Properties

Label 162.8.c.p.55.2
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{329})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 83x^{2} + 82x + 6724 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-4.28459 + 7.42113i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.p.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(232.868 + 403.339i) q^{5} +(24.8678 - 43.0723i) q^{7} -512.000 q^{8} +3725.89 q^{10} +(-151.443 + 262.306i) q^{11} +(2757.36 + 4775.88i) q^{13} +(-198.943 - 344.579i) q^{14} +(-2048.00 + 3547.24i) q^{16} -22646.7 q^{17} +52805.5 q^{19} +(14903.5 - 25813.7i) q^{20} +(1211.54 + 2098.45i) q^{22} +(-10009.6 - 17337.2i) q^{23} +(-69392.3 + 120191. i) q^{25} +44117.7 q^{26} -3183.08 q^{28} +(-125140. + 216748. i) q^{29} +(-131183. - 227216. i) q^{31} +(16384.0 + 28377.9i) q^{32} +(-90586.9 + 156901. i) q^{34} +23163.7 q^{35} -460621. q^{37} +(211222. - 365847. i) q^{38} +(-119228. - 206510. i) q^{40} +(120202. + 208196. i) q^{41} +(-284188. + 492228. i) q^{43} +19384.6 q^{44} -160154. q^{46} +(-437616. + 757973. i) q^{47} +(410535. + 711067. i) q^{49} +(555139. + 961529. i) q^{50} +(176471. - 305656. i) q^{52} +811041. q^{53} -141064. q^{55} +(-12732.3 + 22053.0i) q^{56} +(1.00112e6 + 1.73399e6i) q^{58} +(646016. + 1.11893e6i) q^{59} +(814260. - 1.41034e6i) q^{61} -2.09893e6 q^{62} +262144. q^{64} +(-1.28420e6 + 2.22430e6i) q^{65} +(921587. + 1.59623e6i) q^{67} +(724695. + 1.25521e6i) q^{68} +(92654.6 - 160483. i) q^{70} +4.56707e6 q^{71} -1.91494e6 q^{73} +(-1.84248e6 + 3.19127e6i) q^{74} +(-1.68978e6 - 2.92678e6i) q^{76} +(7532.09 + 13046.0i) q^{77} +(905441. - 1.56827e6i) q^{79} -1.90765e6 q^{80} +1.92323e6 q^{82} +(-1.54464e6 + 2.67540e6i) q^{83} +(-5.27369e6 - 9.13430e6i) q^{85} +(2.27350e6 + 3.93782e6i) q^{86} +(77538.6 - 134301. i) q^{88} -4.10492e6 q^{89} +274278. q^{91} +(-640617. + 1.10958e6i) q^{92} +(3.50093e6 + 6.06378e6i) q^{94} +(1.22967e7 + 2.12985e7i) q^{95} +(-3.95811e6 + 6.85566e6i) q^{97} +6.56855e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 128 q^{4} - 48 q^{5} - 880 q^{7} - 2048 q^{8} - 768 q^{10} + 7230 q^{11} - 8560 q^{13} + 7040 q^{14} - 8192 q^{16} - 51408 q^{17} + 74096 q^{19} - 3072 q^{20} - 57840 q^{22} - 59628 q^{23}+ \cdots + 12483264 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 232.868 + 403.339i 0.833133 + 1.44303i 0.895541 + 0.444978i \(0.146789\pi\)
−0.0624081 + 0.998051i \(0.519878\pi\)
\(6\) 0 0
\(7\) 24.8678 43.0723i 0.0274028 0.0474630i −0.851999 0.523544i \(-0.824610\pi\)
0.879402 + 0.476081i \(0.157943\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 3725.89 1.17823
\(11\) −151.443 + 262.306i −0.0343063 + 0.0594202i −0.882669 0.469996i \(-0.844256\pi\)
0.848362 + 0.529416i \(0.177589\pi\)
\(12\) 0 0
\(13\) 2757.36 + 4775.88i 0.348090 + 0.602909i 0.985910 0.167276i \(-0.0534971\pi\)
−0.637820 + 0.770185i \(0.720164\pi\)
\(14\) −198.943 344.579i −0.0193767 0.0335614i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −22646.7 −1.11798 −0.558990 0.829174i \(-0.688811\pi\)
−0.558990 + 0.829174i \(0.688811\pi\)
\(18\) 0 0
\(19\) 52805.5 1.76621 0.883103 0.469179i \(-0.155450\pi\)
0.883103 + 0.469179i \(0.155450\pi\)
\(20\) 14903.5 25813.7i 0.416567 0.721515i
\(21\) 0 0
\(22\) 1211.54 + 2098.45i 0.0242582 + 0.0420164i
\(23\) −10009.6 17337.2i −0.171542 0.297120i 0.767417 0.641148i \(-0.221542\pi\)
−0.938959 + 0.344028i \(0.888208\pi\)
\(24\) 0 0
\(25\) −69392.3 + 120191.i −0.888222 + 1.53845i
\(26\) 44117.7 0.492273
\(27\) 0 0
\(28\) −3183.08 −0.0274028
\(29\) −125140. + 216748.i −0.952800 + 1.65030i −0.213476 + 0.976948i \(0.568479\pi\)
−0.739324 + 0.673350i \(0.764855\pi\)
\(30\) 0 0
\(31\) −131183. 227216.i −0.790884 1.36985i −0.925420 0.378942i \(-0.876288\pi\)
0.134536 0.990909i \(-0.457045\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −90586.9 + 156901.i −0.395266 + 0.684620i
\(35\) 23163.7 0.0913207
\(36\) 0 0
\(37\) −460621. −1.49499 −0.747493 0.664269i \(-0.768743\pi\)
−0.747493 + 0.664269i \(0.768743\pi\)
\(38\) 211222. 365847.i 0.624448 1.08158i
\(39\) 0 0
\(40\) −119228. 206510.i −0.294557 0.510188i
\(41\) 120202. + 208196.i 0.272375 + 0.471768i 0.969470 0.245212i \(-0.0788575\pi\)
−0.697094 + 0.716979i \(0.745524\pi\)
\(42\) 0 0
\(43\) −284188. + 492228.i −0.545087 + 0.944119i 0.453514 + 0.891249i \(0.350170\pi\)
−0.998601 + 0.0528698i \(0.983163\pi\)
\(44\) 19384.6 0.0343063
\(45\) 0 0
\(46\) −160154. −0.242597
\(47\) −437616. + 757973.i −0.614824 + 1.06491i 0.375592 + 0.926785i \(0.377440\pi\)
−0.990415 + 0.138121i \(0.955894\pi\)
\(48\) 0 0
\(49\) 410535. + 711067.i 0.498498 + 0.863424i
\(50\) 555139. + 961529.i 0.628068 + 1.08785i
\(51\) 0 0
\(52\) 176471. 305656.i 0.174045 0.301455i
\(53\) 811041. 0.748303 0.374151 0.927368i \(-0.377934\pi\)
0.374151 + 0.927368i \(0.377934\pi\)
\(54\) 0 0
\(55\) −141064. −0.114327
\(56\) −12732.3 + 22053.0i −0.00968835 + 0.0167807i
\(57\) 0 0
\(58\) 1.00112e6 + 1.73399e6i 0.673731 + 1.16694i
\(59\) 646016. + 1.11893e6i 0.409507 + 0.709286i 0.994834 0.101510i \(-0.0323675\pi\)
−0.585328 + 0.810797i \(0.699034\pi\)
\(60\) 0 0
\(61\) 814260. 1.41034e6i 0.459313 0.795554i −0.539612 0.841914i \(-0.681429\pi\)
0.998925 + 0.0463604i \(0.0147623\pi\)
\(62\) −2.09893e6 −1.11848
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −1.28420e6 + 2.22430e6i −0.580010 + 1.00461i
\(66\) 0 0
\(67\) 921587. + 1.59623e6i 0.374347 + 0.648388i 0.990229 0.139450i \(-0.0445336\pi\)
−0.615882 + 0.787838i \(0.711200\pi\)
\(68\) 724695. + 1.25521e6i 0.279495 + 0.484099i
\(69\) 0 0
\(70\) 92654.6 160483.i 0.0322867 0.0559223i
\(71\) 4.56707e6 1.51438 0.757188 0.653197i \(-0.226573\pi\)
0.757188 + 0.653197i \(0.226573\pi\)
\(72\) 0 0
\(73\) −1.91494e6 −0.576136 −0.288068 0.957610i \(-0.593013\pi\)
−0.288068 + 0.957610i \(0.593013\pi\)
\(74\) −1.84248e6 + 3.19127e6i −0.528558 + 0.915489i
\(75\) 0 0
\(76\) −1.68978e6 2.92678e6i −0.441552 0.764790i
\(77\) 7532.09 + 13046.0i 0.00188017 + 0.00325656i
\(78\) 0 0
