Properties

Label 162.8.c.d.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.d.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(57.0000 + 98.7269i) q^{5} +(788.000 - 1364.86i) q^{7} +512.000 q^{8} -912.000 q^{10} +(-3666.00 + 6349.70i) q^{11} +(1901.00 + 3292.63i) q^{13} +(6304.00 + 10918.8i) q^{14} +(-2048.00 + 3547.24i) q^{16} -6606.00 q^{17} +24860.0 q^{19} +(3648.00 - 6318.52i) q^{20} +(-29328.0 - 50797.6i) q^{22} +(-20724.0 - 35895.0i) q^{23} +(32564.5 - 56403.4i) q^{25} -30416.0 q^{26} -100864. q^{28} +(20805.0 - 36035.3i) q^{29} +(-16576.0 - 28710.5i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(26424.0 - 45767.7i) q^{34} +179664. q^{35} -36466.0 q^{37} +(-99440.0 + 172235. i) q^{38} +(29184.0 + 50548.2i) q^{40} +(319539. + 553458. i) q^{41} +(78206.0 - 135457. i) q^{43} +469248. q^{44} +331584. q^{46} +(216888. - 375661. i) q^{47} +(-830116. - 1.43780e6i) q^{49} +(260516. + 451227. i) q^{50} +(121664. - 210728. i) q^{52} +786078. q^{53} -835848. q^{55} +(403456. - 698806. i) q^{56} +(166440. + 288283. i) q^{58} +(-372570. - 645310. i) q^{59} +(830309. - 1.43814e6i) q^{61} +265216. q^{62} +262144. q^{64} +(-216714. + 375360. i) q^{65} +(1.64542e6 + 2.84995e6i) q^{67} +(211392. + 366142. i) q^{68} +(-718656. + 1.24475e6i) q^{70} +5.71615e6 q^{71} +2.65990e6 q^{73} +(145864. - 252644. i) q^{74} +(-795520. - 1.37788e6i) q^{76} +(5.77762e6 + 1.00071e7i) q^{77} +(-1.90372e6 + 3.29734e6i) q^{79} -466944. q^{80} -5.11262e6 q^{82} +(-1.11473e6 + 1.93078e6i) q^{83} +(-376542. - 652190. i) q^{85} +(625648. + 1.08365e6i) q^{86} +(-1.87699e6 + 3.25105e6i) q^{88} +5.99121e6 q^{89} +5.99195e6 q^{91} +(-1.32634e6 + 2.29728e6i) q^{92} +(1.73510e6 + 3.00529e6i) q^{94} +(1.41702e6 + 2.45435e6i) q^{95} +(2.03006e6 - 3.51617e6i) q^{97} +1.32819e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} + 114 q^{5} + 1576 q^{7} + 1024 q^{8} - 1824 q^{10} - 7332 q^{11} + 3802 q^{13} + 12608 q^{14} - 4096 q^{16} - 13212 q^{17} + 49720 q^{19} + 7296 q^{20} - 58656 q^{22} - 41448 q^{23}+ \cdots + 26563728 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 57.0000 + 98.7269i 0.203929 + 0.353216i 0.949791 0.312885i \(-0.101295\pi\)
−0.745862 + 0.666101i \(0.767962\pi\)
\(6\) 0 0
\(7\) 788.000 1364.86i 0.868327 1.50399i 0.00462077 0.999989i \(-0.498529\pi\)
0.863706 0.503996i \(-0.168138\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −912.000 −0.288400
\(11\) −3666.00 + 6349.70i −0.830459 + 1.43840i 0.0672162 + 0.997738i \(0.478588\pi\)
−0.897675 + 0.440658i \(0.854745\pi\)
\(12\) 0 0
\(13\) 1901.00 + 3292.63i 0.239983 + 0.415663i 0.960709 0.277557i \(-0.0895248\pi\)
−0.720726 + 0.693220i \(0.756191\pi\)
\(14\) 6304.00 + 10918.8i 0.614000 + 1.06348i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −6606.00 −0.326112 −0.163056 0.986617i \(-0.552135\pi\)
−0.163056 + 0.986617i \(0.552135\pi\)
\(18\) 0 0
\(19\) 24860.0 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(20\) 3648.00 6318.52i 0.101965 0.176608i
\(21\) 0 0
\(22\) −29328.0 50797.6i −0.587223 1.01710i
\(23\) −20724.0 35895.0i −0.355162 0.615158i 0.631984 0.774982i \(-0.282241\pi\)
−0.987146 + 0.159823i \(0.948908\pi\)
\(24\) 0 0
\(25\) 32564.5 56403.4i 0.416826 0.721963i
\(26\) −30416.0 −0.339387
\(27\) 0 0
\(28\) −100864. −0.868327
\(29\) 20805.0 36035.3i 0.158407 0.274369i −0.775887 0.630872i \(-0.782697\pi\)
0.934294 + 0.356502i \(0.116031\pi\)
\(30\) 0 0
\(31\) −16576.0 28710.5i −0.0999341 0.173091i 0.811723 0.584043i \(-0.198530\pi\)
−0.911657 + 0.410952i \(0.865197\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 26424.0 45767.7i 0.115298 0.199702i
\(35\) 179664. 0.708309
\(36\) 0 0
\(37\) −36466.0 −0.118354 −0.0591769 0.998248i \(-0.518848\pi\)
−0.0591769 + 0.998248i \(0.518848\pi\)
\(38\) −99440.0 + 172235.i −0.293981 + 0.509189i
\(39\) 0 0
\(40\) 29184.0 + 50548.2i 0.0720999 + 0.124881i
\(41\) 319539. + 553458.i 0.724070 + 1.25413i 0.959356 + 0.282199i \(0.0910640\pi\)
−0.235286 + 0.971926i \(0.575603\pi\)
\(42\) 0 0
\(43\) 78206.0 135457.i 0.150003 0.259813i −0.781225 0.624249i \(-0.785405\pi\)
0.931228 + 0.364436i \(0.118738\pi\)
\(44\) 469248. 0.830459
\(45\) 0 0
\(46\) 331584. 0.502275
\(47\) 216888. 375661.i 0.304714 0.527781i −0.672483 0.740112i \(-0.734772\pi\)
0.977198 + 0.212331i \(0.0681056\pi\)
\(48\) 0 0
\(49\) −830116. 1.43780e6i −1.00798 1.74588i
\(50\) 260516. + 451227.i 0.294740 + 0.510505i
\(51\) 0 0
\(52\) 121664. 210728.i 0.119991 0.207831i
\(53\) 786078. 0.725271 0.362635 0.931931i \(-0.381877\pi\)
0.362635 + 0.931931i \(0.381877\pi\)
\(54\) 0 0
\(55\) −835848. −0.677420
\(56\) 403456. 698806.i 0.307000 0.531739i
\(57\) 0 0
\(58\) 166440. + 288283.i 0.112011 + 0.194008i
\(59\) −372570. 645310.i −0.236171 0.409059i 0.723442 0.690386i \(-0.242559\pi\)
−0.959612 + 0.281326i \(0.909226\pi\)
\(60\) 0 0
\(61\) 830309. 1.43814e6i 0.468366 0.811234i −0.530980 0.847384i \(-0.678176\pi\)
0.999346 + 0.0361505i \(0.0115096\pi\)
\(62\) 265216. 0.141328
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −216714. + 375360.i −0.0978792 + 0.169532i
\(66\) 0 0
\(67\) 1.64542e6 + 2.84995e6i 0.668366 + 1.15764i 0.978361 + 0.206906i \(0.0663394\pi\)
−0.309995 + 0.950738i \(0.600327\pi\)
\(68\) 211392. + 366142.i 0.0815281 + 0.141211i
\(69\) 0 0
\(70\) −718656. + 1.24475e6i −0.250425 + 0.433749i
\(71\) 5.71615e6 1.89539 0.947697 0.319171i \(-0.103404\pi\)
0.947697 + 0.319171i \(0.103404\pi\)
\(72\) 0 0
\(73\) 2.65990e6 0.800267 0.400134 0.916457i \(-0.368964\pi\)
0.400134 + 0.916457i \(0.368964\pi\)
\(74\) 145864. 252644.i 0.0418444 0.0724766i
\(75\) 0 0
\(76\) −795520. 1.37788e6i −0.207876 0.360051i
\(77\) 5.77762e6 + 1.00071e7i 1.44222 + 2.49800i
\(78\) 0 0
\(79\) −1.90372e6 + 3.29734e6i −0.434418 + 0.752435i −0.997248 0.0741382i \(-0.976379\pi\)
0.562830 + 0.826573i \(0.309713\pi\)
\(80\) −466944. −0.101965
\(81\) 0 0
\(82\) −5.11262e6 −1.02399
\(83\) −1.11473e6 + 1.93078e6i −0.213992 + 0.370645i −0.952960 0.303095i \(-0.901980\pi\)
0.738968 + 0.673740i \(0.235313\pi\)
\(84\) 0 0
\(85\) −376542. 652190.i −0.0665039 0.115188i
\(86\) 625648. + 1.08365e6i 0.106068 + 0.183716i
