\) 846480. + 1.46615e6i 0.134675 + 0.233265i
\(525\) 0 0
\(526\) −3.18158e6 + 5.51067e6i −0.501394 + 0.868440i
\(527\) 2.25065e6 3.89825e6i 0.353006 0.611424i
\(528\) 0 0
\(529\) −3.32679e6 5.76217e6i −0.516876 0.895255i
\(530\) 3.08498e6 0.477049
\(531\) 0 0
\(532\) 2.19040e6 0.335540
\(533\) 618585. + 1.07142e6i 0.0943151 + 0.163359i
\(534\) 0 0
\(535\) 1.41082e6 2.44362e6i 0.213102 0.369104i
\(536\) 413888. 716875.i 0.0622259 0.107778i
\(537\) 0 0
\(538\) −3.15950e6 5.47241e6i −0.470611 0.815123i
\(539\) −3.05937e6 −0.453586
\(540\) 0 0
\(541\) 4.15125e6 0.609797 0.304899 0.952385i \(-0.401377\pi\)
0.304899 + 0.952385i \(0.401377\pi\)
\(542\) 831524. + 1.44024e6i 0.121584 + 0.210590i
\(543\) 0 0
\(544\) 440832. 763543.i 0.0638669 0.110621i
\(545\) 1.29661e6 2.24580e6i 0.186990 0.323877i
\(546\) 0 0
\(547\) −4.56262e6 7.90269e6i −0.651998 1.12929i −0.982637 0.185536i \(-0.940598\pi\)
0.330640 0.943757i \(-0.392735\pi\)
\(548\) −4.55170e6 −0.647473
\(549\) 0 0
\(550\) −2.89872e6 −0.408601
\(551\) −1.04062e6 1.80242e6i −0.146021 0.252916i
\(552\) 0 0
\(553\) 1.36700e6 2.36772e6i 0.190089 0.329243i
\(554\) −1.12481e6 + 1.94823e6i −0.155706 + 0.269691i
\(555\) 0 0
\(556\) 1.29862e6 + 2.24928e6i 0.178154 + 0.308572i
\(557\) −3.78858e6 −0.517415 −0.258707 0.965956i \(-0.583297\pi\)
−0.258707 + 0.965956i \(0.583297\pi\)
\(558\) 0 0
\(559\) 2.26711e6 0.306862
\(560\) −198912. 344526.i −0.0268035 0.0464250i
\(561\) 0 0
\(562\) 4.85325e6 8.40608e6i 0.648174 1.12267i
\(563\) −2.84333e6 + 4.92479e6i −0.378056 + 0.654812i −0.990779 0.135485i \(-0.956741\pi\)
0.612723 + 0.790297i \(0.290074\pi\)
\(564\) 0 0
\(565\) −1.82741e6 3.16517e6i −0.240832 0.417134i
\(566\) −4.81173e6 −0.631335
\(567\) 0 0
\(568\) −272256. −0.0354084
\(569\) 5.25194e6 + 9.09663e6i 0.680048 + 1.17788i 0.974966 + 0.222354i \(0.0713742\pi\)
−0.294918 + 0.955522i \(0.595292\pi\)
\(570\) 0 0
\(571\) −3.50496e6 + 6.07077e6i −0.449876 + 0.779208i −0.998377 0.0569418i \(-0.981865\pi\)
0.548502 + 0.836149i \(0.315198\pi\)
\(572\) 248400. 430241.i 0.0317440 0.0549822i
\(573\) 0 0
\(574\) −1.59218e6 2.75774e6i −0.201704 0.349361i
\(575\) −9.71071e6 −1.22485
\(576\) 0 0
\(577\) −3.54196e6 −0.442898 −0.221449 0.975172i \(-0.571079\pi\)
−0.221449 + 0.975172i \(0.571079\pi\)
\(578\) 1.35707e6 + 2.35052e6i 0.168960 + 0.292647i
\(579\) 0 0
\(580\) −189000. + 327358.i −0.0233288 + 0.0404066i
\(581\) 2.82739e6 4.89719e6i 0.347493 0.601875i
\(582\) 0 0
\(583\) −4.95801e6 8.58753e6i −0.604138 1.04640i
\(584\) −1.12134e6 −0.136053
\(585\) 0 0
\(586\) −2.68988e6 −0.323586
\(587\) −7.63892e6 1.32310e7i −0.915032 1.58488i −0.806854 0.590751i \(-0.798832\pi\)