\(79\) 905441. 1.56827e6i 0.206617 0.357871i −0.744030 0.668146i \(-0.767088\pi\)
0.950647 + 0.310276i \(0.100421\pi\)
\(80\) −1.90765e6 −0.416567
\(81\) 0 0
\(82\) 1.92323e6 0.385197
\(83\) −1.54464e6 + 2.67540e6i −0.296520 + 0.513588i −0.975337 0.220719i \(-0.929160\pi\)
0.678817 + 0.734307i \(0.262493\pi\)
\(84\) 0 0
\(85\) −5.27369e6 9.13430e6i −0.931426 1.61328i
\(86\) 2.27350e6 + 3.93782e6i 0.385435 + 0.667593i
\(87\) 0 0
\(88\) 77538.6 134301.i 0.0121291 0.0210082i
\(89\) −4.10492e6 −0.617219 −0.308610 0.951189i \(-0.599864\pi\)
−0.308610 + 0.951189i \(0.599864\pi\)
\(90\) 0 0
\(91\) 274278. 0.0381545
\(92\) −640617. + 1.10958e6i −0.0857711 + 0.148560i
\(93\) 0 0
\(94\) 3.50093e6 + 6.06378e6i 0.434746 + 0.753002i
\(95\) 1.22967e7 + 2.12985e7i 1.47149 + 2.54869i
\(96\) 0 0
\(97\) −3.95811e6 + 6.85566e6i −0.440339 + 0.762690i −0.997714 0.0675709i \(-0.978475\pi\)
0.557375 + 0.830261i \(0.311808\pi\)
\(98\) 6.56855e6 0.704983
\(99\) 0 0
\(100\) 8.88222e6 0.888222
\(101\) −4.81629e6 + 8.34207e6i −0.465145 + 0.805654i −0.999208 0.0397901i \(-0.987331\pi\)
0.534063 + 0.845445i \(0.320664\pi\)
\(102\) 0 0
\(103\) −4.59008e6 7.95025e6i −0.413894 0.716886i 0.581417 0.813606i \(-0.302498\pi\)
−0.995312 + 0.0967193i \(0.969165\pi\)
\(104\) −1.41177e6 2.44525e6i −0.123068 0.213161i
\(105\) 0 0
\(106\) 3.24416e6 5.61906e6i 0.264565 0.458240i
\(107\) 3.82175e6 0.301591 0.150796 0.988565i \(-0.451816\pi\)
0.150796 + 0.988565i \(0.451816\pi\)
\(108\) 0 0
\(109\) 1.90995e7 1.41264 0.706318 0.707895i \(-0.250355\pi\)
0.706318 + 0.707895i \(0.250355\pi\)
\(110\) −564258. + 977323.i −0.0404206 + 0.0700106i
\(111\) 0 0
\(112\) 101859. + 176424.i 0.00685069 + 0.0118658i
\(113\) −115135. 199420.i −0.00750643 0.0130015i 0.862248 0.506487i \(-0.169056\pi\)
−0.869754 + 0.493485i \(0.835723\pi\)
\(114\) 0 0
\(115\) 4.66185e6 8.07456e6i 0.285835 0.495081i
\(116\) 1.60179e7 0.952800
\(117\) 0 0
\(118\) 1.03363e7 0.579130
\(119\) −563174. + 975447.i −0.0306358 + 0.0530627i
\(120\) 0 0
\(121\) 9.69772e6 + 1.67969e7i 0.497646 + 0.861948i
\(122\) −6.51408e6 1.12827e7i −0.324783 0.562541i
\(123\) 0 0
\(124\) −8.39573e6 + 1.45418e7i −0.395442 + 0.684926i
\(125\) −2.82514e7 −1.29376
\(126\) 0 0
\(127\) −3.92443e7 −1.70006 −0.850028 0.526737i \(-0.823415\pi\)
−0.850028 + 0.526737i \(0.823415\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.02736e7 + 1.77944e7i 0.410129 + 0.710365i
\(131\) 1.06388e7 + 1.84270e7i 0.413470 + 0.716151i 0.995266 0.0971836i \(-0.0309834\pi\)
−0.581797 + 0.813334i \(0.697650\pi\)
\(132\) 0 0
\(133\) 1.31316e6 2.27446e6i 0.0483990 0.0838295i
\(134\) 1.47454e7 0.529407
\(135\) 0 0
\(136\) 1.15951e7 0.395266
\(137\) −9.11520e6 + 1.57880e7i −0.302862 + 0.524572i −0.976783 0.214231i \(-0.931275\pi\)
0.673921 + 0.738803i \(0.264609\pi\)
\(138\) 0 0
\(139\) −1.08085e7 1.87208e7i −0.341360 0.591253i 0.643326 0.765593i \(-0.277554\pi\)
−0.984686 + 0.174340i \(0.944221\pi\)
\(140\) −741237. 1.28386e6i −0.0228302 0.0395430i
\(141\) 0 0
\(142\) 1.82683e7 3.16416e7i 0.535413 0.927362i
\(143\) −1.67032e6 −0.0477666
\(144\) 0 0
\(145\) −1.16564e8 −3.17524
\(146\) −7.65976e6 + 1.32671e7i −0.203695 + 0.352810i
\(147\) 0 0
\(148\) 1.47399e7 + 2.55302e7i 0.373747 + 0.647348i
\(149\) −3.50300e7 6.06738e7i −0.867538 1.50262i −0.864505 0.502624i \(-0.832368\pi\)
−0.00303238 0.999995i \(-0.500965\pi\)
\(150\) 0 0
\(151\) −3.10773e7 + 5.38275e7i −0.734555 + 1.27229i 0.220364 + 0.975418i \(0.429276\pi\)
−0.954918 + 0.296868i \(0.904058\pi\)
\(152\) −2.70364e7 −0.624448
\(153\) 0 0
\(154\) 120513. 0.00265897
\(155\) 6.10968e7 1.05823e8i 1.31782 2.28254i
\(156\) 0 0
\(157\) −2.66627e7 4.61811e7i −0.549864 0.952392i −0.998283 0.0585686i \(-0.981346\pi\)
0.448420 0.893823i \(-0.351987\pi\)
\(158\) −7.24353e6 1.25462e7i −0.146100 0.253053i
\(159\) 0 0
\(160\) −7.63061e6 + 1.32166e7i −0.147279 + 0.255094i
\(161\) −995672. −0.0188029
\(162\) 0 0
\(163\) 8.41147e6 0.152130 0.0760650 0.997103i \(-0.475764\pi\)
0.0760650 + 0.997103i \(0.475764\pi\)
\(164\) 7.69292e6 1.33245e7i 0.136188 0.235884i
\(165\) 0 0
\(166\) 1.23571e7 + 2.14032e7i 0.209671 + 0.363161i
\(167\) −1.43922e6 2.49281e6i −0.0239122 0.0414172i 0.853822 0.520566i \(-0.174279\pi\)
−0.877734 + 0.479148i \(0.840946\pi\)
\(168\) 0 0
\(169\) 1.61682e7 2.80042e7i 0.257667 0.446293i
\(170\) −8.43791e7 −1.31724
\(171\) 0 0
\(172\) 3.63761e7 0.545087
\(173\) 1.22544e7 2.12253e7i 0.179941 0.311668i −0.761919 0.647673i \(-0.775743\pi\)
0.941860 + 0.336005i \(0.109076\pi\)
\(174\) 0 0
\(175\) 3.45127e6 + 5.97778e6i 0.0486795 + 0.0843154i
\(176\) −620309. 1.07441e6i −0.00857657 0.0148551i
\(177\) 0 0
\(178\) −1.64197e7 + 2.84397e7i −0.218220 + 0.377968i
\(179\) 8.25306e7 1.07555 0.537773 0.843089i \(-0.319266\pi\)
0.537773 + 0.843089i \(0.319266\pi\)
\(180\) 0 0
\(181\) 4.49477e7 0.563420 0.281710 0.959500i \(-0.409098\pi\)
0.281710 + 0.959500i \(0.409098\pi\)
\(182\) 1.09711e6 1.90025e6i 0.0134897 0.0233648i
\(183\) 0 0
\(184\) 5.12494e6 + 8.87665e6i 0.0606494 + 0.105048i
\(185\) −1.07264e8 1.85786e8i −1.24552 2.15731i
\(186\) 0 0
\(187\) 3.42968e6 5.94037e6i 0.0383537 0.0664306i
\(188\) 5.60148e7 0.614824
\(189\) 0 0
\(190\) 1.96747e8 2.08099
\(191\) −2.22501e6 + 3.85383e6i −0.0231055 + 0.0400199i −0.877347 0.479857i \(-0.840689\pi\)
0.854241 + 0.519876i \(0.174022\pi\)
\(192\) 0 0
\(193\) −3.35159e7 5.80512e7i −0.335583 0.581247i 0.648014 0.761629i \(-0.275600\pi\)
−0.983597 + 0.180382i \(0.942267\pi\)
\(194\) 3.16649e7 + 5.48452e7i 0.311367 + 0.539303i
\(195\) 0 0
\(196\) 2.62742e7 4.55083e7i 0.249249 0.431712i
\(197\) 9.80246e7 0.913489 0.456745 0.889598i \(-0.349015\pi\)
0.456745 + 0.889598i \(0.349015\pi\)
\(198\) 0 0
\(199\) 5.48349e7 0.493254 0.246627 0.969110i \(-0.420678\pi\)
0.246627 + 0.969110i \(0.420678\pi\)
\(200\) 3.55289e7 6.15378e7i 0.314034 0.543923i
\(201\) 0 0
\(202\) 3.85303e7 + 6.67365e7i 0.328907 + 0.569684i
\(203\) 6.22390e6 + 1.07801e7i 0.0522187 + 0.0904455i
\(204\) 0 0
\(205\) −5.59823e7 + 9.69642e7i −0.453850 + 0.786091i
\(206\) −7.34412e7 −0.585335