\(87\) 0 0
\(88\) −1.87699e6 + 3.25105e6i −0.293612 + 0.508550i
\(89\) 5.99121e6 0.900844 0.450422 0.892816i \(-0.351274\pi\)
0.450422 + 0.892816i \(0.351274\pi\)
\(90\) 0 0
\(91\) 5.99195e6 0.833534
\(92\) −1.32634e6 + 2.29728e6i −0.177581 + 0.307579i
\(93\) 0 0
\(94\) 1.73510e6 + 3.00529e6i 0.215466 + 0.373197i
\(95\) 1.41702e6 + 2.45435e6i 0.169568 + 0.293700i
\(96\) 0 0
\(97\) 2.03006e6 3.51617e6i 0.225844 0.391173i −0.730728 0.682668i \(-0.760819\pi\)
0.956572 + 0.291495i \(0.0941527\pi\)
\(98\) 1.32819e7 1.42550
\(99\) 0 0
\(100\) −4.16826e6 −0.416826
\(101\) 8.64097e6 1.49666e7i 0.834522 1.44543i −0.0598975 0.998205i \(-0.519077\pi\)
0.894419 0.447229i \(-0.147589\pi\)
\(102\) 0 0
\(103\) 7.18116e6 + 1.24381e7i 0.647536 + 1.12157i 0.983709 + 0.179765i \(0.0575339\pi\)
−0.336173 + 0.941800i \(0.609133\pi\)
\(104\) 973312. + 1.68583e6i 0.0848468 + 0.146959i
\(105\) 0 0
\(106\) −3.14431e6 + 5.44611e6i −0.256422 + 0.444136i
\(107\) 6.45440e6 0.509346 0.254673 0.967027i \(-0.418032\pi\)
0.254673 + 0.967027i \(0.418032\pi\)
\(108\) 0 0
\(109\) −884410. −0.0654125 −0.0327063 0.999465i \(-0.510413\pi\)
−0.0327063 + 0.999465i \(0.510413\pi\)
\(110\) 3.34339e6 5.79092e6i 0.239504 0.414833i
\(111\) 0 0
\(112\) 3.22765e6 + 5.59045e6i 0.217082 + 0.375996i
\(113\) −6.06625e6 1.05071e7i −0.395499 0.685025i 0.597666 0.801746i \(-0.296095\pi\)
−0.993165 + 0.116721i \(0.962762\pi\)
\(114\) 0 0
\(115\) 2.36254e6 4.09203e6i 0.144856 0.250898i
\(116\) −2.66304e6 −0.158407
\(117\) 0 0
\(118\) 5.96112e6 0.333996
\(119\) −5.20553e6 + 9.01624e6i −0.283172 + 0.490468i
\(120\) 0 0
\(121\) −1.71355e7 2.96796e7i −0.879323 1.52303i
\(122\) 6.64247e6 + 1.15051e7i 0.331185 + 0.573629i
\(123\) 0 0
\(124\) −1.06086e6 + 1.83747e6i −0.0499671 + 0.0865455i
\(125\) 1.63310e7 0.747871
\(126\) 0 0
\(127\) 6.86806e6 0.297524 0.148762 0.988873i \(-0.452471\pi\)
0.148762 + 0.988873i \(0.452471\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.73371e6 3.00288e6i −0.0692110 0.119877i
\(131\) 1.97604e7 + 3.42260e7i 0.767973 + 1.33017i 0.938660 + 0.344843i \(0.112068\pi\)
−0.170687 + 0.985325i \(0.554599\pi\)
\(132\) 0 0
\(133\) 1.95897e7 3.39303e7i 0.722016 1.25057i
\(134\) −2.63267e7 −0.945212
\(135\) 0 0
\(136\) −3.38227e6 −0.115298
\(137\) −9.58704e6 + 1.66052e7i −0.318539 + 0.551725i −0.980183 0.198092i \(-0.936525\pi\)
0.661645 + 0.749818i \(0.269859\pi\)
\(138\) 0 0
\(139\) −6.62245e6 1.14704e7i −0.209154 0.362266i 0.742294 0.670074i \(-0.233738\pi\)
−0.951448 + 0.307808i \(0.900404\pi\)
\(140\) −5.74925e6 9.95799e6i −0.177077 0.306707i
\(141\) 0 0
\(142\) −2.28646e7 + 3.96027e7i −0.670123 + 1.16069i
\(143\) −2.78763e7 −0.797184
\(144\) 0 0
\(145\) 4.74354e6 0.129215
\(146\) −1.06396e7 + 1.84283e7i −0.282937 + 0.490062i
\(147\) 0 0
\(148\) 1.16691e6 + 2.02115e6i 0.0295884 + 0.0512487i
\(149\) −2.86812e7 4.96773e7i −0.710306 1.23029i −0.964742 0.263197i \(-0.915223\pi\)
0.254436 0.967090i \(-0.418110\pi\)
\(150\) 0 0
\(151\) 1.55436e7 2.69224e7i 0.367395 0.636347i −0.621762 0.783206i \(-0.713583\pi\)
0.989157 + 0.146859i \(0.0469163\pi\)
\(152\) 1.27283e7 0.293981
\(153\) 0 0
\(154\) −9.24419e7 −2.03961
\(155\) 1.88966e6 3.27299e6i 0.0407590 0.0705967i
\(156\) 0 0
\(157\) 1.68917e7 + 2.92573e7i 0.348358 + 0.603373i 0.985958 0.166994i \(-0.0534061\pi\)
−0.637600 + 0.770367i \(0.720073\pi\)
\(158\) −1.52298e7 2.63787e7i −0.307180 0.532052i
\(159\) 0 0
\(160\) 1.86778e6 3.23508e6i 0.0360500 0.0624404i
\(161\) −6.53220e7 −1.23359
\(162\) 0 0
\(163\) 6.26659e7 1.13338 0.566689 0.823932i \(-0.308224\pi\)
0.566689 + 0.823932i \(0.308224\pi\)
\(164\) 2.04505e7 3.54213e7i 0.362035 0.627063i
\(165\) 0 0
\(166\) −8.91787e6 1.54462e7i −0.151315 0.262086i
\(167\) −3.13536e7 5.43060e7i −0.520931 0.902278i −0.999704 0.0243397i \(-0.992252\pi\)
0.478773 0.877939i \(-0.341082\pi\)
\(168\) 0 0
\(169\) 2.41467e7 4.18232e7i 0.384816 0.666522i
\(170\) 6.02467e6 0.0940507
\(171\) 0 0
\(172\) −1.00104e7 −0.150003
\(173\) 1.35261e7 2.34278e7i 0.198614 0.344010i −0.749465 0.662044i \(-0.769689\pi\)
0.948079 + 0.318034i \(0.103023\pi\)
\(174\) 0 0
\(175\) −5.13217e7 8.88917e7i −0.723881 1.25380i
\(176\) −1.50159e7 2.60084e7i −0.207615 0.359599i
\(177\) 0 0
\(178\) −2.39648e7 + 4.15083e7i −0.318496 + 0.551652i
\(179\) −1.34281e8 −1.74996 −0.874981 0.484157i \(-0.839126\pi\)
−0.874981 + 0.484157i \(0.839126\pi\)
\(180\) 0 0
\(181\) 1.14661e8 1.43727 0.718636 0.695386i \(-0.244767\pi\)
0.718636 + 0.695386i \(0.244767\pi\)
\(182\) −2.39678e7 + 4.15135e7i −0.294699 + 0.510433i
\(183\) 0 0
\(184\) −1.06107e7 1.83783e7i −0.125569 0.217491i
\(185\) −2.07856e6 3.60017e6i −0.0241358 0.0418045i
\(186\) 0 0
\(187\) 2.42176e7 4.19461e7i 0.270823 0.469079i
\(188\) −2.77617e7 −0.304714
\(189\) 0 0
\(190\) −2.26723e7 −0.239805
\(191\) −8.18026e6 + 1.41686e7i −0.0849474 + 0.147133i −0.905369 0.424626i \(-0.860406\pi\)
0.820421 + 0.571759i \(0.193739\pi\)
\(192\) 0 0
\(193\) 7.70992e7 + 1.33540e8i 0.771968 + 1.33709i 0.936483 + 0.350714i \(0.114061\pi\)
−0.164514 + 0.986375i \(0.552606\pi\)
\(194\) 1.62405e7 + 2.81294e7i 0.159696 + 0.276601i
\(195\) 0 0
\(196\) −5.31275e7 + 9.20195e7i −0.503991 + 0.872938i
\(197\) 8.32288e7 0.775607 0.387804 0.921742i \(-0.373234\pi\)
0.387804 + 0.921742i \(0.373234\pi\)
\(198\) 0 0
\(199\) −7.61722e7 −0.685190 −0.342595 0.939483i \(-0.611306\pi\)
−0.342595 + 0.939483i \(0.611306\pi\)
\(200\) 1.66730e7 2.88785e7i 0.147370 0.255253i
\(201\) 0 0
\(202\) 6.91278e7 + 1.19733e8i 0.590096 + 1.02208i
\(203\) −3.27887e7 5.67917e7i −0.275098 0.476484i
\(204\) 0 0
\(205\) −3.64274e7 + 6.30942e7i −0.295318 + 0.511506i
\(206\) −1.14898e8 −0.915755
\(207\) 0 0
\(208\) −1.55730e7 −0.119991
\(209\) −9.11368e7 + 1.57853e8i −0.690528 + 1.19603i
\(210\) 0 0
\(211\) −1.76223e7 3.05227e7i −0.129144 0.223684i 0.794201 0.607655i \(-0.207890\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(212\) −2.51545e7 4.35689e7i −0.181318 0.314051i
\(213\) 0 0
\(214\) −2.58176e7 + 4.47174e7i −0.180081 + 0.311909i
\(215\) 1.78310e7 0.122360
\(216\) 0 0
\(217\) −5.22476e7 −0.347102