−0.108178 0.994132i \(-0.534502\pi\)
\(588\) 0 0
\(589\) −4.83590e6 + 8.37602e6i −0.574366 + 0.994832i
\(590\) −1.11132e6 + 1.92486e6i −0.131434 + 0.227651i
\(591\) 0 0
\(592\) −1.26938e6 2.19862e6i −0.148863 0.257838i
\(593\) −278457. −0.0325178 −0.0162589 0.999868i \(-0.505176\pi\)
−0.0162589 + 0.999868i \(0.505176\pi\)
\(594\) 0 0
\(595\) −1.33799e6 −0.154939
\(596\) 2.16569e6 + 3.75108e6i 0.249735 + 0.432555i
\(597\) 0 0
\(598\) 832140. 1.44131e6i 0.0951576 0.164818i
\(599\) 5.03181e6 8.71535e6i 0.573003 0.992471i −0.423252 0.906012i \(-0.639112\pi\)
0.996255 0.0864590i \(-0.0275551\pi\)
\(600\) 0 0
\(601\) −6.82889e6 1.18280e7i −0.771194 1.33575i −0.936909 0.349574i \(-0.886326\pi\)
0.165715 0.986174i \(-0.447007\pi\)
\(602\) −5.83534e6 −0.656259
\(603\) 0 0
\(604\) −269632. −0.0300732
\(605\) 925586. + 1.60316e6i 0.102808 + 0.178069i
\(606\) 0 0
\(607\) 4.47969e6 7.75905e6i 0.493487 0.854745i −0.506484 0.862249i \(-0.669055\pi\)
0.999972 + 0.00750376i \(0.00238854\pi\)
\(608\) −947200. + 1.64060e6i −0.103916 + 0.179988i
\(609\) 0 0
\(610\) 2.25872e6 + 3.91221e6i 0.245775 + 0.425695i
\(611\) −1.14816e6 −0.124423
\(612\) 0 0
\(613\) 529958. 0.0569627 0.0284813 0.999594i \(-0.490933\pi\)
0.0284813 + 0.999594i \(0.490933\pi\)
\(614\) 5.58975e6 + 9.68173e6i 0.598372 + 1.03641i
\(615\) 0 0
\(616\) −639360. + 1.10740e6i −0.0678881 + 0.117586i
\(617\) 2.98514e6 5.17041e6i 0.315683 0.546779i −0.663899 0.747822i \(-0.731100\pi\)
0.979582 + 0.201043i \(0.0644330\pi\)
\(618\) 0 0
\(619\) 585668. + 1.01441e6i 0.0614363 + 0.106411i 0.895108 0.445850i \(-0.147099\pi\)
−0.833671 + 0.552261i \(0.813765\pi\)
\(620\) 1.75661e6 0.183525
\(621\) 0 0
\(622\) −1.22384e7 −1.26837
\(623\) 1.67821e6 + 2.90674e6i 0.173231 + 0.300045i
\(624\) 0 0
\(625\) −2.91287e6 + 5.04523e6i −0.298277 + 0.516632i
\(626\) −5.26949e6 + 9.12702e6i −0.537443 + 0.930879i
\(627\) 0 0
\(628\) −1.97898e6 3.42770e6i −0.200236 0.346820i
\(629\) −8.53854e6 −0.860512
\(630\) 0 0
\(631\) −1.49126e7 −1.49101 −0.745504 0.666501i \(-0.767791\pi\)
−0.745504 + 0.666501i \(0.767791\pi\)
\(632\) 1.18227e6 + 2.04776e6i 0.117740 + 0.203932i
\(633\) 0 0
\(634\) −1.61675e6 + 2.80030e6i −0.159743 + 0.276682i
\(635\) 3.28631e6 5.69206e6i 0.323426 0.560190i
\(636\) 0 0
\(637\) −651532. 1.12849e6i −0.0636191 0.110192i
\(638\) 1.21500e6 0.118175
\(639\) 0 0
\(640\) 344064. 0.0332039
\(641\) −3.94252e6 6.82864e6i −0.378991 0.656431i 0.611925 0.790916i \(-0.290395\pi\)
−0.990916 + 0.134485i \(0.957062\pi\)
\(642\) 0 0
\(643\) −929020. + 1.60911e6i −0.0886130 + 0.153482i −0.906925 0.421292i \(-0.861577\pi\)
0.818312 + 0.574774i \(0.194910\pi\)