\(207\) 0 0
\(208\) −2.25883e7 −0.174045
\(209\) −7.99700e6 + 1.38512e7i −0.0605920 + 0.104948i
\(210\) 0 0
\(211\) −5.81377e7 1.00697e8i −0.426058 0.737955i 0.570460 0.821325i \(-0.306765\pi\)
−0.996519 + 0.0833704i \(0.973432\pi\)
\(212\) −2.59533e7 4.49525e7i −0.187076 0.324025i
\(213\) 0 0
\(214\) 1.52870e7 2.64778e7i 0.106629 0.184686i
\(215\) −2.64713e8 −1.81652
\(216\) 0 0
\(217\) −1.30490e7 −0.0866897
\(218\) 7.63981e7 1.32325e8i 0.499442 0.865059i
\(219\) 0 0
\(220\) 4.51406e6 + 7.81858e6i 0.0285817 + 0.0495050i
\(221\) −6.24451e7 1.08158e8i −0.389157 0.674040i
\(222\) 0 0
\(223\) 6.60745e7 1.14444e8i 0.398994 0.691078i −0.594608 0.804016i \(-0.702693\pi\)
0.993602 + 0.112938i \(0.0360260\pi\)
\(224\) 1.62974e6 0.00968835
\(225\) 0 0
\(226\) −1.84216e6 −0.0106157
\(227\) 2.82306e7 4.88969e7i 0.160188 0.277454i −0.774748 0.632270i \(-0.782123\pi\)
0.934936 + 0.354816i \(0.115457\pi\)
\(228\) 0 0
\(229\) −8.89369e7 1.54043e8i −0.489393 0.847654i 0.510532 0.859859i \(-0.329448\pi\)
−0.999926 + 0.0122046i \(0.996115\pi\)
\(230\) −3.72948e7 6.45965e7i −0.202116 0.350075i
\(231\) 0 0
\(232\) 6.40715e7 1.10975e8i 0.336866 0.583468i
\(233\) 1.00997e8 0.523076 0.261538 0.965193i \(-0.415770\pi\)
0.261538 + 0.965193i \(0.415770\pi\)
\(234\) 0 0
\(235\) −4.07627e8 −2.04892
\(236\) 4.13450e7 7.16116e7i 0.204753 0.354643i
\(237\) 0 0
\(238\) 4.50540e6 + 7.80357e6i 0.0216627 + 0.0375210i
\(239\) 6.07131e7 + 1.05158e8i 0.287667 + 0.498254i 0.973252 0.229739i \(-0.0737871\pi\)
−0.685586 + 0.727992i \(0.740454\pi\)
\(240\) 0 0
\(241\) 1.14124e8 1.97669e8i 0.525191 0.909657i −0.474379 0.880321i \(-0.657327\pi\)
0.999570 0.0293364i \(-0.00933942\pi\)
\(242\) 1.55163e8 0.703778
\(243\) 0 0
\(244\) −1.04225e8 −0.459313
\(245\) −1.91201e8 + 3.31169e8i −0.830631 + 1.43869i
\(246\) 0 0
\(247\) 1.45604e8 + 2.52193e8i 0.614798 + 1.06486i
\(248\) 6.71659e7 + 1.16335e8i 0.279620 + 0.484315i
\(249\) 0 0
\(250\) −1.13006e8 + 1.95731e8i −0.457414 + 0.792265i
\(251\) −3.32724e8 −1.32808 −0.664042 0.747695i \(-0.731160\pi\)
−0.664042 + 0.747695i \(0.731160\pi\)
\(252\) 0 0
\(253\) 6.06354e6 0.0235399
\(254\) −1.56977e8 + 2.71892e8i −0.601061 + 1.04107i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 2.31212e8 + 4.00470e8i 0.849657 + 1.47165i 0.881515 + 0.472157i \(0.156524\pi\)
−0.0318576 + 0.999492i \(0.510142\pi\)
\(258\) 0 0
\(259\) −1.14546e7 + 1.98400e7i −0.0409668 + 0.0709566i
\(260\) 1.64377e8 0.580010
\(261\) 0 0
\(262\) 1.70221e8 0.584735
\(263\) 6.65315e7 1.15236e8i 0.225519 0.390610i −0.730956 0.682424i \(-0.760926\pi\)
0.956475 + 0.291815i \(0.0942590\pi\)
\(264\) 0 0
\(265\) 1.88865e8 + 3.27124e8i 0.623436 + 1.07982i
\(266\) −1.05053e7 1.81956e7i −0.0342232 0.0592764i
\(267\) 0 0
\(268\) 5.89815e7 1.02159e8i 0.187173 0.324194i
\(269\) 3.65232e8 1.14403 0.572013 0.820245i \(-0.306163\pi\)
0.572013 + 0.820245i \(0.306163\pi\)
\(270\) 0 0
\(271\) 1.75400e8 0.535348 0.267674 0.963510i \(-0.413745\pi\)
0.267674 + 0.963510i \(0.413745\pi\)
\(272\) 4.63805e7 8.03333e7i 0.139747 0.242050i
\(273\) 0 0
\(274\) 7.29216e7 + 1.26304e8i 0.214156 + 0.370928i
\(275\) −2.10179e7 3.64041e7i −0.0609432 0.105557i
\(276\) 0 0
\(277\) −9.21421e7 + 1.59595e8i −0.260483 + 0.451169i −0.966370 0.257155i \(-0.917215\pi\)
0.705888 + 0.708324i \(0.250548\pi\)
\(278\) −1.72936e8 −0.482756
\(279\) 0 0
\(280\) −1.18598e7 −0.0322867
\(281\) −4.36306e7 + 7.55704e7i −0.117306 + 0.203179i −0.918699 0.394958i \(-0.870759\pi\)
0.801393 + 0.598138i \(0.204092\pi\)
\(282\) 0 0
\(283\) −9.38103e7 1.62484e8i −0.246036 0.426146i 0.716387 0.697703i \(-0.245795\pi\)
−0.962422 + 0.271557i \(0.912461\pi\)
\(284\) −1.46146e8 2.53133e8i −0.378594 0.655744i
\(285\) 0 0
\(286\) −6.68130e6 + 1.15723e7i −0.0168881 + 0.0292510i
\(287\) 1.19566e7 0.0298554
\(288\) 0 0
\(289\) 1.02535e8 0.249879
\(290\) −4.66256e8 + 8.07579e8i −1.12262 + 1.94443i
\(291\) 0 0
\(292\) 6.12781e7 + 1.06137e8i 0.144034 + 0.249474i
\(293\) 3.05073e8 + 5.28401e8i 0.708543 + 1.22723i 0.965397 + 0.260783i \(0.0839807\pi\)
−0.256854 + 0.966450i \(0.582686\pi\)
\(294\) 0 0
\(295\) −3.00873e8 + 5.21127e8i −0.682347 + 1.18186i
\(296\) 2.35838e8 0.528558
\(297\) 0 0
\(298\) −5.60480e8 −1.22688
\(299\) 5.52003e7 9.56097e7i 0.119424 0.206849i
\(300\) 0 0
\(301\) 1.41343e7 + 2.44813e7i 0.0298738 + 0.0517430i
\(302\) 2.48619e8 + 4.30620e8i 0.519409 + 0.899642i
\(303\) 0 0
\(304\) −1.08146e8 + 1.87314e8i −0.220776 + 0.382395i
\(305\) 7.58460e8 1.53068
\(306\) 0 0
\(307\) 7.70231e8 1.51928 0.759638 0.650346i \(-0.225376\pi\)
0.759638 + 0.650346i \(0.225376\pi\)
\(308\) 482054. 834942.i 0.000940087 0.00162828i
\(309\) 0 0
\(310\) −4.88774e8 8.46581e8i −0.931842 1.61400i
\(311\) 4.36357e8 + 7.55792e8i 0.822584 + 1.42476i 0.903752 + 0.428057i \(0.140802\pi\)
−0.0811678 + 0.996700i \(0.525865\pi\)
\(312\) 0 0
\(313\) 7.71953e6 1.33706e7i 0.0142294 0.0246460i −0.858823 0.512272i \(-0.828804\pi\)
0.873052 + 0.487626i \(0.162137\pi\)
\(314\) −4.26603e8 −0.777625
\(315\) 0 0
\(316\) −1.15896e8 −0.206617
\(317\) 1.27944e8 2.21605e8i 0.225586 0.390726i −0.730909 0.682475i \(-0.760904\pi\)
0.956495 + 0.291749i \(0.0942371\pi\)
\(318\) 0 0
\(319\) −3.79029e7 6.56498e7i −0.0653740 0.113231i
\(320\) 6.10449e7 + 1.05733e8i 0.104142 + 0.180379i
\(321\) 0 0
\(322\) −3.98269e6 + 6.89822e6i −0.00664784 + 0.0115144i
\(323\) −1.19587e9 −1.97458
\(324\) 0 0
\(325\) −7.65358e8 −1.23672
\(326\) 3.36459e7 5.82763e7i 0.0537861 0.0931603i
\(327\) 0 0
\(328\) −6.15433e7 1.06596e8i −0.0962992 0.166795i
\(329\) 2.17651e7 + 3.76983e7i 0.0336958 + 0.0583628i
\(330\) 0 0
\(331\) −1.99183e8 + 3.44995e8i −0.301893 + 0.522895i −0.976565 0.215223i \(-0.930952\pi\)
0.674671 + 0.738118i \(0.264285\pi\)
\(332\) 1.97714e8 0.296520
\(333\) 0 0
\(334\) −2.30276e7 −0.0338170
\(335\) −4.29216e8 + 7.43423e8i −0.623762 + 1.08039i
\(336\) 0 0
\(337\) −5.81304e8 1.00685e9i −0.827368 1.43304i −0.900096 0.435691i \(-0.856504\pi\)
0.0727283 0.997352i \(-0.476829\pi\)
\(338\) −1.29346e8 2.24034e8i −0.182198 0.315576i
