Properties

Label 162.8.c.q.55.4
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 518x^{5} + 53377x^{4} + 11940x^{3} + 3528x^{2} + 1563408x + 346406544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.4
Root \(6.43942 + 6.43942i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.q.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(140.213 + 242.855i) q^{5} +(82.1617 - 142.308i) q^{7} +512.000 q^{8} -2243.40 q^{10} +(1018.97 - 1764.91i) q^{11} +(839.167 + 1453.48i) q^{13} +(657.293 + 1138.47i) q^{14} +(-2048.00 + 3547.24i) q^{16} +31685.7 q^{17} -12641.8 q^{19} +(8973.61 - 15542.7i) q^{20} +(8151.75 + 14119.3i) q^{22} +(-24733.5 - 42839.6i) q^{23} +(-256.638 + 444.510i) q^{25} -13426.7 q^{26} -10516.7 q^{28} +(3776.40 - 6540.91i) q^{29} +(-78017.6 - 135131. i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(-126743. + 219525. i) q^{34} +46080.4 q^{35} +541440. q^{37} +(50567.2 - 87584.9i) q^{38} +(71788.8 + 124342. i) q^{40} +(-268792. - 465561. i) q^{41} +(-100249. + 173636. i) q^{43} -130428. q^{44} +395735. q^{46} +(205436. - 355825. i) q^{47} +(398270. + 689825. i) q^{49} +(-2053.10 - 3556.08i) q^{50} +(53706.7 - 93022.7i) q^{52} +1.36778e6 q^{53} +571489. q^{55} +(42066.8 - 72861.8i) q^{56} +(30211.2 + 52327.3i) q^{58} +(-399444. - 691858. i) q^{59} +(-284720. + 493149. i) q^{61} +1.24828e6 q^{62} +262144. q^{64} +(-235323. + 407592. i) q^{65} +(2.40226e6 + 4.16084e6i) q^{67} +(-1.01394e6 - 1.75620e6i) q^{68} +(-184322. + 319254. i) q^{70} +2.45714e6 q^{71} +1.60344e6 q^{73} +(-2.16576e6 + 3.75121e6i) q^{74} +(404537. + 700679. i) q^{76} +(-167440. - 290015. i) q^{77} +(-2.79499e6 + 4.84107e6i) q^{79} -1.14862e6 q^{80} +4.30067e6 q^{82} +(-4.91453e6 + 8.51221e6i) q^{83} +(4.44273e6 + 7.69504e6i) q^{85} +(-801990. - 1.38909e6i) q^{86} +(521712. - 903632. i) q^{88} -117249. q^{89} +275789. q^{91} +(-1.58294e6 + 2.74173e6i) q^{92} +(1.64348e6 + 2.84660e6i) q^{94} +(-1.77254e6 - 3.07013e6i) q^{95} +(3.89623e6 - 6.74846e6i) q^{97} -6.37233e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} - 528 q^{5} - 560 q^{7} + 4096 q^{8} + 8448 q^{10} - 2160 q^{11} - 13460 q^{13} - 4480 q^{14} - 16384 q^{16} + 45120 q^{17} + 73408 q^{19} - 33792 q^{20} - 17280 q^{22} - 62640 q^{23}+ \cdots + 23190336 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 140.213 + 242.855i 0.501640 + 0.868866i 0.999998 + 0.00189451i \(0.000603041\pi\)
−0.498358 + 0.866971i \(0.666064\pi\)
\(6\) 0 0
\(7\) 82.1617 142.308i 0.0905370 0.156815i −0.817200 0.576354i \(-0.804475\pi\)
0.907737 + 0.419539i \(0.137808\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −2243.40 −0.709426