\(644\) −2.14186e6 + 3.70980e6i −0.203505 + 0.352481i
\(645\) 0 0
\(646\) 3.18570e6 + 5.51779e6i 0.300347 + 0.520217i
\(647\) −1.54147e6 −0.144768 −0.0723841 0.997377i \(-0.523061\pi\)
−0.0723841 + 0.997377i \(0.523061\pi\)
\(648\) 0 0
\(649\) 7.14420e6 0.665797
\(650\) −617320. 1.06923e6i −0.0573095 0.0992630i
\(651\) 0 0
\(652\) 1.60093e6 2.77289e6i 0.147487 0.255454i
\(653\) −2.06668e6 + 3.57959e6i −0.189666 + 0.328512i −0.945139 0.326669i \(-0.894074\pi\)
0.755473 + 0.655180i \(0.227407\pi\)
\(654\) 0 0
\(655\) 1.11100e6 + 1.92432e6i 0.101184 + 0.175256i
\(656\) 2.75405e6 0.249869
\(657\) 0 0
\(658\) 2.95526e6 0.266092
\(659\) 8.54102e6 + 1.47935e7i 0.766118 + 1.32696i 0.939653 + 0.342128i \(0.111148\pi\)
−0.173535 + 0.984828i \(0.555519\pi\)
\(660\) 0 0
\(661\) 3.07322e6 5.32298e6i 0.273584 0.473861i −0.696193 0.717855i \(-0.745124\pi\)
0.969777 + 0.243994i \(0.0784576\pi\)
\(662\) 1.70736e6 2.95723e6i 0.151419 0.262265i
\(663\) 0 0
\(664\) 2.44531e6 + 4.23540e6i 0.215236 + 0.372799i
\(665\) 2.87490e6 0.252098
\(666\) 0 0
\(667\) 4.07025e6 0.354247
\(668\) −112944. 195625.i −0.00979314 0.0169622i
\(669\) 0 0
\(670\) 543228. 940898.i 0.0467515 0.0809759i
\(671\) 7.26016e6 1.25750e7i 0.622501 1.07820i
\(672\) 0 0
\(673\) −4.36248e6 7.55604e6i −0.371275 0.643067i 0.618487 0.785795i \(-0.287746\pi\)
−0.989762 + 0.142728i \(0.954413\pi\)
\(674\) 1.19151e6 0.101030
\(675\) 0 0
\(676\) −5.72909e6 −0.482191
\(677\) −5.92244e6 1.02580e7i −0.496625 0.860180i 0.503367 0.864073i \(-0.332094\pi\)
−0.999992 + 0.00389267i \(0.998761\pi\)
\(678\) 0 0
\(679\) −4.72024e6 + 8.17569e6i −0.392907 + 0.680534i
\(680\) 578592. 1.00215e6i 0.0479844 0.0831114i
\(681\) 0 0
\(682\) −2.82312e6 4.88979e6i −0.232417 0.402559i
\(683\) 4.03085e6 0.330632 0.165316 0.986241i \(-0.447136\pi\)
0.165316 + 0.986241i \(0.447136\pi\)
\(684\) 0 0
\(685\) −5.97410e6 −0.486459
\(686\) 4.16442e6 + 7.21299e6i 0.337866 + 0.585201i
\(687\) 0 0
\(688\) 2.52339e6 4.37064e6i 0.203242 0.352026i
\(689\) 2.11174e6 3.65765e6i 0.169470 0.293531i
\(690\) 0 0
\(691\) −1.61461e6 2.79658e6i −0.128639 0.222809i 0.794511 0.607250i \(-0.207727\pi\)
−0.923149 + 0.384441i \(0.874394\pi\)
\(692\) −774384. −0.0614740
\(693\) 0 0
\(694\) 354984. 0.0279776
\(695\) 1.70444e6 + 2.95218e6i 0.133851 + 0.231836i
\(696\) 0 0
\(697\) 4.63132e6 8.02168e6i 0.361096 0.625437i
\(698\) −4.72349e6 + 8.18133e6i −0.366965 + 0.635602i
\(699\) 0 0
\(700\) 1.58893e6 + 2.75210e6i 0.122563 + 0.212285i
\(701\) 1.34398e7 1.03300 0.516499 0.856288i \(-0.327235\pi\)
0.516499 + 0.856288i \(0.327235\pi\)
\(702\) 0 0
\(703\) 1.83464e7 1.40012
\(704\) −552960. 957755.i −0.0420496 0.0728321i
\(705\) 0 0