\(339\) 0 0
\(340\) −3.37516e8 + 5.84595e8i −0.465713 + 0.806639i
\(341\) 7.94670e7 0.108529
\(342\) 0 0
\(343\) 8.17959e7 0.109446
\(344\) 1.45504e8 2.52021e8i 0.192717 0.333796i
\(345\) 0 0
\(346\) −9.80353e7 1.69802e8i −0.127238 0.220382i
\(347\) −5.74010e8 9.94214e8i −0.737507 1.27740i −0.953615 0.301030i \(-0.902670\pi\)
0.216108 0.976369i \(-0.430664\pi\)
\(348\) 0 0
\(349\) 6.87991e8 1.19164e9i 0.866351 1.50056i 0.000651345 1.00000i \(-0.499793\pi\)
0.865700 0.500564i \(-0.166874\pi\)
\(350\) 5.52204e7 0.0688432
\(351\) 0 0
\(352\) −9.92494e6 −0.0121291
\(353\) −2.22495e8 + 3.85373e8i −0.269221 + 0.466304i −0.968661 0.248387i \(-0.920099\pi\)
0.699440 + 0.714691i \(0.253433\pi\)
\(354\) 0 0
\(355\) 1.06352e9 + 1.84208e9i 1.26168 + 2.18529i
\(356\) 1.31357e8 + 2.27518e8i 0.154305 + 0.267264i
\(357\) 0 0
\(358\) 3.30122e8 5.71789e8i 0.380263 0.658635i
\(359\) 1.14314e9 1.30397 0.651984 0.758233i \(-0.273937\pi\)
0.651984 + 0.758233i \(0.273937\pi\)
\(360\) 0 0
\(361\) 1.89455e9 2.11949
\(362\) 1.79791e8 3.11407e8i 0.199199 0.345023i
\(363\) 0 0
\(364\) −8.77689e6 1.52020e7i −0.00953863 0.0165214i
\(365\) −4.45928e8 7.72370e8i −0.479998 0.831381i
\(366\) 0 0
\(367\) 3.75522e8 6.50423e8i 0.396555 0.686854i −0.596743 0.802432i \(-0.703539\pi\)
0.993298 + 0.115578i \(0.0368722\pi\)
\(368\) 8.19990e7 0.0857711
\(369\) 0 0
\(370\) −1.71622e9 −1.76144
\(371\) 2.01688e7 3.49334e7i 0.0205056 0.0355167i
\(372\) 0 0
\(373\) 6.65173e8 + 1.15211e9i 0.663672 + 1.14951i 0.979644 + 0.200745i \(0.0643362\pi\)
−0.315972 + 0.948769i \(0.602330\pi\)
\(374\) −2.74374e7 4.75230e7i −0.0271202 0.0469735i
\(375\) 0 0
\(376\) 2.24059e8 3.88082e8i 0.217373 0.376501i
\(377\) −1.38022e9 −1.32664
\(378\) 0 0
\(379\) 1.06374e9 1.00369 0.501845 0.864958i \(-0.332655\pi\)
0.501845 + 0.864958i \(0.332655\pi\)
\(380\) 7.86989e8 1.36310e9i 0.735743 1.27434i
\(381\) 0 0
\(382\) 1.78001e7 + 3.08306e7i 0.0163380 + 0.0282983i
\(383\) 1.05087e8 + 1.82017e8i 0.0955774 + 0.165545i 0.909849 0.414939i \(-0.136197\pi\)
−0.814272 + 0.580483i \(0.802864\pi\)
\(384\) 0 0
\(385\) −3.50796e6 + 6.07597e6i −0.00313287 + 0.00542629i
\(386\) −5.36254e8 −0.474586
\(387\) 0 0
\(388\) 5.06639e8 0.440339
\(389\) −1.97731e8 + 3.42480e8i −0.170314 + 0.294993i −0.938530 0.345198i \(-0.887812\pi\)
0.768216 + 0.640191i \(0.221145\pi\)
\(390\) 0 0
\(391\) 2.26686e8 + 3.92631e8i 0.191781 + 0.332174i
\(392\) −2.10194e8 3.64066e8i −0.176246 0.305267i
\(393\) 0 0
\(394\) 3.92099e8 6.79135e8i 0.322967 0.559396i
\(395\) 8.43392e8 0.688557
\(396\) 0 0
\(397\) 1.60421e8 0.128675 0.0643375 0.997928i \(-0.479507\pi\)
0.0643375 + 0.997928i \(0.479507\pi\)
\(398\) 2.19339e8 3.79907e8i 0.174392 0.302055i
\(399\) 0 0
\(400\) −2.84231e8 4.92303e8i −0.222056 0.384611i
\(401\) −1.40643e8 2.43602e8i −0.108922 0.188658i 0.806412 0.591354i \(-0.201406\pi\)
−0.915334 + 0.402696i \(0.868073\pi\)
\(402\) 0 0
\(403\) 7.23438e8 1.25303e9i 0.550597 0.953662i
\(404\) 6.16486e8 0.465145
\(405\) 0 0
\(406\) 9.95824e7 0.0738484
\(407\) 6.97576e7 1.20824e8i 0.0512874 0.0888324i
\(408\) 0 0
\(409\) −2.07274e8 3.59010e8i −0.149801 0.259463i 0.781353 0.624089i \(-0.214530\pi\)
−0.931154 + 0.364627i \(0.881197\pi\)
\(410\) 4.47858e8 + 7.75713e8i 0.320920 + 0.555850i
\(411\) 0 0
\(412\) −2.93765e8 + 5.08816e8i −0.206947 + 0.358443i
\(413\) 6.42600e7 0.0448865
\(414\) 0 0
\(415\) −1.43879e9 −0.988163
\(416\) −9.03531e7 + 1.56496e8i −0.0615341 + 0.106580i
\(417\) 0 0
\(418\) 6.39760e7 + 1.10810e8i 0.0428450 + 0.0742097i
\(419\) −1.29962e9 2.25101e9i −0.863114 1.49496i −0.868907 0.494975i \(-0.835177\pi\)
0.00579285 0.999983i \(-0.498156\pi\)
\(420\) 0 0
\(421\) −2.89282e8 + 5.01051e8i −0.188944 + 0.327261i −0.944899 0.327363i \(-0.893840\pi\)
0.755954 + 0.654625i \(0.227173\pi\)
\(422\) −9.30203e8 −0.602538
\(423\) 0 0
\(424\) −4.15253e8 −0.264565
\(425\) 1.57151e9 2.72193e9i 0.993014 1.71995i
\(426\) 0 0
\(427\) −4.04978e7 7.01442e7i −0.0251729 0.0436008i
\(428\) −1.22296e8 2.11823e8i −0.0753978 0.130593i
\(429\) 0 0
\(430\) −1.05885e9 + 1.83398e9i −0.642237 + 1.11239i
\(431\) 7.69740e7 0.0463099 0.0231549 0.999732i \(-0.492629\pi\)
0.0231549 + 0.999732i \(0.492629\pi\)
\(432\) 0 0
\(433\) −2.75020e8 −0.162801 −0.0814005 0.996681i \(-0.525939\pi\)
−0.0814005 + 0.996681i \(0.525939\pi\)
\(434\) −5.21959e7 + 9.04059e7i −0.0306494 + 0.0530864i
\(435\) 0 0
\(436\) −6.11185e8 1.05860e9i −0.353159 0.611689i
\(437\) −5.28564e8 9.15500e8i −0.302979 0.524775i
\(438\) 0 0
\(439\) −7.61497e8 + 1.31895e9i −0.429579 + 0.744052i −0.996836 0.0794888i \(-0.974671\pi\)
0.567257 + 0.823541i \(0.308005\pi\)
\(440\) 7.22250e7 0.0404206
\(441\) 0 0
\(442\) −9.99121e8 −0.550351
\(443\) 1.04029e9 1.80183e9i 0.568512 0.984691i −0.428202 0.903683i \(-0.640853\pi\)
0.996713 0.0810079i \(-0.0258139\pi\)
\(444\) 0 0
\(445\) −9.55903e8 1.65567e9i −0.514226 0.890665i
\(446\) −5.28596e8 9.15555e8i −0.282132 0.488666i
\(447\) 0 0
\(448\) 6.51895e6 1.12912e7i 0.00342535 0.00593288i
\(449\) −1.89838e9 −0.989741 −0.494870 0.868967i \(-0.664784\pi\)
−0.494870 + 0.868967i \(0.664784\pi\)
\(450\) 0 0
\(451\) −7.28147e7 −0.0373767
\(452\) −7.36865e6 + 1.27629e7i −0.00375322 + 0.00650076i
\(453\) 0 0
\(454\) −2.25845e8 3.91175e8i −0.113270 0.196189i
\(455\) 6.38705e7 + 1.10627e8i 0.0317878 + 0.0550581i
\(456\) 0 0
\(457\) −3.43032e8 + 5.94149e8i −0.168123 + 0.291198i −0.937760 0.347284i \(-0.887104\pi\)
0.769637 + 0.638482i \(0.220437\pi\)
\(458\) −1.42299e9 −0.692107
\(459\) 0 0
\(460\) −5.96717e8 −0.285835
\(461\) 7.60483e8 1.31720e9i 0.361523 0.626177i −0.626688 0.779270i \(-0.715590\pi\)
0.988212 + 0.153093i \(0.0489234\pi\)
\(462\) 0 0
\(463\) 2.50143e8 + 4.33260e8i 0.117126 + 0.202869i 0.918628 0.395124i \(-0.129298\pi\)
−0.801501 + 0.597993i \(0.795965\pi\)
\(464\) −5.12572e8 8.87800e8i −0.238200 0.412575i
\(465\) 0 0
\(466\) 4.03990e8 6.99730e8i 0.184935 0.320317i
\(467\) 4.03333e9 1.83255 0.916274 0.400553i \(-0.131182\pi\)
0.916274 + 0.400553i \(0.131182\pi\)
\(468\) 0 0
\(469\) 9.16714e7 0.0410326