\(11\) 1018.97 1764.91i 0.230827 0.399804i −0.727225 0.686399i \(-0.759190\pi\)
0.958052 + 0.286595i \(0.0925235\pi\)
\(12\) 0 0
\(13\) 839.167 + 1453.48i 0.105937 + 0.183488i 0.914121 0.405443i \(-0.132883\pi\)
−0.808184 + 0.588930i \(0.799549\pi\)
\(14\) 657.293 + 1138.47i 0.0640193 + 0.110885i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 31685.7 1.56420 0.782099 0.623154i \(-0.214149\pi\)
0.782099 + 0.623154i \(0.214149\pi\)
\(18\) 0 0
\(19\) −12641.8 −0.422835 −0.211418 0.977396i \(-0.567808\pi\)
−0.211418 + 0.977396i \(0.567808\pi\)
\(20\) 8973.61 15542.7i 0.250820 0.434433i
\(21\) 0 0
\(22\) 8151.75 + 14119.3i 0.163219 + 0.282704i
\(23\) −24733.5 42839.6i −0.423874 0.734172i 0.572440 0.819947i \(-0.305997\pi\)
−0.996315 + 0.0857744i \(0.972664\pi\)
\(24\) 0 0
\(25\) −256.638 + 444.510i −0.00328497 + 0.00568973i
\(26\) −13426.7 −0.149817
\(27\) 0 0
\(28\) −10516.7 −0.0905370
\(29\) 3776.40 6540.91i 0.0287531 0.0498018i −0.851291 0.524694i \(-0.824180\pi\)
0.880044 + 0.474892i \(0.157513\pi\)
\(30\) 0 0
\(31\) −78017.6 135131.i −0.470356 0.814681i 0.529069 0.848579i \(-0.322541\pi\)
−0.999425 + 0.0338979i \(0.989208\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −126743. + 219525.i −0.553028 + 0.957872i
\(35\) 46080.4 0.181668
\(36\) 0 0
\(37\) 541440. 1.75729 0.878647 0.477472i \(-0.158447\pi\)
0.878647 + 0.477472i \(0.158447\pi\)
\(38\) 50567.2 87584.9i 0.149495 0.258933i
\(39\) 0 0
\(40\) 71788.8 + 124342.i 0.177356 + 0.307190i
\(41\) −268792. 465561.i −0.609077 1.05495i −0.991393 0.130921i \(-0.958207\pi\)
0.382316 0.924032i \(-0.375127\pi\)
\(42\) 0 0
\(43\) −100249. + 173636.i −0.192282 + 0.333043i −0.946006 0.324148i \(-0.894922\pi\)
0.753724 + 0.657191i \(0.228256\pi\)
\(44\) −130428. −0.230827
\(45\) 0 0
\(46\) 395735. 0.599449
\(47\) 205436. 355825.i 0.288624 0.499912i −0.684857 0.728677i \(-0.740135\pi\)
0.973482 + 0.228765i \(0.0734688\pi\)
\(48\) 0 0
\(49\) 398270. + 689825.i 0.483606 + 0.837630i
\(50\) −2053.10 3556.08i −0.00232282 0.00402324i
\(51\) 0 0
\(52\) 53706.7 93022.7i 0.0529684 0.0917439i
\(53\) 1.36778e6 1.26198 0.630988 0.775792i \(-0.282650\pi\)
0.630988 + 0.775792i \(0.282650\pi\)
\(54\) 0 0
\(55\) 571489. 0.463168
\(56\) 42066.8 72861.8i 0.0320097 0.0554424i
\(57\) 0 0
\(58\) 30211.2 + 52327.3i 0.0203315 + 0.0352152i
\(59\) −399444. 691858.i −0.253206 0.438566i 0.711201 0.702989i \(-0.248152\pi\)
−0.964407 + 0.264423i \(0.914818\pi\)
\(60\) 0 0
\(61\) −284720. + 493149.i −0.160606 + 0.278179i −0.935086 0.354420i \(-0.884678\pi\)
0.774480 + 0.632599i \(0.218012\pi\)
\(62\) 1.24828e6 0.665184