\(706\) 7.72153e6 1.33741e7i 0.583031 1.00984i
\(707\) 2.91819e6 5.05445e6i 0.219566 0.380299i
\(708\) 0 0
\(709\) 1.04150e7 + 1.80393e7i 0.778114 + 1.34773i 0.933028 + 0.359805i \(0.117157\pi\)
−0.154913 + 0.987928i \(0.549510\pi\)
\(710\) −357336. −0.0266030
\(711\) 0 0
\(712\) −2.90285e6 −0.214597
\(713\) −9.45745e6 1.63808e7i −0.696707 1.20673i
\(714\) 0 0
\(715\) 326025. 564692.i 0.0238499 0.0413092i
\(716\) −3.00317e6 + 5.20164e6i −0.218926 + 0.379191i
\(717\) 0 0
\(718\) 7.49704e6 + 1.29852e7i 0.542723 + 0.940024i
\(719\) 2.57779e7 1.85963 0.929813 0.368032i \(-0.119968\pi\)
0.929813 + 0.368032i \(0.119968\pi\)
\(720\) 0 0
\(721\) −1.29411e6 −0.0927115
\(722\) −1.89280e6 3.27843e6i −0.135133 0.234058i
\(723\) 0 0
\(724\) −3.52562e6 + 6.10655e6i −0.249970 + 0.432961i
\(725\) 1.50975e6 2.61496e6i 0.106674 0.184765i
\(726\) 0 0
\(727\) 3.62246e6 + 6.27428e6i 0.254195 + 0.440279i 0.964677 0.263437i \(-0.0848561\pi\)
−0.710481 + 0.703716i \(0.751523\pi\)
\(728\) −544640. −0.0380874
\(729\) 0 0
\(730\) −1.47176e6 −0.102219
\(731\) −8.48688e6 1.46997e7i −0.587428 1.01745i
\(732\) 0 0
\(733\) 2.82136e6 4.88674e6i 0.193954 0.335938i −0.752603 0.658474i \(-0.771202\pi\)
0.946557 + 0.322536i \(0.104535\pi\)
\(734\) 5.32678e6 9.22626e6i 0.364943 0.632100i
\(735\) 0 0
\(736\) −1.85242e6 3.20848e6i −0.126050 0.218326i
\(737\) −3.49218e6 −0.236825
\(738\) 0 0
\(739\) 1.72501e7 1.16193 0.580967 0.813927i \(-0.302674\pi\)
0.580967 + 0.813927i \(0.302674\pi\)
\(740\) −1.66606e6 2.88569e6i −0.111843 0.193718i
\(741\) 0 0
\(742\) −5.43545e6 + 9.41447e6i −0.362431 + 0.627749i
\(743\) −6.46732e6 + 1.12017e7i −0.429786 + 0.744412i −0.996854 0.0792596i \(-0.974744\pi\)
0.567068 + 0.823671i \(0.308078\pi\)
\(744\) 0 0
\(745\) 2.84247e6 + 4.92329e6i 0.187631 + 0.324986i
\(746\) 3.83948e6 0.252595
\(747\) 0 0
\(748\) −3.71952e6 −0.243071
\(749\) 4.97147e6 + 8.61084e6i 0.323802 + 0.560842i
\(750\) 0 0
\(751\) −2.84905e6 + 4.93469e6i −0.184332 + 0.319272i −0.943351 0.331796i \(-0.892345\pi\)
0.759019 + 0.651068i \(0.225679\pi\)
\(752\) −1.27795e6 + 2.21348e6i −0.0824081 + 0.142735i
\(753\) 0 0
\(754\) 258750. + 448168.i 0.0165749 + 0.0287086i
\(755\) −353892. −0.0225945
\(756\) 0 0
\(757\) 3.72388e6 0.236187 0.118093 0.993002i \(-0.462322\pi\)
0.118093 + 0.993002i \(0.462322\pi\)
\(758\) 387560. + 671274.i 0.0245000 + 0.0424352i
\(759\) 0 0
\(760\) −1.24320e6 + 2.15329e6i −0.0780741 + 0.135228i
\(761\) −8.84733e6 + 1.53240e7i −0.553797 + 0.959205i 0.444199 + 0.895928i \(0.353488\pi\)
−0.997996 + 0.0632765i \(0.979845\pi\)
\(762\) 0 0
\(763\) 4.56902e6 + 7.91377e6i 0.284126 + 0.492121i
\(764\) 7.79165e6 0.482943
