Properties

Label 162.6.c.j
Level $162$
Weight $6$
Character orbit 162.c
Analytic conductor $25.982$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \zeta_{6} + 4) q^{2} - 16 \zeta_{6} q^{4} + 24 \zeta_{6} q^{5} + (77 \zeta_{6} - 77) q^{7} - 64 q^{8} + 96 q^{10} + ( - 408 \zeta_{6} + 408) q^{11} - 89 \zeta_{6} q^{13} + 308 \zeta_{6} q^{14} + \cdots + 43512 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 16 q^{4} + 24 q^{5} - 77 q^{7} - 128 q^{8} + 192 q^{10} + 408 q^{11} - 89 q^{13} + 308 q^{14} - 256 q^{16} - 4176 q^{17} - 5234 q^{19} + 384 q^{20} - 1632 q^{22} + 1752 q^{23} + 2549 q^{25}+ \cdots + 87024 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
2.00000 3.46410i 0 −8.00000 13.8564i 12.0000 + 20.7846i 0 −38.5000 + 66.6840i −64.0000 0 96.0000
109.1 2.00000 + 3.46410i 0 −8.00000 + 13.8564i 12.0000 20.7846i 0 −38.5000 66.6840i −64.0000 0 96.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.c.j 2
3.b odd 2 1 162.6.c.c 2
9.c even 3 1 54.6.a.b 1
9.c even 3 1 inner 162.6.c.j 2
9.d odd 6 1 54.6.a.e yes 1
9.d odd 6 1 162.6.c.c 2
36.f odd 6 1 432.6.a.d 1
36.h even 6 1 432.6.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.6.a.b 1 9.c even 3 1
54.6.a.e yes 1 9.d odd 6 1
162.6.c.c 2 3.b odd 2 1
162.6.c.c 2 9.d odd 6 1
162.6.c.j 2 1.a even 1 1 trivial
162.6.c.j 2 9.c even 3 1 inner
432.6.a.d 1 36.f odd 6 1
432.6.a.g 1 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 24T_{5} + 576 \) acting on \(S_{6}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$7$ \( T^{2} + 77T + 5929 \) Copy content Toggle raw display
$11$ \( T^{2} - 408T + 166464 \) Copy content Toggle raw display
$13$ \( T^{2} + 89T + 7921 \) Copy content Toggle raw display
$17$ \( (T + 2088)^{2} \) Copy content Toggle raw display
$19$ \( (T + 2617)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 1752 T + 3069504 \) Copy content Toggle raw display
$29$ \( T^{2} + 7296 T + 53231616 \) Copy content Toggle raw display
$31$ \( T^{2} + 2348 T + 5513104 \) Copy content Toggle raw display
$37$ \( (T + 4993)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 6528 T + 42614784 \) Copy content Toggle raw display
$43$ \( T^{2} - 6232 T + 38837824 \) Copy content Toggle raw display
$47$ \( T^{2} + 29832 T + 889948224 \) Copy content Toggle raw display
$53$ \( (T + 22608)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 19608 T + 384473664 \) Copy content Toggle raw display
$61$ \( T^{2} - 22045 T + 485982025 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2316593161 \) Copy content Toggle raw display
$71$ \( (T + 51120)^{2} \) Copy content Toggle raw display
$73$ \( (T - 30737)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1460691961 \) Copy content Toggle raw display
$83$ \( T^{2} - 8112 T + 65804544 \) Copy content Toggle raw display
$89$ \( (T - 44280)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 18673495801 \) Copy content Toggle raw display
show more
show less