\(470\) −1.63051e9 + 2.82412e9i −0.724403 + 1.25470i
\(471\) 0 0
\(472\) −3.30760e8 5.72893e8i −0.144782 0.250771i
\(473\) −8.60763e7 1.49089e8i −0.0373998 0.0647784i
\(474\) 0 0
\(475\) −3.66430e9 + 6.34675e9i −1.56878 + 2.71721i
\(476\) 7.20863e7 0.0306358
\(477\) 0 0
\(478\) 9.71410e8 0.406822
\(479\) −1.30131e9 + 2.25394e9i −0.541012 + 0.937059i 0.457835 + 0.889037i \(0.348625\pi\)
−0.998846 + 0.0480221i \(0.984708\pi\)
\(480\) 0 0
\(481\) −1.27010e9 2.19987e9i −0.520389 0.901341i
\(482\) −9.12992e8 1.58135e9i −0.371366 0.643225i
\(483\) 0 0
\(484\) 6.20654e8 1.07500e9i 0.248823 0.430974i
\(485\) −3.68687e9 −1.46744
\(486\) 0 0
\(487\) 4.35516e9 1.70865 0.854325 0.519739i \(-0.173971\pi\)
0.854325 + 0.519739i \(0.173971\pi\)
\(488\) −4.16901e8 + 7.22094e8i −0.162392 + 0.281271i
\(489\) 0 0
\(490\) 1.52961e9 + 2.64935e9i 0.587345 + 1.01731i
\(491\) 2.08328e8 + 3.60834e8i 0.0794258 + 0.137569i 0.903002 0.429636i \(-0.141358\pi\)
−0.823577 + 0.567205i \(0.808025\pi\)
\(492\) 0 0
\(493\) 2.83400e9 4.90863e9i 1.06521 1.84500i
\(494\) 2.32966e9 0.869456
\(495\) 0 0
\(496\) 1.07465e9 0.395442
\(497\) 1.13573e8 1.96714e8i 0.0414981 0.0718768i
\(498\) 0 0
\(499\) 1.67135e9 + 2.89486e9i 0.602164 + 1.04298i 0.992493 + 0.122303i \(0.0390280\pi\)
−0.390329 + 0.920676i \(0.627639\pi\)
\(500\) 9.04044e8 + 1.56585e9i 0.323441 + 0.560216i
\(501\) 0 0
\(502\) −1.33089e9 + 2.30518e9i −0.469549 + 0.813282i
\(503\) 1.48681e9 0.520915 0.260458 0.965485i \(-0.416127\pi\)
0.260458 + 0.965485i \(0.416127\pi\)
\(504\) 0 0
\(505\) −4.48624e9 −1.55011
\(506\) 2.42542e7 4.20095e7i 0.00832261 0.0144152i
\(507\) 0 0
\(508\) 1.25582e9 + 2.17514e9i 0.425014 + 0.736146i
\(509\) −3.17171e8 5.49356e8i −0.106606 0.184647i 0.807787 0.589474i \(-0.200665\pi\)
−0.914393 + 0.404827i \(0.867332\pi\)
\(510\) 0 0
\(511\) −4.76204e7 + 8.24809e7i −0.0157877 + 0.0273452i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 3.69939e9 1.20160
\(515\) 2.13776e9 3.70271e9i 0.689658 1.19452i
\(516\) 0 0
\(517\) −1.32547e8 2.29579e8i −0.0421846 0.0730659i
\(518\) 9.16370e7 + 1.58720e8i 0.0289679 + 0.0501739i
\(519\) 0 0
\(520\) 6.57510e8 1.13884e9i 0.205065 0.355182i
\(521\) −5.00649e9 −1.55096 −0.775481 0.631371i \(-0.782493\pi\)
−0.775481 + 0.631371i \(0.782493\pi\)
\(522\) 0 0
\(523\) −4.06385e9 −1.24217 −0.621086 0.783743i \(-0.713308\pi\)
−0.621086 + 0.783743i \(0.713308\pi\)
\(524\) 6.80884e8 1.17933e9i 0.206735 0.358075i
\(525\) 0 0
\(526\) −5.32252e8 9.21888e8i −0.159466 0.276203i
\(527\) 2.97087e9 + 5.14570e9i 0.884192 + 1.53147i
\(528\) 0 0
\(529\) 1.50203e9 2.60159e9i 0.441146 0.764088i
\(530\) 3.02185e9 0.881672
\(531\) 0 0
\(532\) −1.68084e8 −0.0483990
\(533\) −6.62879e8 + 1.14814e9i −0.189622 + 0.328435i
\(534\) 0 0
\(535\) 8.89962e8 + 1.54146e9i 0.251266 + 0.435205i
\(536\) −4.71852e8 8.17272e8i −0.132352 0.229240i
\(537\) 0 0
\(538\) 1.46093e9 2.53040e9i 0.404474 0.700570i
\(539\) −2.48690e8 −0.0684065
\(540\) 0 0
\(541\) 6.36182e8 0.172739 0.0863696 0.996263i \(-0.472473\pi\)
0.0863696 + 0.996263i \(0.472473\pi\)
\(542\) 7.01599e8 1.21520e9i 0.189274 0.327832i
\(543\) 0 0
\(544\) −3.71044e8 6.42667e8i −0.0988164 0.171155i
\(545\) 4.44767e9 + 7.70359e9i 1.17691 + 2.03847i
\(546\) 0 0
\(547\) 1.27423e9 2.20704e9i 0.332884 0.576573i −0.650192 0.759770i \(-0.725311\pi\)
0.983076 + 0.183197i \(0.0586448\pi\)
\(548\) 1.16675e9 0.302862
\(549\) 0 0
\(550\) −3.36287e8 −0.0861867
\(551\) −6.60806e9 + 1.14455e10i −1.68284 + 2.91477i
\(552\) 0 0
\(553\) −4.50327e7 7.79989e7i −0.0113237 0.0196133i
\(554\) 7.37136e8 + 1.27676e9i 0.184189 + 0.319025i
\(555\) 0 0
\(556\) −6.91742e8 + 1.19813e9i −0.170680 + 0.295626i
\(557\) 3.06157e9 0.750673 0.375337 0.926889i \(-0.377527\pi\)
0.375337 + 0.926889i \(0.377527\pi\)
\(558\) 0 0
\(559\) −3.13443e9 −0.758957
\(560\) −4.74392e7 + 8.21671e7i −0.0114151 + 0.0197715i
\(561\) 0 0
\(562\) 3.49045e8 + 6.04563e8i 0.0829476 + 0.143670i
\(563\) −2.12350e9 3.67801e9i −0.501502 0.868627i −0.999998 0.00173536i \(-0.999448\pi\)
0.498496 0.866892i \(-0.333886\pi\)
\(564\) 0 0
\(565\) 5.36226e7 9.28770e7i 0.0125077 0.0216640i
\(566\) −1.50096e9 −0.347947
\(567\) 0 0
\(568\) −2.33834e9 −0.535413
\(569\) −2.73746e6 + 4.74142e6i −0.000622952 + 0.00107898i −0.866337 0.499460i \(-0.833532\pi\)
0.865714 + 0.500539i \(0.166865\pi\)
\(570\) 0 0
\(571\) −2.47557e9 4.28782e9i −0.556479 0.963851i −0.997787 0.0664946i \(-0.978818\pi\)
0.441307 0.897356i \(-0.354515\pi\)
\(572\) 5.34504e7 + 9.25788e7i 0.0119417 + 0.0206836i
\(573\) 0 0
\(574\) 4.78265e7 8.28380e7i 0.0105555 0.0182826i
\(575\) 2.77837e9 0.609471
\(576\) 0 0
\(577\) −3.55867e9 −0.771210 −0.385605 0.922664i \(-0.626007\pi\)
−0.385605 + 0.922664i \(0.626007\pi\)
\(578\) 4.10140e8 7.10383e8i 0.0883455 0.153019i
\(579\) 0 0
\(580\) 3.73005e9 + 6.46063e9i 0.793809 + 1.37492i
\(581\) 7.68237e7 + 1.33063e8i 0.0162510 + 0.0281475i
\(582\) 0 0
\(583\) −1.22826e8 + 2.12741e8i −0.0256715 + 0.0444643i
\(584\) 9.80449e8 0.203695
\(585\) 0 0
\(586\) 4.88116e9 1.00203
\(587\) 2.17427e7 3.76594e7i 0.00443690 0.00768493i −0.863798 0.503838i \(-0.831921\pi\)
0.868235 + 0.496153i \(0.165254\pi\)
\(588\) 0 0
\(589\) −6.92720e9 1.19983e10i −1.39686 2.41944i
\(590\) 2.40698e9 + 4.16901e9i 0.482492 + 0.835701i
\(591\) 0 0
\(592\) 9.43351e8 1.63393e9i 0.186873 0.323674i
\(593\) 2.06982e9 0.407607 0.203804 0.979012i \(-0.434670\pi\)
0.203804 + 0.979012i \(0.434670\pi\)
\(594\) 0 0
\(595\) −5.24581e8 −0.102095
\(596\) −2.24192e9 + 3.88312e9i −0.433769 + 0.751310i
\(597\) 0 0
\(598\) −4.41602e8 7.64878e8i −0.0844457 0.146264i
\(599\) 4.53945e9 + 7.86255e9i 0.862996 + 1.49475i 0.869023 + 0.494772i \(0.164748\pi\)
−0.00602647 + 0.999982i \(0.501918\pi\)
\(600\) 0 0
\(601\) −1.51985e8 + 2.63246e8i −0.0285588 + 0.0494653i −0.879952 0.475063i \(-0.842425\pi\)
0.851393 + 0.524529i \(0.175758\pi\)
\(602\) 2.26148e8 0.0422480
\(603\) 0 0
\(604\) 3.97790e9 0.734555
\(605\) −4.51657e9 + 7.82293e9i −0.829211 + 1.43624i
\(606\) 0 0