\(765\) 0 0
\(766\) 2.22157e7 1.36801
\(767\) 1.52145e6 + 2.63523e6i 0.0933833 + 0.161745i
\(768\) 0 0
\(769\) −8.32902e6 + 1.44263e7i −0.507900 + 0.879708i 0.492058 + 0.870562i \(0.336245\pi\)
−0.999958 + 0.00914603i \(0.997089\pi\)
\(770\) −839160. + 1.45347e6i −0.0510056 + 0.0883443i
\(771\) 0 0
\(772\) 833480. + 1.44363e6i 0.0503329 + 0.0871791i
\(773\) 2.04852e6 0.123308 0.0616539 0.998098i \(-0.480362\pi\)
0.0616539 + 0.998098i \(0.480362\pi\)
\(774\) 0 0
\(775\) −1.40320e7 −0.839197
\(776\) −4.08237e6 7.07087e6i −0.243365 0.421520i
\(777\) 0 0
\(778\) 9.65591e6 1.67245e7i 0.571932 0.990615i
\(779\) −9.95115e6 + 1.72359e7i −0.587529 + 1.01763i
\(780\) 0 0
\(781\) 574290. + 994699.i 0.0336902 + 0.0583531i
\(782\) −1.24604e7 −0.728643
\(783\) 0 0
\(784\) −2.90074e6 −0.168546
\(785\) −2.59742e6 4.49886e6i −0.150441 0.260572i
\(786\) 0 0
\(787\) −3.78298e6 + 6.55232e6i −0.217720 + 0.377101i −0.954110 0.299455i \(-0.903195\pi\)
0.736391 + 0.676556i \(0.236529\pi\)
\(788\) −314952. + 545513.i −0.0180688 + 0.0312960i
\(789\) 0 0
\(790\) 1.55173e6 + 2.68768e6i 0.0884604 + 0.153218i
\(791\) 1.28789e7 0.731875
\(792\) 0 0
\(793\) 6.18458e6 0.349243
\(794\) −626818. 1.08568e6i −0.0352850 0.0611154i
\(795\) 0 0
\(796\) −7.61987e6 + 1.31980e7i −0.426251 + 0.738288i
\(797\) −503674. + 872390.i −0.0280869 + 0.0486480i −0.879727 0.475479i \(-0.842275\pi\)
0.851640 + 0.524127i \(0.175608\pi\)
\(798\) 0 0
\(799\) 4.29811e6 + 7.44455e6i 0.238183 + 0.412545i
\(800\) −2.74842e6 −0.151830
\(801\) 0 0
\(802\) 2.11316e7 1.16010
\(803\) 2.36534e6 + 4.09688e6i 0.129451 + 0.224215i
\(804\) 0 0
\(805\) −2.81119e6 + 4.86912e6i −0.152897 + 0.264826i
\(806\) 1.20244e6 2.08269e6i 0.0651967 0.112924i
\(807\) 0 0
\(808\) 2.52384e6 + 4.37142e6i 0.135998 + 0.235556i
\(809\) −2.37253e7 −1.27450 −0.637251 0.770657i \(-0.719928\pi\)
−0.637251 + 0.770657i \(0.719928\pi\)
\(810\) 0 0
\(811\) 2.09278e7 1.11730 0.558652 0.829402i \(-0.311319\pi\)
0.558652 + 0.829402i \(0.311319\pi\)
\(812\) −666000. 1.15355e6i −0.0354474 0.0613967i
\(813\) 0 0
\(814\) −5.35518e6 + 9.27544e6i −0.283278 + 0.490652i
\(815\) 2.10122e6 3.63942e6i 0.110810 0.191928i
\(816\) 0 0
\(817\) 1.82354e7 + 3.15847e7i 0.955787 + 1.65547i
\(818\) 1.83525e7 0.958983
\(819\) 0 0
\(820\) 3.61469e6 0.187731
\(821\) −6.96434e6 1.20626e7i −0.360597 0.624572i 0.627462 0.778647i \(-0.284094\pi\)
−0.988059 + 0.154075i \(0.950760\pi\)
\(822\) 0 0
\(823\) 9.97764e6 1.72818e7i 0.513486 0.889383i −0.486392 0.873741i \(-0.661687\pi\)
0.999878 0.0156426i \(-0.00497938\pi\)
\(824\) 559616. 969283.i 0.0287126 0.0497316i
\(825\) 0 0
\(826\) −3.91608e6 6.78285e6i −0.199711 0.345909i