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −235323. + 407592.i −0.106284 + 0.184090i
\(66\) 0 0
\(67\) 2.40226e6 + 4.16084e6i 0.975795 + 1.69013i 0.677285 + 0.735720i \(0.263156\pi\)
0.298510 + 0.954407i \(0.403510\pi\)
\(68\) −1.01394e6 1.75620e6i −0.391050 0.677318i
\(69\) 0 0
\(70\) −184322. + 319254.i −0.0642293 + 0.111248i
\(71\) 2.45714e6 0.814751 0.407376 0.913261i \(-0.366444\pi\)
0.407376 + 0.913261i \(0.366444\pi\)
\(72\) 0 0
\(73\) 1.60344e6 0.482418 0.241209 0.970473i \(-0.422456\pi\)
0.241209 + 0.970473i \(0.422456\pi\)
\(74\) −2.16576e6 + 3.75121e6i −0.621297 + 1.07612i
\(75\) 0 0
\(76\) 404537. + 700679.i 0.105709 + 0.183093i
\(77\) −167440. 290015.i −0.0417968 0.0723942i
\(78\) 0 0
\(79\) −2.79499e6 + 4.84107e6i −0.637801 + 1.10470i 0.348113 + 0.937453i \(0.386823\pi\)
−0.985914 + 0.167252i \(0.946511\pi\)
\(80\) −1.14862e6 −0.250820
\(81\) 0 0
\(82\) 4.30067e6 0.861365
\(83\) −4.91453e6 + 8.51221e6i −0.943427 + 1.63406i −0.184556 + 0.982822i \(0.559085\pi\)
−0.758871 + 0.651241i \(0.774249\pi\)
\(84\) 0 0
\(85\) 4.44273e6 + 7.69504e6i 0.784664 + 1.35908i
\(86\) −801990. 1.38909e6i −0.135964 0.235497i
\(87\) 0 0
\(88\) 521712. 903632.i 0.0816097 0.141352i
\(89\) −117249. −0.0176296 −0.00881480 0.999961i \(-0.502806\pi\)
−0.00881480 + 0.999961i \(0.502806\pi\)
\(90\) 0 0
\(91\) 275789. 0.0383648
\(92\) −1.58294e6 + 2.74173e6i −0.211937 + 0.367086i
\(93\) 0 0
\(94\) 1.64348e6 + 2.84660e6i 0.204088 + 0.353491i
\(95\) −1.77254e6 3.07013e6i −0.212111 0.367387i
\(96\) 0 0
\(97\) 3.89623e6 6.74846e6i 0.433454 0.750765i −0.563714 0.825970i \(-0.690628\pi\)
0.997168 + 0.0752054i \(0.0239613\pi\)
\(98\) −6.37233e6 −0.683922
\(99\) 0 0
\(100\) 32849.7 0.00328497
\(101\) −577424. + 1.00013e6i −0.0557661 + 0.0965897i −0.892561 0.450927i \(-0.851093\pi\)
0.836795 + 0.547517i \(0.184427\pi\)
\(102\) 0 0
\(103\) 8.49333e6 + 1.47109e7i 0.765857 + 1.32650i 0.939792 + 0.341746i \(0.111018\pi\)
−0.173935 + 0.984757i \(0.555648\pi\)
\(104\) 429653. + 744181.i 0.0374543 + 0.0648727i
\(105\) 0 0
\(106\) −5.47113e6 + 9.47627e6i −0.446176 + 0.772800i
\(107\) 2.24189e7 1.76918 0.884589 0.466372i \(-0.154439\pi\)
0.884589 + 0.466372i \(0.154439\pi\)
\(108\) 0 0
\(109\) 1.75728e7 1.29971 0.649857 0.760056i \(-0.274829\pi\)
0.649857 + 0.760056i \(0.274829\pi\)
\(110\) −2.28596e6 + 3.95939e6i −0.163755 + 0.283631i
\(111\) 0 0
\(112\) 336534. + 582894.i 0.0226343 + 0.0392037i
\(113\) 3.47819e6 + 6.02441e6i 0.226767 + 0.392772i 0.956848 0.290589i \(-0.0938512\pi\)
−0.730081 + 0.683360i \(0.760518\pi\)
\(114\) 0 0
\(115\) 6.93588e6 1.20133e7i 0.425265 0.736580i
\(116\) −483379. −0.0287531
\(117\) 0 0
\(118\) 6.39111e6 0.358088