\(607\) 3.25143e9 + 5.63164e9i 0.590084 + 1.02206i 0.994221 + 0.107357i \(0.0342388\pi\)
−0.404136 + 0.914699i \(0.632428\pi\)
\(608\) 8.65165e8 + 1.49851e9i 0.156112 + 0.270394i
\(609\) 0 0
\(610\) 3.03384e9 5.25477e9i 0.541176 0.937344i
\(611\) −4.82665e9 −0.856055
\(612\) 0 0
\(613\) 2.20282e9 0.386249 0.193124 0.981174i \(-0.438138\pi\)
0.193124 + 0.981174i \(0.438138\pi\)
\(614\) 3.08092e9 5.33632e9i 0.537145 0.930363i
\(615\) 0 0
\(616\) −3.85643e6 6.67954e6i −0.000664742 0.00115137i
\(617\) −1.99310e9 3.45214e9i −0.341610 0.591685i 0.643122 0.765764i \(-0.277639\pi\)
−0.984732 + 0.174078i \(0.944305\pi\)
\(618\) 0 0
\(619\) −7.54162e8 + 1.30625e9i −0.127805 + 0.221364i −0.922826 0.385217i \(-0.874126\pi\)
0.795021 + 0.606582i \(0.207460\pi\)
\(620\) −7.82038e9 −1.31782
\(621\) 0 0
\(622\) 6.98171e9 1.16331
\(623\) −1.02080e8 + 1.76808e8i −0.0169135 + 0.0292951i
\(624\) 0 0
\(625\) −1.15756e9 2.00495e9i −0.189655 0.328492i
\(626\) −6.17562e7 1.06965e8i −0.0100617 0.0174273i
\(627\) 0 0
\(628\) −1.70641e9 + 2.95559e9i −0.274932 + 0.476196i
\(629\) 1.04315e10 1.67136
\(630\) 0 0
\(631\) 5.99394e9 0.949751 0.474875 0.880053i \(-0.342493\pi\)
0.474875 + 0.880053i \(0.342493\pi\)
\(632\) −4.63586e8 + 8.02954e8i −0.0730500 + 0.126526i
\(633\) 0 0
\(634\) −1.02355e9 1.77284e9i −0.159513 0.276285i
\(635\) −9.13873e9 1.58287e10i −1.41637 2.45323i
\(636\) 0 0
\(637\) −2.26398e9 + 3.92133e9i −0.347044 + 0.601098i
\(638\) −6.06447e8 −0.0924529
\(639\) 0 0
\(640\) 9.76718e8 0.147279
\(641\) 4.12807e9 7.15003e9i 0.619076 1.07227i −0.370578 0.928801i \(-0.620840\pi\)
0.989655 0.143471i \(-0.0458263\pi\)
\(642\) 0 0
\(643\) 5.48402e9 + 9.49859e9i 0.813505 + 1.40903i 0.910396 + 0.413737i \(0.135777\pi\)
−0.0968913 + 0.995295i \(0.530890\pi\)
\(644\) 3.18615e7 + 5.51858e7i 0.00470074 + 0.00814191i
\(645\) 0 0
\(646\) −4.78348e9 + 8.28524e9i −0.698121 + 1.20918i
\(647\) −2.91111e9 −0.422565 −0.211283 0.977425i \(-0.567764\pi\)
−0.211283 + 0.977425i \(0.567764\pi\)
\(648\) 0 0
\(649\) −3.91337e8 −0.0561946
\(650\) −3.06143e9 + 5.30255e9i −0.437248 + 0.757336i
\(651\) 0 0
\(652\) −2.69167e8 4.66211e8i −0.0380325 0.0658743i
\(653\) 5.30674e9 + 9.19155e9i 0.745816 + 1.29179i 0.949812 + 0.312820i \(0.101274\pi\)
−0.203996 + 0.978972i \(0.565393\pi\)
\(654\) 0 0
\(655\) −4.95488e9 + 8.58210e9i −0.688951 + 1.19330i
\(656\) −9.84694e8 −0.136188
\(657\) 0 0
\(658\) 3.48242e8 0.0476530
\(659\) 1.61433e9 2.79610e9i 0.219732 0.380587i −0.734994 0.678074i \(-0.762815\pi\)
0.954726 + 0.297486i \(0.0961483\pi\)
\(660\) 0 0
\(661\) −5.05736e9 8.75960e9i −0.681112 1.17972i −0.974642 0.223771i \(-0.928163\pi\)
0.293530 0.955950i \(-0.405170\pi\)
\(662\) 1.59346e9 + 2.75996e9i 0.213471 + 0.369742i
\(663\) 0 0
\(664\) 7.90856e8 1.36980e9i 0.104836 0.181581i
\(665\) 1.22317e9 0.161291
\(666\) 0 0
\(667\) 5.01041e9 0.653782
\(668\) −9.21103e7 + 1.59540e8i −0.0119561 + 0.0207086i
\(669\) 0 0
\(670\) 3.43373e9 + 5.94739e9i 0.441066 + 0.763949i
\(671\) 2.46627e8 + 4.27171e8i 0.0315146 + 0.0545850i
\(672\) 0 0
\(673\) 6.36689e9 1.10278e10i 0.805146 1.39455i −0.111046 0.993815i \(-0.535420\pi\)
0.916192 0.400739i \(-0.131247\pi\)
\(674\) −9.30086e9 −1.17007
\(675\) 0 0
\(676\) −2.06953e9 −0.257667
\(677\) 2.30338e8 3.98958e8i 0.0285303 0.0494159i −0.851408 0.524504i \(-0.824251\pi\)
0.879938 + 0.475089i \(0.157584\pi\)
\(678\) 0 0
\(679\) 1.96859e8 + 3.40970e8i 0.0241330 + 0.0417996i
\(680\) 2.70013e9 + 4.67676e9i 0.329309 + 0.570380i
\(681\) 0 0
\(682\) 3.17868e8 5.50563e8i 0.0383708 0.0664602i
\(683\) −1.53853e9 −0.184771 −0.0923856 0.995723i \(-0.529449\pi\)
−0.0923856 + 0.995723i \(0.529449\pi\)
\(684\) 0 0
\(685\) −8.49055e9 −1.00930
\(686\) 3.27183e8 5.66698e8i 0.0386952 0.0670220i
\(687\) 0 0
\(688\) −1.16403e9 2.01617e9i −0.136272 0.236030i
\(689\) 2.23633e9 + 3.87344e9i 0.260477 + 0.451159i
\(690\) 0 0
\(691\) −4.53240e9 + 7.85035e9i −0.522583 + 0.905140i 0.477072 + 0.878864i \(0.341698\pi\)
−0.999655 + 0.0262760i \(0.991635\pi\)
\(692\) −1.56857e9 −0.179941
\(693\) 0 0
\(694\) −9.18415e9 −1.04299
\(695\) 5.03389e9 8.71895e9i 0.568797 0.985185i
\(696\) 0 0
\(697\) −2.72218e9 4.71495e9i −0.304510 0.527427i
\(698\) −5.50393e9 9.53308e9i −0.612603 1.06106i
\(699\) 0 0
\(700\) 2.20881e8 3.82578e8i 0.0243398 0.0421577i
\(701\) 9.14932e9 1.00317 0.501586 0.865108i \(-0.332750\pi\)
0.501586 + 0.865108i \(0.332750\pi\)
\(702\) 0 0
\(703\) −2.43233e10 −2.64046
\(704\) −3.96998e7 + 6.87620e7i −0.00428828 + 0.00742753i
\(705\) 0 0
\(706\) 1.77996e9 + 3.08298e9i 0.190368 + 0.329727i
\(707\) 2.39541e8 + 4.14898e8i 0.0254925 + 0.0441543i
\(708\) 0 0
\(709\) −1.06905e8 + 1.85165e8i −0.0112651 + 0.0195118i −0.871603 0.490212i \(-0.836919\pi\)
0.860338 + 0.509724i \(0.170253\pi\)
\(710\) 1.70164e10 1.78428
\(711\) 0 0
\(712\) 2.10172e9 0.218220
\(713\) −2.62620e9 + 4.54871e9i −0.271340 + 0.469975i
\(714\) 0 0
\(715\) −3.88965e8 6.73707e8i −0.0397960 0.0689287i
\(716\) −2.64098e9 4.57431e9i −0.268887 0.465725i
\(717\) 0 0
\(718\) 4.57254e9 7.91987e9i 0.461022 0.798514i
\(719\) −8.06712e9 −0.809408 −0.404704 0.914448i \(-0.632625\pi\)
−0.404704 + 0.914448i \(0.632625\pi\)
\(720\) 0 0
\(721\) −4.56581e8 −0.0453674
\(722\) 7.57819e9 1.31258e10i 0.749351 1.29791i
\(723\) 0 0
\(724\) −1.43833e9 2.49125e9i −0.140855 0.243968i
\(725\) −1.73675e10 3.00813e10i −1.69260 2.93166i
\(726\) 0 0
\(727\) −7.82244e9 + 1.35489e10i −0.755043 + 1.30777i 0.190310 + 0.981724i \(0.439051\pi\)
−0.945353 + 0.326049i \(0.894283\pi\)
\(728\) −1.40430e8 −0.0134897
\(729\) 0 0
\(730\) −7.13485e9 −0.678820
\(731\) 6.43592e9 1.11473e10i 0.609397 1.05551i
\(732\) 0 0
\(733\) 4.90783e9 + 8.50061e9i 0.460283 + 0.797234i 0.998975 0.0452688i \(-0.0144144\pi\)
−0.538691 + 0.842503i \(0.681081\pi\)
\(734\) −3.00417e9 5.20338e9i −0.280407 0.485679i
\(735\) 0 0
\(736\) 3.27996e8 5.68106e8i 0.0303247 0.0525239i
\(737\) −5.58270e8 −0.0513698
\(738\) 0 0
\(739\) −3.29280e8 −0.0300131 −0.0150065 0.999887i \(-0.504777\pi\)
−0.0150065 + 0.999887i \(0.504777\pi\)