\(827\) −2.48097e7 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(828\) 0 0
\(829\) 1.22092e6 0.0617021 0.0308511 0.999524i \(-0.490178\pi\)
0.0308511 + 0.999524i \(0.490178\pi\)
\(830\) 3.20947e6 + 5.55897e6i 0.161711 + 0.280091i
\(831\) 0 0
\(832\) 235520. 407933.i 0.0117956 0.0204306i
\(833\) −4.87800e6 + 8.44894e6i −0.243573 + 0.421881i
\(834\) 0 0
\(835\) −148239. 256757.i −0.00735777 0.0127440i
\(836\) 7.99200e6 0.395494
\(837\) 0 0
\(838\) −9.46790e6 −0.465740
\(839\) 8.80920e6 + 1.52580e7i 0.432048 + 0.748329i 0.997050 0.0767611i \(-0.0244579\pi\)
−0.565002 + 0.825090i \(0.691125\pi\)
\(840\) 0 0
\(841\) 9.62276e6 1.66671e7i 0.469148 0.812588i
\(842\) 909590. 1.57546e6i 0.0442146 0.0765819i
\(843\) 0 0
\(844\) −3.52888e6 6.11220e6i −0.170522 0.295353i
\(845\) −7.51943e6 −0.362279
\(846\) 0 0
\(847\) −6.52317e6 −0.312428
\(848\) −4.70093e6 8.14225e6i −0.224488 0.388825i
\(849\) 0 0
\(850\) −4.62185e6 + 8.00528e6i −0.219416 + 0.380040i
\(851\) −1.79399e7 + 3.10727e7i −0.849171 + 1.47081i
\(852\) 0 0
\(853\) −1.71780e7 2.97531e7i −0.808350 1.40010i −0.914006 0.405701i \(-0.867027\pi\)
0.105656 0.994403i \(-0.466306\pi\)
\(854\) −1.59186e7 −0.746895
\(855\) 0 0
\(856\) −8.59930e6 −0.401124
\(857\) 493631. + 854993.i 0.0229588 + 0.0397659i 0.877277 0.479985i \(-0.159358\pi\)
−0.854318 + 0.519751i \(0.826025\pi\)
\(858\) 0 0
\(859\) −2.05926e7 + 3.56675e7i −0.952202 + 1.64926i −0.211555 + 0.977366i \(0.567853\pi\)
−0.740646 + 0.671895i \(0.765480\pi\)
\(860\) 3.31195e6 5.73647e6i 0.152700 0.264483i
\(861\) 0 0
\(862\) −2.52571e6 4.37466e6i −0.115775 0.200529i
\(863\) 2.07182e7 0.946946 0.473473 0.880808i \(-0.343000\pi\)
0.473473 + 0.880808i \(0.343000\pi\)
\(864\) 0 0
\(865\) −1.01638e6 −0.0461865
\(866\) −1.09780e7 1.90145e7i −0.497426 0.861568i
\(867\) 0 0
\(868\) −3.09498e6 + 5.36066e6i −0.139431 + 0.241501i
\(869\) 4.98771e6 8.63897e6i 0.224054 0.388072i
\(870\) 0 0
\(871\) −743705. 1.28813e6i −0.0332166 0.0575329i
\(872\) −7.90317e6 −0.351974
\(873\) 0 0
\(874\) 2.67732e7 1.18555
\(875\) 4.51359e6 + 7.81777e6i 0.199298 + 0.345194i
\(876\) 0 0
\(877\) 1.85173e7 3.20730e7i 0.812979 1.40812i −0.0977904 0.995207i \(-0.531177\pi\)
0.910770 0.412915i \(-0.135489\pi\)
\(878\) 1.22329e7 2.11880e7i 0.535541 0.927584i
\(879\) 0 0
\(880\) −725760. 1.25705e6i −0.0315927 0.0547201i
\(881\) −7.00502e6 −0.304067 −0.152034 0.988375i \(-0.548582\pi\)
−0.152034 + 0.988375i \(0.548582\pi\)
\(882\) 0 0
\(883\) 5.47102e6 0.236139 0.118069 0.993005i \(-0.462330\pi\)
0.118069 + 0.993005i \(0.462330\pi\)
\(884\) −792120. 1.37199e6i −0.0340926 0.0590501i
\(885\) 0 0
\(886\) −1.47840e6 + 2.56066e6i −0.0632714 + 0.109589i