\(119\) 2.60335e6 4.50913e6i 0.141618 0.245289i
\(120\) 0 0
\(121\) 7.66699e6 + 1.32796e7i 0.393438 + 0.681454i
\(122\) −2.27776e6 3.94519e6i −0.113566 0.196702i
\(123\) 0 0
\(124\) −4.99313e6 + 8.64835e6i −0.235178 + 0.407340i
\(125\) 2.17643e7 0.996688
\(126\) 0 0
\(127\) −3.25050e7 −1.40811 −0.704057 0.710144i \(-0.748630\pi\)
−0.704057 + 0.710144i \(0.748630\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.88259e6 3.26074e6i −0.0751542 0.130171i
\(131\) −8.15697e6 1.41283e7i −0.317015 0.549085i 0.662849 0.748753i \(-0.269347\pi\)
−0.979864 + 0.199668i \(0.936014\pi\)
\(132\) 0 0
\(133\) −1.03867e6 + 1.79903e6i −0.0382822 + 0.0663068i
\(134\) −3.84362e7 −1.37998
\(135\) 0 0
\(136\) 1.62231e7 0.553028
\(137\) 1.80797e7 3.13150e7i 0.600716 1.04047i −0.391997 0.919967i \(-0.628215\pi\)
0.992713 0.120504i \(-0.0384512\pi\)
\(138\) 0 0
\(139\) −2.67592e7 4.63482e7i −0.845125 1.46380i −0.885513 0.464615i \(-0.846193\pi\)
0.0403883 0.999184i \(-0.487141\pi\)
\(140\) −1.47457e6 2.55404e6i −0.0454170 0.0786645i
\(141\) 0 0
\(142\) −9.82854e6 + 1.70235e7i −0.288058 + 0.498931i
\(143\) 3.42034e6 0.0978122
\(144\) 0 0
\(145\) 2.11799e6 0.0576948
\(146\) −6.41378e6 + 1.11090e7i −0.170561 + 0.295420i
\(147\) 0 0
\(148\) −1.73261e7 3.00097e7i −0.439323 0.760931i
\(149\) 2.72109e6 + 4.71307e6i 0.0673893 + 0.116722i 0.897751 0.440503i \(-0.145200\pi\)
−0.830362 + 0.557224i \(0.811866\pi\)
\(150\) 0 0
\(151\) −1.09681e7 + 1.89972e7i −0.259245 + 0.449025i −0.966040 0.258393i \(-0.916807\pi\)
0.706795 + 0.707419i \(0.250140\pi\)
\(152\) −6.47260e6 −0.149495
\(153\) 0 0
\(154\) 2.67905e6 0.0591096
\(155\) 2.18781e7 3.78940e7i 0.471899 0.817353i
\(156\) 0 0
\(157\) −2.49533e6 4.32205e6i −0.0514612 0.0891334i 0.839147 0.543904i \(-0.183055\pi\)
−0.890609 + 0.454771i \(0.849721\pi\)
\(158\) −2.23599e7 3.87285e7i −0.450994 0.781144i
\(159\) 0 0
\(160\) 4.59449e6 7.95788e6i 0.0886782 0.153595i
\(161\) −8.12857e6 −0.153505
\(162\) 0 0
\(163\) −4.47642e7 −0.809606 −0.404803 0.914404i \(-0.632660\pi\)
−0.404803 + 0.914404i \(0.632660\pi\)
\(164\) −1.72027e7 + 2.97959e7i −0.304539 + 0.527476i
\(165\) 0 0
\(166\) −3.93162e7 6.80977e7i −0.667104 1.15546i
\(167\) 3.07391e7 + 5.32416e7i 0.510720 + 0.884593i 0.999923 + 0.0124229i \(0.00395445\pi\)
−0.489203 + 0.872170i \(0.662712\pi\)
\(168\) 0 0
\(169\) 2.99659e7 5.19024e7i 0.477555 0.827149i
\(170\) −7.10837e7 −1.10968
\(171\) 0 0
\(172\) 1.28318e7 0.192282
\(173\) 5.12455e7 8.87599e7i 0.752479 1.30333i −0.194138 0.980974i \(-0.562191\pi\)
0.946618 0.322358i \(-0.104476\pi\)
\(174\) 0 0
\(175\) 42171.6 + 73043.4i 0.000594822 + 0.00103026i