\(218\) 3.53764e6 6.12737e6i 0.0231268 0.0400568i
\(219\) 0 0
\(220\) 2.67471e7 + 4.63274e7i 0.169355 + 0.293331i
\(221\) −1.25580e7 2.17511e7i −0.0782614 0.135553i
\(222\) 0 0
\(223\) 9.45657e7 1.63793e8i 0.571040 0.989070i −0.425419 0.904996i \(-0.639873\pi\)
0.996460 0.0840741i \(-0.0267933\pi\)
\(224\) −5.16424e7 −0.307000
\(225\) 0 0
\(226\) 9.70600e7 0.559320
\(227\) 8.80501e7 1.52507e8i 0.499620 0.865367i −0.500380 0.865806i \(-0.666806\pi\)
1.00000 0.000439095i \(0.000139768\pi\)
\(228\) 0 0
\(229\) −3.25198e7 5.63260e7i −0.178947 0.309945i 0.762573 0.646902i \(-0.223936\pi\)
−0.941520 + 0.336957i \(0.890602\pi\)
\(230\) 1.89003e7 + 3.27363e7i 0.102429 + 0.177411i
\(231\) 0 0
\(232\) 1.06522e7 1.84501e7i 0.0560054 0.0970042i
\(233\) −2.51319e8 −1.30160 −0.650802 0.759248i \(-0.725567\pi\)
−0.650802 + 0.759248i \(0.725567\pi\)
\(234\) 0 0
\(235\) 4.94505e7 0.248561
\(236\) −2.38445e7 + 4.12999e7i −0.118085 + 0.204530i
\(237\) 0 0
\(238\) −4.16442e7 7.21299e7i −0.200233 0.346814i
\(239\) −1.06540e8 1.84532e8i −0.504799 0.874338i −0.999985 0.00555086i \(-0.998233\pi\)
0.495185 0.868787i \(-0.335100\pi\)
\(240\) 0 0
\(241\) −1.28642e8 + 2.22814e8i −0.592001 + 1.02538i 0.401962 + 0.915657i \(0.368329\pi\)
−0.993963 + 0.109719i \(0.965005\pi\)
\(242\) 2.74168e8 1.24355
\(243\) 0 0
\(244\) −1.06280e8 −0.468366
\(245\) 9.46333e7 1.63910e8i 0.411114 0.712071i
\(246\) 0 0
\(247\) 4.72589e7 + 8.18547e7i 0.199546 + 0.345625i
\(248\) −8.48691e6 1.46998e7i −0.0353320 0.0611969i
\(249\) 0 0
\(250\) −6.53238e7 + 1.13144e8i −0.264412 + 0.457975i
\(251\) 1.23058e8 0.491193 0.245596 0.969372i \(-0.421016\pi\)
0.245596 + 0.969372i \(0.421016\pi\)
\(252\) 0 0
\(253\) 3.03897e8 1.17979
\(254\) −2.74723e7 + 4.75833e7i −0.105190 + 0.182195i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 2.21667e8 + 3.83938e8i 0.814582 + 1.41090i 0.909627 + 0.415425i \(0.136367\pi\)
−0.0950450 + 0.995473i \(0.530300\pi\)
\(258\) 0 0
\(259\) −2.87352e7 + 4.97708e7i −0.102770 + 0.178002i
\(260\) 2.77394e7 0.0978792
\(261\) 0 0
\(262\) −3.16166e8 −1.08608
\(263\) −1.49462e8 + 2.58876e8i −0.506625 + 0.877500i 0.493345 + 0.869833i \(0.335774\pi\)
−0.999971 + 0.00766701i \(0.997559\pi\)
\(264\) 0 0
\(265\) 4.48064e7 + 7.76070e7i 0.147904 + 0.256177i
\(266\) 1.56717e8 + 2.71443e8i 0.510542 + 0.884285i
\(267\) 0 0
\(268\) 1.05307e8 1.82397e8i 0.334183 0.578822i
\(269\) 2.08908e8 0.654368 0.327184 0.944961i \(-0.393900\pi\)
0.327184 + 0.944961i \(0.393900\pi\)
\(270\) 0 0
\(271\) −1.12749e7 −0.0344129 −0.0172064 0.999852i \(-0.505477\pi\)
−0.0172064 + 0.999852i \(0.505477\pi\)
\(272\) 1.35291e7 2.34331e7i 0.0407641 0.0706054i
\(273\) 0 0
\(274\) −7.66963e7 1.32842e8i −0.225241 0.390129i
\(275\) 2.38763e8 + 4.13549e8i 0.692313 + 1.19912i
\(276\) 0 0
\(277\) 3.29482e8 5.70680e8i 0.931435 1.61329i 0.150565 0.988600i \(-0.451891\pi\)
0.780870 0.624693i \(-0.214776\pi\)
\(278\) 1.05959e8 0.295789
\(279\) 0 0
\(280\) 9.19880e7 0.250425
\(281\) 5.25614e7 9.10390e7i 0.141317 0.244769i −0.786676 0.617366i \(-0.788200\pi\)
0.927993 + 0.372598i \(0.121533\pi\)
\(282\) 0 0
\(283\) −1.65081e8 2.85928e8i −0.432956 0.749901i 0.564171 0.825658i \(-0.309196\pi\)
−0.997126 + 0.0757570i \(0.975863\pi\)
\(284\) −1.82917e8 3.16821e8i −0.473849 0.820730i
\(285\) 0 0
\(286\) 1.11505e8 1.93132e8i 0.281847 0.488173i
\(287\) 1.00719e9 2.51492
\(288\) 0 0
\(289\) −3.66699e8 −0.893651
\(290\) −1.89742e7 + 3.28642e7i −0.0456846 + 0.0791280i
\(291\) 0 0
\(292\) −8.51167e7 1.47427e8i −0.200067 0.346526i
\(293\) 4.35501e7 + 7.54310e7i 0.101147 + 0.175192i 0.912157 0.409840i \(-0.134415\pi\)
−0.811011 + 0.585032i \(0.801082\pi\)
\(294\) 0 0
\(295\) 4.24730e7 7.35654e7i 0.0963243 0.166839i
\(296\) −1.86706e7 −0.0418444
\(297\) 0 0
\(298\) 4.58899e8 1.00452
\(299\) 7.87926e7 1.36473e8i 0.170466 0.295255i
\(300\) 0 0
\(301\) −1.23253e8 2.13480e8i −0.260503 0.451205i
\(302\) 1.24349e8 + 2.15379e8i 0.259788 + 0.449965i
\(303\) 0 0
\(304\) −5.09133e7 + 8.81844e7i −0.103938 + 0.180026i
\(305\) 1.89310e8 0.382054
\(306\) 0 0
\(307\) −3.91709e8 −0.772644 −0.386322 0.922364i \(-0.626255\pi\)
−0.386322 + 0.922364i \(0.626255\pi\)
\(308\) 3.69767e8 6.40456e8i 0.721109 1.24900i
\(309\) 0 0
\(310\) 1.51173e7 + 2.61840e7i 0.0288210 + 0.0499194i
\(311\) 1.02468e8 + 1.77480e8i 0.193164 + 0.334570i 0.946297 0.323298i \(-0.104792\pi\)
−0.753133 + 0.657868i \(0.771458\pi\)
\(312\) 0 0
\(313\) −4.38601e8 + 7.59680e8i −0.808471 + 1.40031i 0.105451 + 0.994424i \(0.466371\pi\)
−0.913922 + 0.405889i \(0.866962\pi\)
\(314\) −2.70268e8 −0.492652
\(315\) 0 0
\(316\) 2.43676e8 0.434418
\(317\) 2.20415e8 3.81770e8i 0.388628 0.673124i −0.603637 0.797259i \(-0.706282\pi\)
0.992265 + 0.124136i \(0.0396158\pi\)
\(318\) 0 0
\(319\) 1.52542e8 + 2.64211e8i 0.263101 + 0.455705i
\(320\) 1.49422e7 + 2.58807e7i 0.0254912 + 0.0441520i
\(321\) 0 0
\(322\) 2.61288e8 4.52564e8i 0.436138 0.755414i
\(323\) −1.64225e8 −0.271163
\(324\) 0 0
\(325\) 2.47620e8 0.400124
\(326\) −2.50663e8 + 4.34162e8i −0.400709 + 0.694049i
\(327\) 0 0
\(328\) 1.63604e8 + 2.83370e8i 0.255997 + 0.443400i
\(329\) −3.41815e8 5.92042e8i −0.529183 0.916572i
\(330\) 0 0
\(331\) −5.56115e8 + 9.63219e8i −0.842882 + 1.45991i 0.0445664 + 0.999006i \(0.485809\pi\)
−0.887448 + 0.460908i \(0.847524\pi\)
\(332\) 1.42686e8 0.213992
\(333\) 0 0
\(334\) 5.01658e8 0.736707
\(335\) −1.87578e8 + 3.24894e8i −0.272599 + 0.472155i
\(336\) 0 0
\(337\) −1.44099e8 2.49587e8i −0.205096 0.355236i 0.745068 0.666989i \(-0.232417\pi\)
−0.950163 + 0.311753i \(0.899084\pi\)
\(338\) 1.93173e8 + 3.34586e8i 0.272106 + 0.471302i
\(339\) 0 0
\(340\) −2.40987e7 + 4.17402e7i −0.0332520 + 0.0575941i
\(341\) 2.43070e8 0.331965
\(342\) 0 0
\(343\) −1.31862e9 −1.76438
\(344\) 4.00415e7 6.93539e7i 0.0530341 0.0918578i
\(345\) 0 0
\(346\) 1.08208e8 + 1.87423e8i 0.140441 + 0.243252i
\(347\) 5.53003e8 + 9.57830e8i 0.710517 + 1.23065i 0.964663 + 0.263486i \(0.0848722\pi\)
−0.254146 + 0.967166i \(0.581794\pi\)
\(348\) 0 0
\(349\) 6.60922e8 1.14475e9i 0.832264 1.44152i −0.0639747 0.997952i \(-0.520378\pi\)
0.896239 0.443572i \(-0.146289\pi\)