\(740\) −6.86488e9 + 1.18903e10i −0.622761 + 1.07865i
\(741\) 0 0
\(742\) −1.61351e8 2.79467e8i −0.0144996 0.0251141i
\(743\) −3.03824e9 5.26239e9i −0.271745 0.470676i 0.697564 0.716523i \(-0.254267\pi\)
−0.969309 + 0.245846i \(0.920934\pi\)
\(744\) 0 0
\(745\) 1.63147e10 2.82579e10i 1.44555 2.50376i
\(746\) 1.06428e10 0.938574
\(747\) 0 0
\(748\) −4.38999e8 −0.0383537
\(749\) 9.50385e7 1.64612e8i 0.00826444 0.0143144i
\(750\) 0 0
\(751\) 4.49540e9 + 7.78627e9i 0.387283 + 0.670795i 0.992083 0.125583i \(-0.0400802\pi\)
−0.604800 + 0.796378i \(0.706747\pi\)
\(752\) −1.79248e9 3.10466e9i −0.153706 0.266227i
\(753\) 0 0
\(754\) −5.52087e9 + 9.56243e9i −0.469038 + 0.812397i
\(755\) −2.89476e10 −2.44793
\(756\) 0 0
\(757\) −4.08451e9 −0.342219 −0.171109 0.985252i \(-0.554735\pi\)
−0.171109 + 0.985252i \(0.554735\pi\)
\(758\) 4.25497e9 7.36982e9i 0.354858 0.614632i
\(759\) 0 0
\(760\) −6.29591e9 1.09048e10i −0.520249 0.901097i
\(761\) 9.07760e9 + 1.57229e10i 0.746663 + 1.29326i 0.949414 + 0.314028i \(0.101679\pi\)
−0.202751 + 0.979230i \(0.564988\pi\)
\(762\) 0 0
\(763\) 4.74964e8 8.22661e8i 0.0387101 0.0670479i
\(764\) 2.84801e8 0.0231055
\(765\) 0 0
\(766\) 1.68140e9 0.135167
\(767\) −3.56259e9 + 6.17059e9i −0.285090 + 0.493791i
\(768\) 0 0
\(769\) 1.93456e9 + 3.35075e9i 0.153405 + 0.265705i 0.932477 0.361229i \(-0.117643\pi\)
−0.779072 + 0.626934i \(0.784309\pi\)
\(770\) 2.80637e7 + 4.86078e7i 0.00221527 + 0.00383697i
\(771\) 0 0
\(772\) −2.14502e9 + 3.71528e9i −0.167791 + 0.290623i
\(773\) 5.34479e9 0.416201 0.208100 0.978107i \(-0.433272\pi\)
0.208100 + 0.978107i \(0.433272\pi\)
\(774\) 0 0
\(775\) 3.64125e10 2.80992
\(776\) 2.02655e9 3.51010e9i 0.155683 0.269652i
\(777\) 0 0
\(778\) 1.58185e9 + 2.73984e9i 0.120430 + 0.208591i
\(779\) 6.34732e9 + 1.09939e10i 0.481071 + 0.833239i
\(780\) 0 0
\(781\) −6.91649e8 + 1.19797e9i −0.0519526 + 0.0899845i
\(782\) 3.62697e9 0.271219
\(783\) 0 0
\(784\) −3.36310e9 −0.249249
\(785\) 1.24178e10 2.15082e10i 0.916219 1.58694i
\(786\) 0 0
\(787\) 9.10134e9 + 1.57640e10i 0.665570 + 1.15280i 0.979130 + 0.203233i \(0.0651449\pi\)
−0.313560 + 0.949568i \(0.601522\pi\)
\(788\) −3.13679e9 5.43308e9i −0.228372 0.395552i
\(789\) 0 0
\(790\) 3.37357e9 5.84319e9i 0.243442 0.421653i
\(791\) −1.14526e7 −0.000822788
\(792\) 0 0
\(793\) 8.98082e9 0.639529
\(794\) 6.41683e8 1.11143e9i 0.0454935 0.0787970i
\(795\) 0 0
\(796\) −1.75472e9 3.03926e9i −0.123314 0.213585i
\(797\) −7.84663e9 1.35908e10i −0.549009 0.950911i −0.998343 0.0575471i \(-0.981672\pi\)
0.449334 0.893364i \(-0.351661\pi\)
\(798\) 0 0
\(799\) 9.91056e9 1.71656e10i 0.687361 1.19054i
\(800\) −4.54770e9 −0.314034
\(801\) 0 0
\(802\) −2.25029e9 −0.154038
\(803\) 2.90003e8 5.02301e8i 0.0197651 0.0342341i
\(804\) 0 0
\(805\) −2.31860e8 4.01593e8i −0.0156654 0.0271332i
\(806\) −5.78751e9 1.00243e10i −0.389331 0.674341i
\(807\) 0 0
\(808\) 2.46594e9 4.27114e9i 0.164454 0.284842i
\(809\) −1.94092e10 −1.28880 −0.644402 0.764687i \(-0.722894\pi\)
−0.644402 + 0.764687i \(0.722894\pi\)
\(810\) 0 0
\(811\) 2.10932e10 1.38858 0.694288 0.719698i \(-0.255720\pi\)
0.694288 + 0.719698i \(0.255720\pi\)
\(812\) 3.98329e8 6.89927e8i 0.0261094 0.0452228i
\(813\) 0 0
\(814\) −5.58060e8 9.66589e8i −0.0362657 0.0628140i
\(815\) 1.95876e9 + 3.39267e9i 0.126745 + 0.219528i
\(816\) 0 0
\(817\) −1.50067e10 + 2.59923e10i −0.962737 + 1.66751i
\(818\) −3.31639e9 −0.211850
\(819\) 0 0
\(820\) 7.16573e9 0.453850
\(821\) −1.09241e10 + 1.89211e10i −0.688945 + 1.19329i 0.283234 + 0.959051i \(0.408593\pi\)
−0.972179 + 0.234238i \(0.924741\pi\)
\(822\) 0 0
\(823\) 2.17995e9 + 3.77579e9i 0.136316 + 0.236107i 0.926099 0.377279i \(-0.123140\pi\)
−0.789783 + 0.613386i \(0.789807\pi\)
\(824\) 2.35012e9 + 4.07053e9i 0.146334 + 0.253458i
\(825\) 0 0
\(826\) 2.57040e8 4.45206e8i 0.0158698 0.0274872i
\(827\) 8.96887e9 0.551402 0.275701 0.961243i \(-0.411090\pi\)
0.275701 + 0.961243i \(0.411090\pi\)
\(828\) 0 0
\(829\) 1.87500e10 1.14304 0.571518 0.820590i \(-0.306355\pi\)
0.571518 + 0.820590i \(0.306355\pi\)
\(830\) −5.75515e9 + 9.96822e9i −0.349368 + 0.605124i
\(831\) 0 0
\(832\) 7.22824e8 + 1.25197e9i 0.0435112 + 0.0753636i
\(833\) −9.29726e9 1.61033e10i −0.557311 0.965291i
\(834\) 0 0
\(835\) 6.70297e8 1.16099e9i 0.0398442 0.0690121i
\(836\) 1.02362e9 0.0605920
\(837\) 0 0
\(838\) −2.07940e10 −1.22063
\(839\) 1.25531e10 2.17427e10i 0.733814 1.27100i −0.221428 0.975177i \(-0.571072\pi\)
0.955242 0.295826i \(-0.0955948\pi\)
\(840\) 0 0
\(841\) −2.26949e10 3.93087e10i −1.31566 2.27878i
\(842\) 2.31426e9 + 4.00841e9i 0.133604 + 0.231409i
\(843\) 0 0
\(844\) −3.72081e9 + 6.44464e9i −0.213029 + 0.368977i
\(845\) 1.50602e10 0.858684
\(846\) 0 0
\(847\) 9.64644e8 0.0545475
\(848\) −1.66101e9 + 2.87696e9i −0.0935379 + 0.162012i
\(849\) 0 0
\(850\) −1.25721e10 2.17755e10i −0.702167 1.21619i
\(851\) 4.61065e9 + 7.98588e9i 0.256453 + 0.444190i
\(852\) 0 0
\(853\) 8.82920e9 1.52926e10i 0.487079 0.843646i −0.512810 0.858502i \(-0.671396\pi\)
0.999890 + 0.0148556i \(0.00472886\pi\)
\(854\) −6.47964e8 −0.0355999
\(855\) 0 0
\(856\) −1.95673e9 −0.106629
\(857\) −1.21984e9 + 2.11283e9i −0.0662019 + 0.114665i −0.897227 0.441571i \(-0.854421\pi\)
0.831025 + 0.556236i \(0.187755\pi\)
\(858\) 0 0
\(859\) −2.95698e9 5.12165e9i −0.159174 0.275698i 0.775397 0.631474i \(-0.217550\pi\)
−0.934571 + 0.355776i \(0.884216\pi\)
\(860\) 8.47081e9 + 1.46719e10i 0.454130 + 0.786577i
\(861\) 0 0
\(862\) 3.07896e8 5.33292e8i 0.0163730 0.0283589i
\(863\) 2.02665e9 0.107335 0.0536673 0.998559i \(-0.482909\pi\)
0.0536673 + 0.998559i \(0.482909\pi\)
\(864\) 0 0
\(865\) 1.14146e10 0.599661
\(866\) −1.10008e9 + 1.90540e9i −0.0575588 + 0.0996948i
\(867\) 0 0
\(868\) 4.17567e8 + 7.23248e8i 0.0216724 + 0.0375377i
\(869\) 2.74245e8 + 4.75006e8i 0.0141765 + 0.0245544i
\(870\) 0 0
\(871\) −5.08229e9 + 8.80278e9i −0.260613 + 0.451394i
\(872\) −9.77896e9 −0.499442
\(873\) 0 0
\(874\) −8.45703e9 −0.428477
\(875\) −7.02550e8 + 1.21685e9i −0.0354527 + 0.0614059i
\(876\) 0 0