\(176\) 4.17370e6 + 7.22906e6i 0.0577068 + 0.0999511i
\(177\) 0 0
\(178\) 468994. 812322.i 0.00623301 0.0107959i
\(179\) 6.08971e7 0.793617 0.396809 0.917901i \(-0.370118\pi\)
0.396809 + 0.917901i \(0.370118\pi\)
\(180\) 0 0
\(181\) −9.62195e7 −1.20611 −0.603057 0.797698i \(-0.706051\pi\)
−0.603057 + 0.797698i \(0.706051\pi\)
\(182\) −1.10316e6 + 1.91072e6i −0.0135640 + 0.0234935i
\(183\) 0 0
\(184\) −1.26635e7 2.19339e7i −0.149862 0.259569i
\(185\) 7.59167e7 + 1.31492e8i 0.881528 + 1.52685i
\(186\) 0 0
\(187\) 3.22867e7 5.59223e7i 0.361059 0.625373i
\(188\) −2.62957e7 −0.288624
\(189\) 0 0
\(190\) 2.83606e7 0.299970
\(191\) 3.69604e7 6.40172e7i 0.383813 0.664783i −0.607791 0.794097i \(-0.707944\pi\)
0.991604 + 0.129314i \(0.0412774\pi\)
\(192\) 0 0
\(193\) −4.07347e7 7.05546e7i −0.407863 0.706440i 0.586787 0.809741i \(-0.300393\pi\)
−0.994650 + 0.103302i \(0.967059\pi\)
\(194\) 3.11698e7 + 5.39877e7i 0.306498 + 0.530871i
\(195\) 0 0
\(196\) 2.54893e7 4.41488e7i 0.241803 0.418815i
\(197\) −2.44033e7 −0.227414 −0.113707 0.993514i \(-0.536272\pi\)
−0.113707 + 0.993514i \(0.536272\pi\)
\(198\) 0 0
\(199\) −1.52134e8 −1.36848 −0.684241 0.729256i \(-0.739867\pi\)
−0.684241 + 0.729256i \(0.739867\pi\)
\(200\) −131399. + 227589.i −0.00116141 + 0.00201162i
\(201\) 0 0
\(202\) −4.61940e6 8.00103e6i −0.0394326 0.0682993i
\(203\) −620550. 1.07482e6i −0.00520644 0.00901781i
\(204\) 0 0
\(205\) 7.53760e7 1.30555e8i 0.611075 1.05841i
\(206\) −1.35893e8 −1.08309
\(207\) 0 0
\(208\) −6.87445e6 −0.0529684
\(209\) −1.28816e7 + 2.23116e7i −0.0976018 + 0.169051i
\(210\) 0 0
\(211\) 2.93912e7 + 5.09071e7i 0.215392 + 0.373069i 0.953394 0.301729i \(-0.0975639\pi\)
−0.738002 + 0.674799i \(0.764231\pi\)
\(212\) −4.37690e7 7.58102e7i −0.315494 0.546452i
\(213\) 0 0
\(214\) −8.96757e7 + 1.55323e8i −0.625499 + 1.08340i
\(215\) −5.62246e7 −0.385826
\(216\) 0 0
\(217\) −2.56402e7 −0.170339
\(218\) −7.02912e7 + 1.21748e8i −0.459518 + 0.795909i
\(219\) 0 0
\(220\) −1.82877e7 3.16752e7i −0.115792 0.200558i
\(221\) 2.65896e7 + 4.60545e7i 0.165706 + 0.287011i
\(222\) 0 0
\(223\) 1.65907e7 2.87360e7i 0.100184 0.173524i −0.811576 0.584246i \(-0.801390\pi\)
0.911760 + 0.410722i \(0.134723\pi\)
\(224\) −5.38455e6 −0.0320097
\(225\) 0 0
\(226\) −5.56511e7 −0.320697
\(227\) −6.92959e7 + 1.20024e8i −0.393203 + 0.681048i −0.992870 0.119202i \(-0.961966\pi\)
0.599667 + 0.800250i \(0.295300\pi\)
\(228\) 0 0
\(229\) −3.35184e7 5.80556e7i −0.184442 0.319463i 0.758946 0.651153i \(-0.225714\pi\)
−0.943388 + 0.331690i \(0.892381\pi\)
\(230\) 5.54871e7 + 9.61064e7i 0.300707 + 0.520841i
\(231\) 0 0
\(232\) 1.93351e6 3.34894e6i 0.0101658 0.0176076i