\(350\) 8.21146e8 1.02372
\(351\) 0 0
\(352\) 2.40255e8 0.293612
\(353\) −6.01976e8 + 1.04265e9i −0.728396 + 1.26162i 0.229165 + 0.973388i \(0.426400\pi\)
−0.957561 + 0.288231i \(0.906933\pi\)
\(354\) 0 0
\(355\) 3.25821e8 + 5.64338e8i 0.386527 + 0.669484i
\(356\) −1.91719e8 3.32067e8i −0.225211 0.390077i
\(357\) 0 0
\(358\) 5.37124e8 9.30325e8i 0.618705 1.07163i
\(359\) −1.32057e9 −1.50637 −0.753185 0.657809i \(-0.771484\pi\)
−0.753185 + 0.657809i \(0.771484\pi\)
\(360\) 0 0
\(361\) −2.75852e8 −0.308604
\(362\) −4.58642e8 + 7.94392e8i −0.508152 + 0.880146i
\(363\) 0 0
\(364\) −1.91742e8 3.32108e8i −0.208384 0.360931i
\(365\) 1.51614e8 + 2.62603e8i 0.163198 + 0.282667i
\(366\) 0 0
\(367\) −8.75535e8 + 1.51647e9i −0.924575 + 1.60141i −0.132332 + 0.991205i \(0.542247\pi\)
−0.792243 + 0.610206i \(0.791087\pi\)
\(368\) 1.69771e8 0.177581
\(369\) 0 0
\(370\) 3.32570e7 0.0341332
\(371\) 6.19429e8 1.07288e9i 0.629772 1.09080i
\(372\) 0 0
\(373\) 2.43973e8 + 4.22573e8i 0.243422 + 0.421620i 0.961687 0.274150i \(-0.0883966\pi\)
−0.718265 + 0.695770i \(0.755063\pi\)
\(374\) 1.93741e8 + 3.35569e8i 0.191501 + 0.331689i
\(375\) 0 0
\(376\) 1.11047e8 1.92338e8i 0.107733 0.186599i
\(377\) 1.58201e8 0.152060
\(378\) 0 0
\(379\) 1.11007e9 1.04740 0.523700 0.851903i \(-0.324551\pi\)
0.523700 + 0.851903i \(0.324551\pi\)
\(380\) 9.06893e7 1.57078e8i 0.0847839 0.146850i
\(381\) 0 0
\(382\) −6.54420e7 1.13349e8i −0.0600669 0.104039i
\(383\) −9.34558e8 1.61870e9i −0.849983 1.47221i −0.881222 0.472702i \(-0.843279\pi\)
0.0312391 0.999512i \(-0.490055\pi\)
\(384\) 0 0
\(385\) −6.58648e8 + 1.14081e9i −0.588222 + 1.01883i
\(386\) −1.23359e9 −1.09173
\(387\) 0 0
\(388\) −2.59848e8 −0.225844
\(389\) 1.36948e8 2.37200e8i 0.117959 0.204311i −0.801000 0.598665i \(-0.795698\pi\)
0.918959 + 0.394354i \(0.129032\pi\)
\(390\) 0 0
\(391\) 1.36903e8 + 2.37123e8i 0.115823 + 0.200611i
\(392\) −4.25020e8 7.36156e8i −0.356375 0.617260i
\(393\) 0 0
\(394\) −3.32915e8 + 5.76626e8i −0.274219 + 0.474961i
\(395\) −4.34048e8 −0.354363
\(396\) 0 0
\(397\) 6.24552e8 0.500958 0.250479 0.968122i \(-0.419412\pi\)
0.250479 + 0.968122i \(0.419412\pi\)
\(398\) 3.04689e8 5.27736e8i 0.242251 0.419591i
\(399\) 0 0
\(400\) 1.33384e8 + 2.31028e8i 0.104206 + 0.180491i
\(401\) −2.77750e8 4.81077e8i −0.215104 0.372571i 0.738201 0.674581i \(-0.235676\pi\)
−0.953305 + 0.302010i \(0.902342\pi\)
\(402\) 0 0
\(403\) 6.30220e7 1.09157e8i 0.0479650 0.0830778i
\(404\) −1.10604e9 −0.834522
\(405\) 0 0
\(406\) 5.24619e8 0.389048
\(407\) 1.33684e8 2.31548e8i 0.0982879 0.170240i
\(408\) 0 0
\(409\) 1.07885e9 + 1.86862e9i 0.779704 + 1.35049i 0.932112 + 0.362169i \(0.117964\pi\)
−0.152409 + 0.988318i \(0.548703\pi\)
\(410\) −2.91420e8 5.04753e8i −0.208822 0.361689i
\(411\) 0 0
\(412\) 4.59594e8 7.96040e8i 0.323768 0.560783i
\(413\) −1.17434e9 −0.820293
\(414\) 0 0
\(415\) −2.54159e8 −0.174557
\(416\) 6.22920e7 1.07893e8i 0.0424234 0.0734795i
\(417\) 0 0
\(418\) −7.29094e8 1.26283e9i −0.488277 0.845721i
\(419\) −8.38984e8 1.45316e9i −0.557191 0.965084i −0.997729 0.0673500i \(-0.978546\pi\)
0.440538 0.897734i \(-0.354788\pi\)
\(420\) 0 0
\(421\) 2.62617e8 4.54866e8i 0.171528 0.297095i −0.767426 0.641137i \(-0.778463\pi\)
0.938954 + 0.344042i \(0.111796\pi\)
\(422\) 2.81957e8 0.182637
\(423\) 0 0
\(424\) 4.02472e8 0.256422
\(425\) −2.15121e8 + 3.72601e8i −0.135932 + 0.235441i
\(426\) 0 0
\(427\) −1.30857e9 2.26650e9i −0.813389 1.40883i
\(428\) −2.06541e8 3.57739e8i −0.127337 0.220553i
\(429\) 0 0
\(430\) −7.13239e7 + 1.23537e8i −0.0432609 + 0.0749300i
\(431\) 1.70593e8 0.102634 0.0513169 0.998682i \(-0.483658\pi\)
0.0513169 + 0.998682i \(0.483658\pi\)
\(432\) 0 0
\(433\) −1.68797e9 −0.999210 −0.499605 0.866253i \(-0.666522\pi\)
−0.499605 + 0.866253i \(0.666522\pi\)
\(434\) 2.08990e8 3.61982e8i 0.122719 0.212556i
\(435\) 0 0
\(436\) 2.83011e7 + 4.90190e7i 0.0163531 + 0.0283245i
\(437\) −5.15199e8 8.92350e8i −0.295318 0.511505i
\(438\) 0 0
\(439\) 5.89248e8 1.02061e9i 0.332409 0.575749i −0.650575 0.759442i \(-0.725472\pi\)
0.982984 + 0.183693i \(0.0588053\pi\)
\(440\) −4.27954e8 −0.239504
\(441\) 0 0
\(442\) 2.00928e8 0.110678
\(443\) −3.57877e8 + 6.19862e8i −0.195579 + 0.338752i −0.947090 0.320968i \(-0.895992\pi\)
0.751511 + 0.659720i \(0.229325\pi\)
\(444\) 0 0
\(445\) 3.41499e8 + 5.91494e8i 0.183709 + 0.318193i
\(446\) 7.56526e8 + 1.31034e9i 0.403786 + 0.699378i
\(447\) 0 0
\(448\) 2.06569e8 3.57789e8i 0.108541 0.187998i
\(449\) −1.37358e9 −0.716132 −0.358066 0.933696i \(-0.616564\pi\)
−0.358066 + 0.933696i \(0.616564\pi\)
\(450\) 0 0
\(451\) −4.68572e9 −2.40524
\(452\) −3.88240e8 + 6.72451e8i −0.197750 + 0.342512i
\(453\) 0 0
\(454\) 7.04401e8 + 1.22006e9i 0.353284 + 0.611907i
\(455\) 3.41541e8 + 5.91567e8i 0.169982 + 0.294418i
\(456\) 0 0
\(457\) −9.23760e8 + 1.60000e9i −0.452744 + 0.784175i −0.998555 0.0537327i \(-0.982888\pi\)
0.545812 + 0.837908i \(0.316221\pi\)
\(458\) 5.20317e8 0.253069
\(459\) 0 0
\(460\) −3.02405e8 −0.144856
\(461\) −1.54707e9 + 2.67960e9i −0.735455 + 1.27385i 0.219068 + 0.975710i \(0.429698\pi\)
−0.954523 + 0.298136i \(0.903635\pi\)
\(462\) 0 0
\(463\) −1.50225e9 2.60198e9i −0.703412 1.21835i −0.967261 0.253782i \(-0.918325\pi\)
0.263849 0.964564i \(-0.415008\pi\)
\(464\) 8.52173e7 + 1.47601e8i 0.0396018 + 0.0685923i
\(465\) 0 0
\(466\) 1.00527e9 1.74119e9i 0.460186 0.797066i
\(467\) −2.99252e9 −1.35965 −0.679825 0.733374i \(-0.737944\pi\)
−0.679825 + 0.733374i \(0.737944\pi\)
\(468\) 0 0
\(469\) 5.18636e9 2.32144
\(470\) −1.97802e8 + 3.42603e8i −0.0878796 + 0.152212i
\(471\) 0 0
\(472\) −1.90756e8 3.30399e8i −0.0834989 0.144624i
\(473\) 5.73406e8 + 9.93169e8i 0.249143 + 0.431528i
\(474\) 0 0
\(475\) 8.09553e8 1.40219e9i 0.346591 0.600314i
\(476\) 6.66308e8 0.283172
\(477\) 0 0
\(478\) 1.70464e9 0.713894
\(479\) −9.20207e8 + 1.59385e9i −0.382570 + 0.662631i −0.991429 0.130647i \(-0.958294\pi\)
0.608858 + 0.793279i \(0.291628\pi\)
\(480\) 0 0
\(481\) −6.93219e7 1.20069e8i −0.0284029 0.0491952i
\(482\) −1.02913e9 1.78251e9i −0.418608 0.725050i
\(483\) 0 0