\(887\) −1.09490e6 + 1.89642e6i −0.0467268 + 0.0809331i −0.888443 0.458987i \(-0.848212\pi\)
0.841716 + 0.539920i \(0.181546\pi\)
\(888\) 0 0
\(889\) 1.15803e7 + 2.00577e7i 0.491436 + 0.851192i
\(890\) −3.80999e6 −0.161231
\(891\) 0 0
\(892\) −1.32017e7 −0.555543
\(893\) −9.23520e6 1.59958e7i −0.387541 0.671241i
\(894\) 0 0
\(895\) −3.94166e6 + 6.82715e6i −0.164483 + 0.284893i
\(896\) −606208. + 1.04998e6i −0.0252262 + 0.0436930i
\(897\) 0 0
\(898\) −1.46286e7 2.53375e7i −0.605359 1.04851i
\(899\) 5.88150e6 0.242711
\(900\) 0 0
\(901\) −3.16211e7 −1.29767
\(902\) −5.80932e6 1.00620e7i −0.237744 0.411784i
\(903\) 0 0
\(904\) −5.56925e6 + 9.64622e6i −0.226660 + 0.392587i
\(905\) −4.62737e6 + 8.01484e6i −0.187807 + 0.325292i
\(906\) 0 0
\(907\) −2.43272e7 4.21360e7i −0.981916 1.70073i −0.654912 0.755705i \(-0.727294\pi\)
−0.327004 0.945023i \(-0.606039\pi\)
\(908\) 1.84912e7 0.744305
\(909\) 0 0
\(910\) −714840. −0.0286158
\(911\) 2.35396e7 + 4.07718e7i 0.939730 + 1.62766i 0.765975 + 0.642871i \(0.222257\pi\)
0.173755 + 0.984789i \(0.444410\pi\)
\(912\) 0 0
\(913\) 1.03162e7 1.78681e7i 0.409582 0.709417i
\(914\) 1.53781e7 2.66356e7i 0.608887 1.05462i
\(915\) 0 0
\(916\) −1.07469e7 1.86141e7i −0.423197 0.732999i
\(917\) −7.82994e6 −0.307493
\(918\) 0 0
\(919\) −2.23428e7 −0.872667 −0.436333 0.899785i \(-0.643723\pi\)
−0.436333 + 0.899785i \(0.643723\pi\)
\(920\) −2.43130e6 4.21113e6i −0.0947040 0.164032i
\(921\) 0 0
\(922\) 1.18787e7 2.05746e7i 0.460196 0.797083i
\(923\) −244605. + 423668.i −0.00945064 + 0.0163690i
\(924\) 0 0
\(925\) 1.33086e7 + 2.30512e7i 0.511421 + 0.885807i
\(926\) −1.82382e6 −0.0698965
\(927\) 0 0
\(928\) 1.15200e6 0.0439119
\(929\) 1.01093e7 + 1.75098e7i 0.384309 + 0.665642i 0.991673 0.128781i \(-0.0411065\pi\)
−0.607364 + 0.794424i \(0.707773\pi\)
\(930\) 0 0
\(931\) 1.04812e7 1.81539e7i 0.396311 0.686430i
\(932\) −8.60441e6 + 1.49033e7i −0.324475 + 0.562007i
\(933\) 0 0
\(934\) 1.19419e7 + 2.06841e7i 0.447928 + 0.775833i
\(935\) −4.88187e6 −0.182624
\(936\) 0 0
\(937\) −3.88053e7 −1.44392 −0.721959 0.691936i \(-0.756758\pi\)
−0.721959 + 0.691936i \(0.756758\pi\)
\(938\) 1.91423e6 + 3.31555e6i 0.0710375 + 0.123041i
\(939\) 0 0
\(940\) −1.67731e6 + 2.90519e6i −0.0619148 + 0.107240i
\(941\) 1.39057e7 2.40854e7i 0.511940 0.886707i −0.487964 0.872864i \(-0.662260\pi\)
0.999904 0.0138427i \(-0.00440642\pi\)
\(942\) 0 0
\(943\) −1.94612e7 3.37078e7i −0.712674 1.23439i
\(944\) 6.77376e6 0.247400
\(945\) 0 0
\(946\) −2.12911e7 −0.773518
\(947\) 1.91196e7 + 3.31162e7i 0.692794 + 1.19995i 0.970919 + 0.239410i \(0.0769540\pi\)
−0.278124 + 0.960545i \(0.589713\pi\)
\(948\) 0 0