\(233\) 1.30899e8 0.677940 0.338970 0.940797i \(-0.389922\pi\)
0.338970 + 0.940797i \(0.389922\pi\)
\(234\) 0 0
\(235\) 1.15219e8 0.579142
\(236\) −2.55644e7 + 4.42789e7i −0.126603 + 0.219283i
\(237\) 0 0
\(238\) 2.08268e7 + 3.60731e7i 0.100139 + 0.173446i
\(239\) −9.63707e6 1.66919e7i −0.0456617 0.0790884i 0.842291 0.539023i \(-0.181206\pi\)
−0.887953 + 0.459934i \(0.847873\pi\)
\(240\) 0 0
\(241\) −3.42495e7 + 5.93219e7i −0.157614 + 0.272995i −0.934008 0.357253i \(-0.883714\pi\)
0.776394 + 0.630248i \(0.217047\pi\)
\(242\) −1.22672e8 −0.556405
\(243\) 0 0
\(244\) 3.64441e7 0.160606
\(245\) −1.11685e8 + 1.93444e8i −0.485192 + 0.840377i
\(246\) 0 0
\(247\) −1.06086e7 1.83746e7i −0.0447938 0.0775851i
\(248\) −3.99450e7 6.91868e7i −0.166296 0.288033i
\(249\) 0 0
\(250\) −8.70571e7 + 1.50787e8i −0.352382 + 0.610344i
\(251\) 2.45365e7 0.0979387 0.0489693 0.998800i \(-0.484406\pi\)
0.0489693 + 0.998800i \(0.484406\pi\)
\(252\) 0 0
\(253\) −1.00811e8 −0.391367
\(254\) 1.30020e8 2.25202e8i 0.497843 0.862290i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −1.66362e8 2.88148e8i −0.611349 1.05889i −0.991013 0.133763i \(-0.957294\pi\)
0.379664 0.925124i \(-0.376039\pi\)
\(258\) 0 0
\(259\) 4.44856e7 7.70514e7i 0.159100 0.275570i
\(260\) 3.01214e7 0.106284
\(261\) 0 0
\(262\) 1.30512e8 0.448326
\(263\) 1.85275e8 3.20907e8i 0.628019 1.08776i −0.359930 0.932979i \(-0.617199\pi\)
0.987949 0.154781i \(-0.0494673\pi\)
\(264\) 0 0
\(265\) 1.91780e8 + 3.32173e8i 0.633058 + 1.09649i
\(266\) −8.30937e6 1.43922e7i −0.0270696 0.0468860i
\(267\) 0 0
\(268\) 1.53745e8 2.66294e8i 0.487898 0.845063i
\(269\) 4.30980e8 1.34997 0.674985 0.737831i \(-0.264150\pi\)
0.674985 + 0.737831i \(0.264150\pi\)
\(270\) 0 0
\(271\) 3.41000e8 1.04079 0.520394 0.853927i \(-0.325785\pi\)
0.520394 + 0.853927i \(0.325785\pi\)
\(272\) −6.48923e7 + 1.12397e8i −0.195525 + 0.338659i
\(273\) 0 0
\(274\) 1.44638e8 + 2.50520e8i 0.424771 + 0.735724i
\(275\) 523012. + 905884.i 0.00151652 + 0.00262669i
\(276\) 0 0
\(277\) −3.41041e8 + 5.90701e8i −0.964112 + 1.66989i −0.252130 + 0.967693i \(0.581131\pi\)
−0.711982 + 0.702198i \(0.752202\pi\)
\(278\) 4.28147e8 1.19519
\(279\) 0 0
\(280\) 2.35932e7 0.0642293
\(281\) −3.37119e7 + 5.83907e7i −0.0906382 + 0.156990i −0.907780 0.419447i \(-0.862224\pi\)
0.817142 + 0.576437i \(0.195557\pi\)
\(282\) 0 0
\(283\) 2.57861e8 + 4.46628e8i 0.676290 + 1.17137i 0.976090 + 0.217366i \(0.0697466\pi\)
−0.299800 + 0.954002i \(0.596920\pi\)
\(284\) −7.86284e7 1.36188e8i −0.203688 0.352798i
\(285\) 0 0
\(286\) −1.36814e7 + 2.36968e7i −0.0345818 + 0.0598975i
\(287\) −8.83375e7 −0.220576