\(484\) −1.09667e9 + 1.89949e9i −0.439662 + 0.761516i
\(485\) 4.62854e8 0.184225
\(486\) 0 0
\(487\) −4.26676e8 −0.167397 −0.0836983 0.996491i \(-0.526673\pi\)
−0.0836983 + 0.996491i \(0.526673\pi\)
\(488\) 4.25118e8 7.36326e8i 0.165592 0.286814i
\(489\) 0 0
\(490\) 7.57066e8 + 1.31128e9i 0.290702 + 0.503510i
\(491\) −3.03773e7 5.26151e7i −0.0115815 0.0200597i 0.860177 0.509996i \(-0.170353\pi\)
−0.871758 + 0.489937i \(0.837020\pi\)
\(492\) 0 0
\(493\) −1.37438e8 + 2.38049e8i −0.0516585 + 0.0894752i
\(494\) −7.56142e8 −0.282201
\(495\) 0 0
\(496\) 1.35791e8 0.0499671
\(497\) 4.50433e9 7.80172e9i 1.64582 2.85065i
\(498\) 0 0
\(499\) −1.62294e9 2.81101e9i −0.584723 1.01277i −0.994910 0.100769i \(-0.967870\pi\)
0.410187 0.912002i \(-0.365463\pi\)
\(500\) −5.22591e8 9.05153e8i −0.186968 0.323838i
\(501\) 0 0
\(502\) −4.92232e8 + 8.52571e8i −0.173663 + 0.300793i
\(503\) −7.44381e8 −0.260800 −0.130400 0.991461i \(-0.541626\pi\)
−0.130400 + 0.991461i \(0.541626\pi\)
\(504\) 0 0
\(505\) 1.97014e9 0.680734
\(506\) −1.21559e9 + 2.10546e9i −0.417118 + 0.722470i
\(507\) 0 0
\(508\) −2.19778e8 3.80667e8i −0.0743809 0.128831i
\(509\) 2.22078e8 + 3.84650e8i 0.0746436 + 0.129287i 0.900931 0.433962i \(-0.142885\pi\)
−0.826288 + 0.563248i \(0.809551\pi\)
\(510\) 0 0
\(511\) 2.09600e9 3.63038e9i 0.694893 1.20359i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −3.54667e9 −1.15199
\(515\) −8.18652e8 + 1.41795e9i −0.264103 + 0.457440i
\(516\) 0 0
\(517\) 1.59022e9 + 2.75435e9i 0.506106 + 0.876600i
\(518\) −2.29882e8 3.98167e8i −0.0726692 0.125867i
\(519\) 0 0
\(520\) −1.10958e8 + 1.92184e8i −0.0346055 + 0.0599385i
\(521\) 3.04963e9 0.944745 0.472372 0.881399i \(-0.343398\pi\)
0.472372 + 0.881399i \(0.343398\pi\)
\(522\) 0 0
\(523\) −1.40306e9 −0.428866 −0.214433 0.976739i \(-0.568790\pi\)
−0.214433 + 0.976739i \(0.568790\pi\)
\(524\) 1.26467e9 2.19046e9i 0.383987 0.665084i
\(525\) 0 0
\(526\) −1.19570e9 2.07101e9i −0.358238 0.620487i
\(527\) 1.09501e8 + 1.89661e8i 0.0325898 + 0.0564471i
\(528\) 0 0
\(529\) 8.43444e8 1.46089e9i 0.247720 0.429064i
\(530\) −7.16903e8 −0.209168
\(531\) 0 0
\(532\) −2.50748e9 −0.722016
\(533\) −1.21489e9 + 2.10425e9i −0.347529 + 0.601937i
\(534\) 0 0
\(535\) 3.67901e8 + 6.37223e8i 0.103871 + 0.179909i
\(536\) 8.42454e8 + 1.45917e9i 0.236303 + 0.409289i
\(537\) 0 0
\(538\) −8.35632e8 + 1.44736e9i −0.231354 + 0.400717i
\(539\) 1.21728e10 3.34835
\(540\) 0 0
\(541\) 4.21106e9 1.14341 0.571704 0.820460i \(-0.306283\pi\)
0.571704 + 0.820460i \(0.306283\pi\)
\(542\) 4.50997e7 7.81150e7i 0.0121668 0.0210735i
\(543\) 0 0
\(544\) 1.08233e8 + 1.87465e8i 0.0288245 + 0.0499256i
\(545\) −5.04114e7 8.73151e7i −0.0133395 0.0231048i
\(546\) 0 0
\(547\) −9.99780e8 + 1.73167e9i −0.261185 + 0.452386i −0.966557 0.256451i \(-0.917447\pi\)
0.705372 + 0.708837i \(0.250780\pi\)
\(548\) 1.22714e9 0.318539
\(549\) 0 0
\(550\) −3.82021e9 −0.979078
\(551\) 5.17212e8 8.95838e8i 0.131716 0.228139i
\(552\) 0 0
\(553\) 3.00026e9 + 5.19661e9i 0.754434 + 1.30672i
\(554\) 2.63586e9 + 4.56544e9i 0.658624 + 1.14077i
\(555\) 0 0
\(556\) −4.23837e8 + 7.34107e8i −0.104577 + 0.181133i
\(557\) −3.37403e9 −0.827287 −0.413643 0.910439i \(-0.635744\pi\)
−0.413643 + 0.910439i \(0.635744\pi\)
\(558\) 0 0
\(559\) 5.94678e8 0.143993
\(560\) −3.67952e8 + 6.37311e8i −0.0885387 + 0.153353i
\(561\) 0 0
\(562\) 4.20491e8 + 7.28312e8i 0.0999263 + 0.173077i
\(563\) 2.79011e9 + 4.83261e9i 0.658933 + 1.14131i 0.980892 + 0.194552i \(0.0623254\pi\)
−0.321959 + 0.946754i \(0.604341\pi\)
\(564\) 0 0
\(565\) 6.91552e8 1.19780e9i 0.161308 0.279393i
\(566\) 2.64129e9 0.612292
\(567\) 0 0
\(568\) 2.92667e9 0.670123
\(569\) 4.44155e8 7.69299e8i 0.101074 0.175066i −0.811053 0.584972i \(-0.801105\pi\)
0.912128 + 0.409906i \(0.134439\pi\)
\(570\) 0 0
\(571\) 8.95853e8 + 1.55166e9i 0.201377 + 0.348796i 0.948972 0.315359i \(-0.102125\pi\)
−0.747595 + 0.664155i \(0.768792\pi\)
\(572\) 8.92040e8 + 1.54506e9i 0.199296 + 0.345191i
\(573\) 0 0
\(574\) −4.02875e9 + 6.97800e9i −0.889157 + 1.54007i
\(575\) −2.69947e9 −0.592162
\(576\) 0 0
\(577\) 3.82103e9 0.828066 0.414033 0.910262i \(-0.364120\pi\)
0.414033 + 0.910262i \(0.364120\pi\)
\(578\) 1.46680e9 2.54057e9i 0.315953 0.547247i
\(579\) 0 0
\(580\) −1.51793e8 2.62914e8i −0.0323039 0.0559519i
\(581\) 1.75682e9 + 3.04290e9i 0.371630 + 0.643682i
\(582\) 0 0
\(583\) −2.88176e9 + 4.99136e9i −0.602307 + 1.04323i
\(584\) 1.36187e9 0.282937
\(585\) 0 0
\(586\) −6.96802e8 −0.143043
\(587\) −2.18109e9 + 3.77777e9i −0.445083 + 0.770907i −0.998058 0.0622913i \(-0.980159\pi\)
0.552975 + 0.833198i \(0.313493\pi\)
\(588\) 0 0
\(589\) −4.12079e8 7.13742e8i −0.0830955 0.143926i
\(590\) 3.39784e8 + 5.88523e8i 0.0681115 + 0.117973i
\(591\) 0 0
\(592\) 7.46824e7 1.29354e8i 0.0147942 0.0256243i
\(593\) 6.38531e9 1.25745 0.628724 0.777628i \(-0.283577\pi\)
0.628724 + 0.777628i \(0.283577\pi\)
\(594\) 0 0
\(595\) −1.18686e9 −0.230988
\(596\) −1.83560e9 + 3.17935e9i −0.355153 + 0.615143i
\(597\) 0 0
\(598\) 6.30341e8 + 1.09178e9i 0.120537 + 0.208777i
\(599\) −4.02148e8 6.96542e8i −0.0764527 0.132420i 0.825264 0.564747i \(-0.191026\pi\)
−0.901717 + 0.432327i \(0.857693\pi\)
\(600\) 0 0
\(601\) 2.43581e9 4.21894e9i 0.457702 0.792762i −0.541137 0.840934i \(-0.682006\pi\)
0.998839 + 0.0481717i \(0.0153395\pi\)
\(602\) 1.97204e9 0.368408
\(603\) 0 0
\(604\) −1.98959e9 −0.367395
\(605\) 1.95345e9 3.38347e9i 0.358640 0.621182i
\(606\) 0 0
\(607\) −3.58758e9 6.21388e9i −0.651091 1.12772i −0.982859 0.184361i \(-0.940978\pi\)
0.331768 0.943361i \(-0.392355\pi\)
\(608\) −4.07306e8 7.05475e8i −0.0734951 0.127297i
\(609\) 0 0
\(610\) −7.57242e8 + 1.31158e9i −0.135077 + 0.233960i
\(611\) 1.64922e9 0.292505
\(612\) 0 0
\(613\) 3.47891e9 0.610002 0.305001 0.952352i \(-0.401343\pi\)
0.305001 + 0.952352i \(0.401343\pi\)
\(614\) 1.56684e9 2.71384e9i 0.273171 0.473146i
\(615\) 0 0
\(616\) 2.95814e9 + 5.12365e9i 0.509901 + 0.883175i
\(617\) 1.19689e8 + 2.07308e8i 0.0205143 + 0.0355318i 0.876100 0.482129i \(-0.160136\pi\)
−0.855586 + 0.517661i \(0.826803\pi\)
\(618\) 0 0
\(619\) 2.76479e9 4.78876e9i 0.468539 0.811533i −0.530815 0.847488i \(-0.678114\pi\)