\(877\) 5.33945e9 + 9.24820e9i 0.267299 + 0.462976i 0.968163 0.250319i \(-0.0805354\pi\)
−0.700864 + 0.713295i \(0.747202\pi\)
\(878\) 6.09198e9 + 1.05516e10i 0.303758 + 0.526124i
\(879\) 0 0
\(880\) 2.88900e8 5.00389e8i 0.0142908 0.0247525i
\(881\) 4.67496e9 0.230336 0.115168 0.993346i \(-0.463259\pi\)
0.115168 + 0.993346i \(0.463259\pi\)
\(882\) 0 0
\(883\) −2.97465e10 −1.45403 −0.727015 0.686622i \(-0.759093\pi\)
−0.727015 + 0.686622i \(0.759093\pi\)
\(884\) −3.99648e9 + 6.92211e9i −0.194579 + 0.337020i
\(885\) 0 0
\(886\) −8.32228e9 1.44146e10i −0.401998 0.696282i
\(887\) 7.27211e9 + 1.25957e10i 0.349887 + 0.606022i 0.986229 0.165385i \(-0.0528866\pi\)
−0.636342 + 0.771407i \(0.719553\pi\)
\(888\) 0 0
\(889\) −9.75920e8 + 1.69034e9i −0.0465863 + 0.0806898i
\(890\) −1.52945e10 −0.727225
\(891\) 0 0
\(892\) −8.45753e9 −0.398994
\(893\) −2.31085e10 + 4.00251e10i −1.08591 + 1.88084i
\(894\) 0 0
\(895\) 1.92187e10 + 3.32878e10i 0.896074 + 1.55205i
\(896\) −5.21516e7 9.03292e7i −0.00242209 0.00419518i
\(897\) 0 0
\(898\) −7.59353e9 + 1.31524e10i −0.349926 + 0.606090i
\(899\) 6.56649e10 3.01422
\(900\) 0 0
\(901\) −1.83674e10 −0.836587
\(902\) −2.91259e8 + 5.04475e8i −0.0132147 + 0.0228885i
\(903\) 0 0
\(904\) 5.89492e7 + 1.02103e8i 0.00265392 + 0.00459673i
\(905\) 1.04669e10 + 1.81292e10i 0.469404 + 0.813032i
\(906\) 0 0
\(907\) −1.78868e10 + 3.09808e10i −0.795987 + 1.37869i 0.126224 + 0.992002i \(0.459714\pi\)
−0.922211 + 0.386688i \(0.873619\pi\)
\(908\) −3.61352e9 −0.160188
\(909\) 0 0
\(910\) 1.02193e9 0.0449547
\(911\) 1.32563e9 2.29605e9i 0.0580908 0.100616i −0.835518 0.549464i \(-0.814832\pi\)
0.893608 + 0.448848i \(0.148165\pi\)
\(912\) 0 0
\(913\) −4.67849e8 8.10338e8i −0.0203450 0.0352386i
\(914\) 2.74425e9 + 4.75319e9i 0.118881 + 0.205908i
\(915\) 0 0
\(916\) −5.69196e9 + 9.85877e9i −0.244697 + 0.423827i
\(917\) 1.05826e9 0.0453209
\(918\) 0 0
\(919\) −2.21012e9 −0.0939317 −0.0469659 0.998896i \(-0.514955\pi\)
−0.0469659 + 0.998896i \(0.514955\pi\)
\(920\) −2.38687e9 + 4.13417e9i −0.101058 + 0.175038i
\(921\) 0 0
\(922\) −6.08387e9 1.05376e10i −0.255636 0.442774i
\(923\) 1.25930e10 + 2.18118e10i 0.527138 + 0.913031i
\(924\) 0 0
\(925\) 3.19635e10 5.53625e10i 1.32788 2.29996i
\(926\) 4.00229e9 0.165642
\(927\) 0 0
\(928\) −8.20115e9 −0.336866
\(929\) −8.26820e9 + 1.43209e10i −0.338342 + 0.586025i −0.984121 0.177499i \(-0.943199\pi\)
0.645779 + 0.763524i \(0.276533\pi\)
\(930\) 0 0
\(931\) 2.16785e10 + 3.75482e10i 0.880451 + 1.52499i
\(932\) −3.23192e9 5.59784e9i −0.130769 0.226498i
\(933\) 0 0
\(934\) 1.61333e10 2.79438e10i 0.647903 1.12220i
\(935\) 3.19465e9 0.127815
\(936\) 0 0
\(937\) 1.52847e10 0.606973 0.303487 0.952836i \(-0.401849\pi\)
0.303487 + 0.952836i \(0.401849\pi\)
\(938\) 3.66686e8 6.35118e8i 0.0145072 0.0251272i
\(939\) 0 0
\(940\) 1.30441e10 + 2.25930e10i 0.512230 + 0.887209i
\(941\) −8.12723e9 1.40768e10i −0.317965 0.550731i 0.662099 0.749417i \(-0.269666\pi\)
−0.980063 + 0.198686i \(0.936333\pi\)
\(942\) 0 0
\(943\) 2.40636e9 4.16793e9i 0.0934477 0.161856i
\(944\) −5.29216e9 −0.204753
\(945\) 0 0
\(946\) −1.37722e9 −0.0528914
\(947\) −1.38664e10 + 2.40174e10i −0.530567 + 0.918969i 0.468797 + 0.883306i \(0.344688\pi\)
−0.999364 + 0.0356631i \(0.988646\pi\)
\(948\) 0 0
\(949\) −5.28017e9 9.14553e9i −0.200547 0.347358i
\(950\) 2.93144e10 + 5.07740e10i 1.10930 + 1.92136i
\(951\) 0 0
\(952\) 2.88345e8 4.99429e8i 0.0108314 0.0187605i
\(953\) −3.88172e10 −1.45278 −0.726388 0.687285i \(-0.758802\pi\)
−0.726388 + 0.687285i \(0.758802\pi\)
\(954\) 0 0
\(955\) −2.07253e9 −0.0769998
\(956\) 3.88564e9 6.73012e9i 0.143833 0.249127i
\(957\) 0 0
\(958\) 1.04105e10 + 1.80315e10i 0.382553 + 0.662601i
\(959\) 4.53350e8 + 7.85226e8i 0.0165985 + 0.0287494i
\(960\) 0 0
\(961\) −2.06618e10 + 3.57873e10i −0.750995 + 1.30076i
\(962\) −2.03215e10 −0.735942
\(963\) 0 0
\(964\) −1.46079e10 −0.525191
\(965\) 1.56095e10 2.70365e10i 0.559171 0.968512i
\(966\) 0 0
\(967\) −6.37606e9 1.10437e10i −0.226756 0.392754i 0.730089 0.683353i \(-0.239479\pi\)
−0.956845 + 0.290599i \(0.906145\pi\)
\(968\) −4.96523e9 8.60003e9i −0.175944 0.304745i
\(969\) 0 0
\(970\) −1.47475e10 + 2.55434e10i −0.518820 + 0.898623i
\(971\) −4.92971e10 −1.72804 −0.864021 0.503456i \(-0.832062\pi\)
−0.864021 + 0.503456i \(0.832062\pi\)
\(972\) 0 0
\(973\) −1.07513e9 −0.0374168
\(974\) 1.74207e10 3.01735e10i 0.604099 1.04633i
\(975\) 0 0
\(976\) 3.33521e9 + 5.77675e9i 0.114828 + 0.198888i
\(977\) 7.28714e9 + 1.26217e10i 0.249992 + 0.432999i 0.963523 0.267625i \(-0.0862387\pi\)
−0.713531 + 0.700623i \(0.752905\pi\)
\(978\) 0 0
\(979\) 6.21659e8 1.07675e9i 0.0211745 0.0366753i
\(980\) 2.44737e10 0.830631
\(981\) 0 0
\(982\) 3.33324e9 0.112325
\(983\) −1.88080e10 + 3.25764e10i −0.631546 + 1.09387i 0.355690 + 0.934604i \(0.384246\pi\)
−0.987236 + 0.159265i \(0.949088\pi\)
\(984\) 0 0
\(985\) 2.28268e10 + 3.95372e10i 0.761058 + 1.31819i
\(986\) −2.26720e10 3.92691e10i −0.753218 1.30461i
\(987\) 0 0
\(988\) 9.31863e9 1.61403e10i 0.307399 0.532431i
\(989\) 1.13785e10 0.374022
\(990\) 0 0
\(991\) 3.09606e10 1.01054 0.505268 0.862962i \(-0.331394\pi\)
0.505268 + 0.862962i \(0.331394\pi\)
\(992\) 4.29862e9 7.44542e9i 0.139810 0.242158i
\(993\) 0 0
\(994\) −9.08585e8 1.57372e9i −0.0293436 0.0508246i
\(995\) 1.27693e10 + 2.21170e10i 0.410947 + 0.711780i
\(996\) 0 0
\(997\) 3.91458e9 6.78026e9i 0.125099 0.216677i −0.796673 0.604411i \(-0.793409\pi\)
0.921772 + 0.387734i \(0.126742\pi\)
\(998\) 2.67416e10 0.851589
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.p.55.2 4
3.2 odd 2 162.8.c.m.55.1 4
9.2 odd 6 54.8.a.h.1.2 yes 2
9.4 even 3 inner 162.8.c.p.109.2 4
9.5 odd 6 162.8.c.m.109.1 4
9.7 even 3 54.8.a.g.1.1 2
36.7 odd 6 432.8.a.p.1.1 2
36.11 even 6 432.8.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.8.a.g.1.1 2 9.7 even 3
54.8.a.h.1.2 yes 2 9.2 odd 6
162.8.c.m.55.1 4 3.2 odd 2
162.8.c.m.109.1 4 9.5 odd 6
162.8.c.p.55.2 4 1.1 even 1 trivial
162.8.c.p.109.2 4 9.4 even 3 inner
432.8.a.k.1.2 2 36.11 even 6
432.8.a.p.1.1 2 36.7 odd 6