\(949\) −1.00746e6 + 1.74497e6i −0.0363129 + 0.0628958i
\(950\) 9.93080e6 1.72007e7i 0.357006 0.618352i
\(951\) 0 0
\(952\) 2.03885e6 + 3.53139e6i 0.0729109 + 0.126285i
\(953\) 1.01512e7 0.362065 0.181033 0.983477i \(-0.442056\pi\)
0.181033 + 0.983477i \(0.442056\pi\)
\(954\) 0 0
\(955\) 1.02265e7 0.362844
\(956\) −288768. 500161.i −0.0102189 0.0176997i
\(957\) 0 0
\(958\) −8.49678e6 + 1.47169e7i −0.299117 + 0.518085i
\(959\) 1.05258e7 1.82312e7i 0.369580 0.640131i
\(960\) 0 0
\(961\) 648584. + 1.12338e6i 0.0226547 + 0.0392390i
\(962\) −4.56182e6 −0.158928
\(963\) 0 0
\(964\) 1.16600e6 0.0404116
\(965\) 1.09394e6 + 1.89476e6i 0.0378161 + 0.0654993i
\(966\) 0 0
\(967\) 7.07872e6 1.22607e7i 0.243438 0.421647i −0.718253 0.695782i \(-0.755058\pi\)
0.961691 + 0.274135i \(0.0883914\pi\)
\(968\) 2.82083e6 4.88582e6i 0.0967584 0.167591i
\(969\) 0 0
\(970\) −5.35811e6 9.28052e6i −0.182845 0.316696i
\(971\) 1.50291e6 0.0511546 0.0255773 0.999673i \(-0.491858\pi\)
0.0255773 + 0.999673i \(0.491858\pi\)
\(972\) 0 0
\(973\) −1.20123e7 −0.406765
\(974\) 2.08095e6 + 3.60431e6i 0.0702853 + 0.121738i
\(975\) 0 0
\(976\) 6.88371e6 1.19229e7i 0.231312 0.400644i
\(977\) 1.44460e7 2.50212e7i 0.484185 0.838634i −0.515650 0.856800i \(-0.672449\pi\)
0.999835 + 0.0181658i \(0.00578268\pi\)
\(978\) 0 0
\(979\) 6.12320e6 + 1.06057e7i 0.204184 + 0.353657i
\(980\) −3.80722e6 −0.126632
\(981\) 0 0
\(982\) 2.22279e7 0.735563
\(983\) −3.85799e6 6.68223e6i −0.127344 0.220566i 0.795303 0.606212i \(-0.207312\pi\)
−0.922647 + 0.385647i \(0.873978\pi\)
\(984\) 0 0
\(985\) −413374. + 715986.i −0.0135754 + 0.0235133i
\(986\) 1.93725e6 3.35542e6i 0.0634590 0.109914i
\(987\) 0 0
\(988\) 1.70200e6 + 2.94795e6i 0.0554712 + 0.0960789i
\(989\) −7.13253e7 −2.31874
\(990\) 0 0
\(991\) −1.87209e7 −0.605538 −0.302769 0.953064i \(-0.597911\pi\)
−0.302769 + 0.953064i \(0.597911\pi\)
\(992\) −2.67674e6 4.63624e6i −0.0863627 0.149585i
\(993\) 0 0
\(994\) 629592. 1.09049e6i 0.0202113 0.0350069i
\(995\) −1.00011e7 + 1.73224e7i −0.320250 + 0.554689i
\(996\) 0 0
\(997\) −2.68938e6 4.65815e6i −0.0856869 0.148414i 0.819997 0.572368i \(-0.193975\pi\)
−0.905684 + 0.423954i \(0.860642\pi\)
\(998\) −1.41311e6 −0.0449107
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.c.d.109.1 2
3.2 odd 2 162.6.c.i.109.1 2
9.2 odd 6 162.6.c.i.55.1 2
9.4 even 3 162.6.a.b.1.1 yes 1
9.5 odd 6 162.6.a.a.1.1 1
9.7 even 3 inner 162.6.c.d.55.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.6.a.a.1.1 1 9.5 odd 6
162.6.a.b.1.1 yes 1 9.4 even 3
162.6.c.d.55.1 2 9.7 even 3 inner
162.6.c.d.109.1 2 1.1 even 1 trivial
162.6.c.i.55.1 2 9.2 odd 6
162.6.c.i.109.1 2 3.2 odd 2