0.999353 + 0.0359550i \(0.0114473\pi\)
\(620\) −2.41877e8 −0.0407590
\(621\) 0 0
\(622\) −1.63949e9 −0.273175
\(623\) 4.72107e9 8.17714e9i 0.782227 1.35486i
\(624\) 0 0
\(625\) −1.61324e9 2.79421e9i −0.264313 0.457803i
\(626\) −3.50881e9 6.07744e9i −0.571676 0.990171i
\(627\) 0 0
\(628\) 1.08107e9 1.87247e9i 0.174179 0.301687i
\(629\) 2.40894e8 0.0385966
\(630\) 0 0
\(631\) −6.13683e9 −0.972392 −0.486196 0.873850i \(-0.661616\pi\)
−0.486196 + 0.873850i \(0.661616\pi\)
\(632\) −9.74705e8 + 1.68824e9i −0.153590 + 0.266026i
\(633\) 0 0
\(634\) 1.76332e9 + 3.05416e9i 0.274802 + 0.475970i
\(635\) 3.91480e8 + 6.78063e8i 0.0606738 + 0.105090i
\(636\) 0 0
\(637\) 3.15610e9 5.46653e9i 0.483797 0.837961i
\(638\) −2.44068e9 −0.372081
\(639\) 0 0
\(640\) −2.39075e8 −0.0360500
\(641\) −5.35190e9 + 9.26976e9i −0.802611 + 1.39016i 0.115282 + 0.993333i \(0.463223\pi\)
−0.917892 + 0.396830i \(0.870110\pi\)
\(642\) 0 0
\(643\) 6.99013e8 + 1.21073e9i 0.103692 + 0.179601i 0.913203 0.407504i \(-0.133601\pi\)
−0.809511 + 0.587105i \(0.800268\pi\)
\(644\) 2.09031e9 + 3.62052e9i 0.308396 + 0.534158i
\(645\) 0 0
\(646\) 6.56901e8 1.13779e9i 0.0958707 0.166053i
\(647\) −5.31605e9 −0.771656 −0.385828 0.922571i \(-0.626084\pi\)
−0.385828 + 0.922571i \(0.626084\pi\)
\(648\) 0 0
\(649\) 5.46337e9 0.784520
\(650\) −9.90482e8 + 1.71556e9i −0.141465 + 0.245025i
\(651\) 0 0
\(652\) −2.00531e9 3.47329e9i −0.283344 0.490767i
\(653\) −1.62202e9 2.80942e9i −0.227960 0.394839i 0.729243 0.684255i \(-0.239872\pi\)
−0.957203 + 0.289416i \(0.906539\pi\)
\(654\) 0 0
\(655\) −2.25268e9 + 3.90176e9i −0.313225 + 0.542521i
\(656\) −2.61766e9 −0.362035
\(657\) 0 0
\(658\) 5.46905e9 0.748378
\(659\) 2.58253e9 4.47307e9i 0.351517 0.608845i −0.634998 0.772513i \(-0.718999\pi\)
0.986515 + 0.163668i \(0.0523326\pi\)
\(660\) 0 0
\(661\) 1.61258e9 + 2.79307e9i 0.217178 + 0.376163i 0.953944 0.299985i \(-0.0969815\pi\)
−0.736766 + 0.676147i \(0.763648\pi\)
\(662\) −4.44892e9 7.70576e9i −0.596007 1.03232i
\(663\) 0 0
\(664\) −5.70744e8 + 9.88557e8i −0.0756577 + 0.131043i
\(665\) 4.46645e9 0.588961
\(666\) 0 0
\(667\) −1.72465e9 −0.225041
\(668\) −2.00663e9 + 3.47559e9i −0.260465 + 0.451139i
\(669\) 0 0
\(670\) −1.50062e9 2.59915e9i −0.192757 0.333864i
\(671\) 6.08783e9 + 1.05444e10i 0.777917 + 1.34739i
\(672\) 0 0
\(673\) 1.00317e9 1.73754e9i 0.126859 0.219726i −0.795599 0.605823i \(-0.792844\pi\)
0.922458 + 0.386097i \(0.126177\pi\)
\(674\) 2.30559e9 0.290049
\(675\) 0 0
\(676\) −3.09077e9 −0.384816
\(677\) −5.01055e9 + 8.67853e9i −0.620619 + 1.07494i 0.368751 + 0.929528i \(0.379785\pi\)
−0.989371 + 0.145416i \(0.953548\pi\)
\(678\) 0 0
\(679\) −3.19938e9 5.54149e9i −0.392213 0.679332i
\(680\) −1.92790e8 3.33921e8i −0.0235127 0.0407252i
\(681\) 0 0
\(682\) −9.72282e8 + 1.68404e9i −0.117367 + 0.203286i
\(683\) −5.84861e9 −0.702393 −0.351196 0.936302i \(-0.614225\pi\)
−0.351196 + 0.936302i \(0.614225\pi\)
\(684\) 0 0
\(685\) −2.18584e9 −0.259838
\(686\) 5.27449e9 9.13569e9i 0.623801 1.08046i
\(687\) 0 0
\(688\) 3.20332e8 + 5.54831e8i 0.0375008 + 0.0649533i
\(689\) 1.49433e9 + 2.58826e9i 0.174053 + 0.301468i
\(690\) 0 0
\(691\) −1.29343e9 + 2.24028e9i −0.149131 + 0.258303i −0.930907 0.365257i \(-0.880981\pi\)
0.781775 + 0.623560i \(0.214314\pi\)
\(692\) −1.73134e9 −0.198614
\(693\) 0 0
\(694\) −8.84805e9 −1.00482
\(695\) 7.54959e8 1.30763e9i 0.0853054 0.147753i
\(696\) 0 0
\(697\) −2.11087e9 3.65614e9i −0.236128 0.408986i
\(698\) 5.28737e9 + 9.15800e9i 0.588500 + 1.01931i
\(699\) 0 0
\(700\) −3.28459e9 + 5.68907e9i −0.361941 + 0.626900i
\(701\) −1.74460e9 −0.191286 −0.0956429 0.995416i \(-0.530491\pi\)
−0.0956429 + 0.995416i \(0.530491\pi\)
\(702\) 0 0
\(703\) −9.06545e8 −0.0984114
\(704\) −9.61020e8 + 1.66454e9i −0.103807 + 0.179800i
\(705\) 0 0
\(706\) −4.81580e9 8.34122e9i −0.515054 0.892099i
\(707\) −1.36182e10 2.35874e10i −1.44927 2.51022i
\(708\) 0 0
\(709\) 5.60254e9 9.70388e9i 0.590368 1.02255i −0.403814 0.914841i \(-0.632316\pi\)
0.994183 0.107707i \(-0.0343508\pi\)
\(710\) −5.21313e9 −0.546631
\(711\) 0 0
\(712\) 3.06750e9 0.318496
\(713\) −6.87042e8 + 1.18999e9i −0.0709856 + 0.122951i
\(714\) 0 0
\(715\) −1.58895e9 2.75214e9i −0.162569 0.281578i
\(716\) 4.29699e9 + 7.44260e9i 0.437491 + 0.757756i
\(717\) 0 0
\(718\) 5.28229e9 9.14919e9i 0.532582 0.922460i
\(719\) −9.36568e8 −0.0939698 −0.0469849 0.998896i \(-0.514961\pi\)
−0.0469849 + 0.998896i \(0.514961\pi\)
\(720\) 0 0
\(721\) 2.26350e10 2.24909
\(722\) 1.10341e9 1.91116e9i 0.109108 0.188980i
\(723\) 0 0
\(724\) −3.66914e9 6.35513e9i −0.359318 0.622357i
\(725\) −1.35501e9 2.34694e9i −0.132056 0.228728i
\(726\) 0 0
\(727\) −2.10223e9 + 3.64116e9i −0.202913 + 0.351455i −0.949466 0.313871i \(-0.898374\pi\)
0.746553 + 0.665326i \(0.231707\pi\)
\(728\) 3.06788e9 0.294699
\(729\) 0 0
\(730\) −2.42583e9 −0.230797
\(731\) −5.16629e8 + 8.94827e8i −0.0489179 + 0.0847283i
\(732\) 0 0
\(733\) 5.77457e9 + 1.00018e10i 0.541571 + 0.938029i 0.998814 + 0.0486872i \(0.0155037\pi\)
−0.457243 + 0.889342i \(0.651163\pi\)
\(734\) −7.00428e9 1.21318e10i −0.653773 1.13237i
\(735\) 0 0
\(736\) −6.79084e8 + 1.17621e9i −0.0627843 + 0.108746i
\(737\) −2.41284e10 −2.22020
\(738\) 0 0
\(739\) −1.39655e10 −1.27292 −0.636460 0.771310i \(-0.719602\pi\)
−0.636460 + 0.771310i \(0.719602\pi\)
\(740\) −1.33028e8 + 2.30411e8i −0.0120679 + 0.0209022i
\(741\) 0 0
\(742\) 4.95544e9 + 8.58307e9i 0.445316 + 0.771310i
\(743\) −7.19162e9 1.24563e10i −0.643230 1.11411i −0.984707 0.174217i \(-0.944261\pi\)
0.341478 0.939890i \(-0.389073\pi\)
\(744\) 0 0
\(745\) 3.26966e9 5.66321e9i 0.289705 0.501783i
\(746\) −3.90356e9 −0.344251
\(747\) 0 0
\(748\) −3.09985e9 −0.270823
\(749\) 5.08607e9 8.80933e9i 0.442279 0.766049i
\(750\) 0 0
\(751\) 3.35420e8 + 5.80965e8i 0.0288968 + 0.0500507i 0.880112 0.474766i \(-0.157467\pi\)
−0.851215 + 0.524817i \(0.824134\pi\)
\(752\) 8.88373e8 + 1.53871e9i 0.0761786 + 0.131945i
\(753\) 0 0
\(754\) −6.32805e8 + 1.09605e9i −0.0537613 + 0.0931174i
\(755\) 3.54395e9 0.299691
\(756\) 0 0
\(757\) −1.91569e10 −1.60506 −0.802529 0.596613i \(-0.796513\pi\)
−0.802529 + 0.596613i \(0.796513\pi\)
\(758\) −4.44027e9 + 7.69078e9i −0.370312 + 0.641399i
\(759\) 0 0
\(760\) 7.25514e8 + 1.25663e9i 0.0599513 + 0.103839i
\(761\) −8.95599e9 1.55122e10i −0.736660 1.27593i −0.953991 0.299835i \(-0.903068\pi\)
0.217331 0.976098i \(-0.430265\pi\)
\(762\) 0 0
\(763\) −6.96915e8 + 1.20709e9i −0.0567994 + 0.0983795i
\(764\) 1.04707e9 0.0849474
\(765\) 0 0
\(766\) 1.49529e10 1.20206
\(767\) 1.41651e9 2.45347e9i 0.113354 0.196335i
\(768\) 0 0
\(769\) 1.07036e10 + 1.85392e10i 0.848765 + 1.47010i 0.882311 + 0.470666i \(0.155986\pi\)
−0.0335468 + 0.999437i \(0.510680\pi\)
\(770\) −5.26919e9 9.12650e9i −0.415935 0.720421i
\(771\) 0 0
\(772\) 4.93435e9 8.54655e9i 0.385984 0.668544i
\(773\) −7.55163e8 −0.0588047 −0.0294024 0.999568i \(-0.509360\pi\)
−0.0294024 + 0.999568i \(0.509360\pi\)
\(774\) 0 0
\(775\) −2.15916e9 −0.166620
\(776\) 1.03939e9 1.80028e9i 0.0798479 0.138301i
\(777\) 0 0
\(778\) 1.09558e9 + 1.89760e9i 0.0834096 + 0.144470i
\(779\) 7.94374e9 + 1.37590e10i 0.602066 + 1.04281i
\(780\) 0 0
\(781\) −2.09554e10 + 3.62958e10i −1.57405 + 2.72633i
\(782\) −2.19044e9 −0.163798
\(783\) 0 0
\(784\) 6.80031e9 0.503991
\(785\) −1.92566e9 + 3.33534e9i −0.142081 + 0.246091i
\(786\) 0 0
\(787\) −1.02333e10 1.77245e10i −0.748347 1.29617i −0.948615 0.316434i \(-0.897515\pi\)
0.200268 0.979741i \(-0.435819\pi\)
\(788\) −2.66332e9 4.61301e9i −0.193902 0.335848i
\(789\) 0 0
\(790\) 1.73619e9 3.00717e9i 0.125286 0.217002i
\(791\) −1.91208e10 −1.37369
\(792\) 0 0
\(793\) 6.31367e9 0.449599
\(794\) −2.49821e9 + 4.32702e9i −0.177116 + 0.306773i
\(795\) 0 0
\(796\) 2.43751e9 + 4.22189e9i 0.171297 + 0.296696i
\(797\) 5.15489e9 + 8.92853e9i 0.360674 + 0.624706i 0.988072 0.153993i \(-0.0492133\pi\)
−0.627398 + 0.778699i \(0.715880\pi\)
\(798\) 0 0
\(799\) −1.43276e9 + 2.48162e9i −0.0993712 + 0.172116i
\(800\) −2.13415e9 −0.147370
\(801\) 0 0
\(802\) 4.44400e9 0.304203
\(803\) −9.75119e9 + 1.68895e10i −0.664589 + 1.15110i
\(804\) 0 0
\(805\) −3.72336e9 6.44904e9i −0.251564 0.435722i
\(806\) 5.04176e8 + 8.73258e8i 0.0339164 + 0.0587449i
\(807\) 0 0
\(808\) 4.42418e9 7.66290e9i 0.295048 0.511038i
\(809\) −4.16428e8 −0.0276516 −0.0138258 0.999904i \(-0.504401\pi\)
−0.0138258 + 0.999904i \(0.504401\pi\)
\(810\) 0 0
\(811\) −5.82687e9 −0.383586 −0.191793 0.981435i \(-0.561430\pi\)
−0.191793 + 0.981435i \(0.561430\pi\)
\(812\) −2.09848e9 + 3.63467e9i −0.137549 + 0.238242i
\(813\) 0 0
\(814\) 1.06947e9 + 1.85238e9i 0.0695001 + 0.120378i
\(815\) 3.57195e9 + 6.18681e9i 0.231129 + 0.400327i
\(816\) 0 0
\(817\) 1.94420e9 3.36746e9i 0.124728 0.216035i
\(818\) −1.72616e10 −1.10267
\(819\) 0 0
\(820\) 4.66271e9 0.295318
\(821\) 1.04166e10 1.80421e10i 0.656941 1.13786i −0.324462 0.945899i \(-0.605183\pi\)
0.981403 0.191957i \(-0.0614833\pi\)
\(822\) 0 0
\(823\) −2.11701e9 3.66677e9i −0.132381 0.229290i 0.792213 0.610244i \(-0.208929\pi\)
−0.924594 + 0.380955i \(0.875595\pi\)
\(824\) 3.67675e9 + 6.36832e9i 0.228939 + 0.396533i
\(825\) 0 0
\(826\) 4.69736e9 8.13607e9i 0.290017 0.502325i
\(827\) 5.70597e9 0.350800 0.175400 0.984497i \(-0.443878\pi\)
0.175400 + 0.984497i \(0.443878\pi\)
\(828\) 0 0
\(829\) 2.51612e10 1.53388 0.766940 0.641719i \(-0.221779\pi\)
0.766940 + 0.641719i \(0.221779\pi\)
\(830\) 1.01664e9 1.76087e9i 0.0617153 0.106894i
\(831\) 0 0
\(832\) 4.98336e8 + 8.63143e8i 0.0299979 + 0.0519578i
\(833\) 5.48375e9 + 9.49813e9i 0.328715 + 0.569352i
\(834\) 0 0
\(835\) 3.57431e9 6.19089e9i 0.212466 0.368002i
\(836\) 1.16655e10 0.690528
\(837\) 0 0
\(838\) 1.34237e10 0.787988
\(839\) −1.13524e10 + 1.96629e10i −0.663622 + 1.14943i 0.316035 + 0.948748i \(0.397648\pi\)
−0.979657 + 0.200679i \(0.935685\pi\)
\(840\) 0 0
\(841\) 7.75924e9 + 1.34394e10i 0.449814 + 0.779101i
\(842\) 2.10093e9 + 3.63892e9i 0.121289 + 0.210078i
\(843\) 0 0
\(844\) −1.12783e9 + 1.95345e9i −0.0645719 + 0.111842i
\(845\) 5.50544e9 0.313901
\(846\) 0 0
\(847\) −5.40112e10 −3.05416
\(848\) −1.60989e9 + 2.78841e9i −0.0906588 + 0.157026i
\(849\) 0 0
\(850\) −1.72097e9 2.98081e9i −0.0961184 0.166482i
\(851\) 7.55721e8 + 1.30895e9i 0.0420347 + 0.0728063i
\(852\) 0 0
\(853\) −1.43436e10 + 2.48439e10i −0.791292 + 1.37056i 0.133875 + 0.990998i \(0.457258\pi\)
−0.925167 + 0.379560i \(0.876075\pi\)
\(854\) 2.09371e10 1.15031
\(855\) 0 0
\(856\) 3.30465e9 0.180081
\(857\) −2.67475e9 + 4.63280e9i −0.145161 + 0.251426i −0.929433 0.368991i \(-0.879703\pi\)
0.784272 + 0.620417i \(0.213037\pi\)
\(858\) 0 0
\(859\) 7.01649e9 + 1.21529e10i 0.377697 + 0.654191i 0.990727 0.135869i \(-0.0433827\pi\)
−0.613030 + 0.790060i \(0.710049\pi\)
\(860\) −5.70591e8 9.88293e8i −0.0305901 0.0529835i
\(861\) 0 0
\(862\) −6.82372e8 + 1.18190e9i −0.0362865 + 0.0628501i
\(863\) 3.24994e10 1.72122 0.860612 0.509261i \(-0.170081\pi\)
0.860612 + 0.509261i \(0.170081\pi\)
\(864\) 0 0
\(865\) 3.08394e9 0.162013
\(866\) 6.75188e9 1.16946e10i 0.353274 0.611889i
\(867\) 0 0
\(868\) 1.67192e9 + 2.89585e9i 0.0867755 + 0.150299i
\(869\) −1.39581e10 2.41761e10i −0.721533 1.24973i
\(870\) 0 0
\(871\) −6.25588e9 + 1.08355e10i −0.320793 + 0.555630i
\(872\) −4.52818e8 −0.0231268
\(873\) 0 0
\(874\) 8.24318e9 0.417642
\(875\) 1.28688e10 2.22894e10i 0.649396 1.12479i
\(876\) 0 0
\(877\) 1.69347e10 + 2.93318e10i 0.847772 + 1.46838i 0.883192 + 0.469011i \(0.155390\pi\)
−0.0354204 + 0.999372i \(0.511277\pi\)
\(878\) 4.71399e9 + 8.16486e9i 0.235048 + 0.407116i
\(879\) 0 0
\(880\) 1.71182e9 2.96495e9i 0.0846775 0.146666i
\(881\) −1.52708e10 −0.752397 −0.376198 0.926539i \(-0.622769\pi\)
−0.376198 + 0.926539i \(0.622769\pi\)
\(882\) 0 0
\(883\) −1.12045e10 −0.547685 −0.273842 0.961775i \(-0.588295\pi\)
−0.273842 + 0.961775i \(0.588295\pi\)
\(884\) −8.03712e8 + 1.39207e9i −0.0391307 + 0.0677764i
\(885\) 0 0
\(886\) −2.86302e9 4.95890e9i −0.138295 0.239534i
\(887\) −3.48616e9 6.03821e9i −0.167732 0.290520i 0.769890 0.638176i \(-0.220311\pi\)
−0.937622 + 0.347657i \(0.886978\pi\)
\(888\) 0 0
\(889\) 5.41203e9 9.37392e9i 0.258348 0.447471i
\(890\) −5.46398e9 −0.259803
\(891\) 0 0
\(892\) −1.21044e10 −0.571040
\(893\) 5.39184e9 9.33893e9i 0.253371 0.438851i
\(894\) 0 0
\(895\) −7.65401e9 1.32571e10i −0.356869 0.618115i
\(896\) 1.65256e9 + 2.86231e9i 0.0767499 + 0.132935i
\(897\) 0 0
\(898\) 5.49434e9 9.51647e9i 0.253191 0.438539i
\(899\) −1.37945e9 −0.0633211
\(900\) 0 0
\(901\) −5.19283e9 −0.236520
\(902\) 1.87429e10 3.24636e10i 0.850381 1.47290i
\(903\) 0 0
\(904\) −3.10592e9 5.37961e9i −0.139830 0.242193i
\(905\) 6.53565e9 + 1.13201e10i 0.293102 + 0.507668i
\(906\) 0 0
\(907\) −5.90474e8 + 1.02273e9i −0.0262770 + 0.0455130i −0.878865 0.477071i \(-0.841699\pi\)
0.852588 + 0.522584i \(0.175032\pi\)
\(908\) −1.12704e10 −0.499620
\(909\) 0 0
\(910\) −5.46466e9 −0.240391
\(911\) −6.39576e9 + 1.10778e10i −0.280271 + 0.485443i −0.971451 0.237239i \(-0.923758\pi\)
0.691181 + 0.722682i \(0.257091\pi\)
\(912\) 0 0
\(913\) −8.17323e9 1.41564e10i −0.355423 0.615611i
\(914\) −7.39008e9 1.28000e10i −0.320138 0.554496i
\(915\) 0 0
\(916\) −2.08127e9 + 3.60486e9i −0.0894734 + 0.154972i
\(917\) 6.22848e10 2.66741
\(918\) 0 0
\(919\) 3.52353e10 1.49752 0.748761 0.662840i \(-0.230649\pi\)
0.748761 + 0.662840i \(0.230649\pi\)
\(920\) 1.20962e9 2.09512e9i 0.0512143 0.0887057i
\(921\) 0 0
\(922\) −1.23765e10 2.14368e10i −0.520045 0.900745i
\(923\) 1.08664e10 + 1.88212e10i 0.454862 + 0.787845i
\(924\) 0 0
\(925\) −1.18750e9 + 2.05681e9i −0.0493329 + 0.0854471i
\(926\) 2.40361e10 0.994775
\(927\) 0 0
\(928\) −1.36348e9 −0.0560054
\(929\) 1.08882e10 1.88590e10i 0.445556 0.771725i −0.552535 0.833490i \(-0.686339\pi\)
0.998091 + 0.0617646i \(0.0196728\pi\)
\(930\) 0 0
\(931\) −2.06367e10 3.57438e10i −0.838139 1.45170i
\(932\) 8.04219e9 + 1.39295e10i 0.325401 + 0.563611i
\(933\) 0 0
\(934\) 1.19701e10 2.07328e10i 0.480709 0.832613i
\(935\) 5.52161e9 0.220915
\(936\) 0 0
\(937\) 1.15795e10 0.459833 0.229916 0.973210i \(-0.426155\pi\)
0.229916 + 0.973210i \(0.426155\pi\)
\(938\) −2.07454e10 + 3.59321e10i −0.820753 + 1.42159i
\(939\) 0 0
\(940\) −1.58241e9 2.74082e9i −0.0621402 0.107630i
\(941\) 1.91965e10 + 3.32493e10i 0.751033 + 1.30083i 0.947323 + 0.320281i \(0.103777\pi\)
−0.196290 + 0.980546i \(0.562889\pi\)
\(942\) 0 0
\(943\) 1.32443e10 2.29397e10i 0.514324 0.890835i
\(944\) 3.05209e9 0.118085
\(945\) 0 0
\(946\) −9.17450e9 −0.352341
\(947\) −5.59205e9 + 9.68571e9i −0.213966 + 0.370601i −0.952952 0.303120i \(-0.901972\pi\)
0.738986 + 0.673721i \(0.235305\pi\)
\(948\) 0 0
\(949\) 5.05647e9 + 8.75806e9i 0.192050 + 0.332641i
\(950\) 6.47643e9 + 1.12175e10i 0.245077 + 0.424486i
\(951\) 0 0
\(952\) −2.66523e9 + 4.61631e9i −0.100116 + 0.173407i
\(953\) −5.19835e9 −0.194554 −0.0972770 0.995257i \(-0.531013\pi\)
−0.0972770 + 0.995257i \(0.531013\pi\)
\(954\) 0 0
\(955\) −1.86510e9 −0.0692931
\(956\) −6.81854e9 + 1.18101e10i −0.252400 + 0.437169i
\(957\) 0 0
\(958\) −7.36166e9 1.27508e10i −0.270518 0.468551i
\(959\) 1.51092e10 + 2.61699e10i 0.553191 + 0.958156i
\(960\) 0 0
\(961\) 1.32068e10 2.28748e10i 0.480026 0.831430i
\(962\) 1.10915e9 0.0401677
\(963\) 0 0
\(964\) 1.64662e10 0.592001
\(965\) −8.78931e9 + 1.52235e10i −0.314854 + 0.545343i
\(966\) 0 0
\(967\) 1.34622e8 + 2.33171e8i 0.00478765 + 0.00829245i 0.868409 0.495848i \(-0.165143\pi\)
−0.863622 + 0.504140i \(0.831809\pi\)
\(968\) −8.77339e9 1.51960e10i −0.310888 0.538473i
\(969\) 0 0
\(970\) −1.85142e9 + 3.20675e9i −0.0651333 + 0.112814i
\(971\) 4.37283e9 0.153284 0.0766418 0.997059i \(-0.475580\pi\)
0.0766418 + 0.997059i \(0.475580\pi\)
\(972\) 0 0
\(973\) −2.08740e10 −0.726457
\(974\) 1.70670e9 2.95610e9i 0.0591837 0.102509i
\(975\) 0 0
\(976\) 3.40095e9 + 5.89061e9i 0.117091 + 0.202808i
\(977\) 1.87495e10 + 3.24752e10i 0.643220 + 1.11409i 0.984710 + 0.174204i \(0.0557353\pi\)
−0.341489 + 0.939886i \(0.610931\pi\)
\(978\) 0 0
\(979\) −2.19638e10 + 3.80424e10i −0.748114 + 1.29577i
\(980\) −1.21131e10 −0.411114
\(981\) 0 0
\(982\) 4.86038e8 0.0163787
\(983\) 1.53095e10 2.65168e10i 0.514071 0.890397i −0.485796 0.874072i \(-0.661470\pi\)
0.999867 0.0163250i \(-0.00519663\pi\)
\(984\) 0 0
\(985\) 4.74404e9 + 8.21692e9i 0.158169 + 0.273957i
\(986\) −1.09950e9 1.90439e9i −0.0365281 0.0632685i
\(987\) 0 0
\(988\) 3.02457e9 5.23870e9i 0.0997732 0.172812i
\(989\) −6.48296e9 −0.213102
\(990\) 0 0
\(991\) −1.72703e10 −0.563693 −0.281847 0.959459i \(-0.590947\pi\)
−0.281847 + 0.959459i \(0.590947\pi\)
\(992\) −5.43162e8 + 9.40785e8i −0.0176660 + 0.0305985i
\(993\) 0 0
\(994\) 3.60346e10 + 6.24138e10i 1.16377 + 2.01571i
\(995\) −4.34182e9 7.52024e9i −0.139730 0.242020i
\(996\) 0 0
\(997\) 1.87539e9 3.24827e9i 0.0599319 0.103805i −0.834503 0.551004i \(-0.814245\pi\)
0.894435 + 0.447199i \(0.147578\pi\)
\(998\) 2.59670e10 0.826923
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.d.55.1 2
3.2 odd 2 162.8.c.i.55.1 2
9.2 odd 6 18.8.a.a.1.1 1
9.4 even 3 inner 162.8.c.d.109.1 2
9.5 odd 6 162.8.c.i.109.1 2
9.7 even 3 6.8.a.a.1.1 1
36.7 odd 6 48.8.a.b.1.1 1
36.11 even 6 144.8.a.h.1.1 1
45.2 even 12 450.8.c.a.199.1 2
45.7 odd 12 150.8.c.k.49.2 2
45.29 odd 6 450.8.a.ba.1.1 1
45.34 even 6 150.8.a.e.1.1 1
45.38 even 12 450.8.c.a.199.2 2
45.43 odd 12 150.8.c.k.49.1 2
63.16 even 3 294.8.e.c.67.1 2
63.25 even 3 294.8.e.c.79.1 2
63.34 odd 6 294.8.a.l.1.1 1
63.52 odd 6 294.8.e.d.79.1 2
63.61 odd 6 294.8.e.d.67.1 2
72.11 even 6 576.8.a.i.1.1 1
72.29 odd 6 576.8.a.h.1.1 1
72.43 odd 6 192.8.a.n.1.1 1
72.61 even 6 192.8.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.8.a.a.1.1 1 9.7 even 3
18.8.a.a.1.1 1 9.2 odd 6
48.8.a.b.1.1 1 36.7 odd 6
144.8.a.h.1.1 1 36.11 even 6
150.8.a.e.1.1 1 45.34 even 6
150.8.c.k.49.1 2 45.43 odd 12
150.8.c.k.49.2 2 45.7 odd 12
162.8.c.d.55.1 2 1.1 even 1 trivial
162.8.c.d.109.1 2 9.4 even 3 inner
162.8.c.i.55.1 2 3.2 odd 2
162.8.c.i.109.1 2 9.5 odd 6
192.8.a.f.1.1 1 72.61 even 6
192.8.a.n.1.1 1 72.43 odd 6
294.8.a.l.1.1 1 63.34 odd 6
294.8.e.c.67.1 2 63.16 even 3
294.8.e.c.79.1 2 63.25 even 3
294.8.e.d.67.1 2 63.61 odd 6
294.8.e.d.79.1 2 63.52 odd 6
450.8.a.ba.1.1 1 45.29 odd 6
450.8.c.a.199.1 2 45.2 even 12
450.8.c.a.199.2 2 45.38 even 12
576.8.a.h.1.1 1 72.29 odd 6
576.8.a.i.1.1 1 72.11 even 6