\(288\) 0 0
\(289\) 5.93644e8 1.44672
\(290\) −8.47197e6 + 1.46739e7i −0.0203982 + 0.0353307i
\(291\) 0 0
\(292\) −5.13102e7 8.88719e7i −0.120605 0.208893i
\(293\) −4.03009e7 6.98032e7i −0.0936005 0.162121i 0.815423 0.578865i \(-0.196504\pi\)
−0.909024 + 0.416744i \(0.863171\pi\)
\(294\) 0 0
\(295\) 1.12014e8 1.94014e8i 0.254037 0.440004i
\(296\) 2.77217e8 0.621297
\(297\) 0 0
\(298\) −4.35374e7 −0.0953029
\(299\) 4.15110e7 7.18991e7i 0.0898077 0.155552i
\(300\) 0 0
\(301\) 1.64732e7 + 2.85324e7i 0.0348173 + 0.0603054i
\(302\) −8.77444e7 1.51978e8i −0.183314 0.317509i
\(303\) 0 0
\(304\) 2.58904e7 4.48435e7i 0.0528544 0.0915465i
\(305\) −1.59685e8 −0.322266
\(306\) 0 0
\(307\) 3.87201e8 0.763752 0.381876 0.924214i \(-0.375278\pi\)
0.381876 + 0.924214i \(0.375278\pi\)
\(308\) −1.07162e7 + 1.85610e7i −0.0208984 + 0.0361971i
\(309\) 0 0
\(310\) 1.75025e8 + 3.03152e8i 0.333683 + 0.577956i
\(311\) −3.15388e8 5.46268e8i −0.594543 1.02978i −0.993611 0.112858i \(-0.964000\pi\)
0.399068 0.916921i \(-0.369334\pi\)
\(312\) 0 0
\(313\) −2.37475e8 + 4.11320e8i −0.437737 + 0.758183i −0.997515 0.0704598i \(-0.977553\pi\)
0.559777 + 0.828643i \(0.310887\pi\)
\(314\) 3.99254e7 0.0727772
\(315\) 0 0
\(316\) 3.57759e8 0.637801
\(317\) −1.45155e8 + 2.51415e8i −0.255931 + 0.443286i −0.965148 0.261704i \(-0.915715\pi\)
0.709217 + 0.704991i \(0.249049\pi\)
\(318\) 0 0
\(319\) −7.69606e6 1.33300e7i −0.0132740 0.0229912i
\(320\) 3.67559e7 + 6.36631e7i 0.0627050 + 0.108608i
\(321\) 0 0
\(322\) 3.25143e7 5.63164e7i 0.0542723 0.0940024i
\(323\) −4.00564e8 −0.661398
\(324\) 0 0
\(325\) −861448. −0.00139199
\(326\) 1.79057e8 3.10135e8i 0.286239 0.495781i
\(327\) 0 0
\(328\) −1.37621e8 2.38367e8i −0.215341 0.372982i
\(329\) −3.37579e7 5.84703e7i −0.0522624 0.0905211i
\(330\) 0 0
\(331\) −5.24913e8 + 9.09175e8i −0.795589 + 1.37800i 0.126875 + 0.991919i \(0.459505\pi\)
−0.922464 + 0.386083i \(0.873828\pi\)
\(332\) 6.29059e8 0.943427
\(333\) 0 0
\(334\) −4.91825e8 −0.722267
\(335\) −6.73655e8 + 1.16680e9i −0.978995 + 1.69567i
\(336\) 0 0
\(337\) −2.54630e8 4.41032e8i −0.362414 0.627719i 0.625944 0.779868i \(-0.284714\pi\)
−0.988358 + 0.152149i \(0.951381\pi\)
\(338\) 2.39727e8 + 4.15219e8i 0.337682 + 0.584883i
\(339\) 0 0
\(340\) 2.84335e8 4.92482e8i 0.392332 0.679539i
\(341\) −3.17990e8 −0.434284
\(342\) 0 0
\(343\) 2.66218e8 0.356211
\(344\) −5.13274e7 + 8.89016e7i −0.0679821 + 0.117748i
\(345\) 0 0
\(346\) 4.09964e8 + 7.10079e8i 0.532083 + 0.921595i
\(347\) −2.34537e8 4.06230e8i −0.301341 0.521938i 0.675099 0.737727i \(-0.264101\pi\)
−0.976440 + 0.215789i \(0.930768\pi\)
\(348\) 0 0
\(349\) 1.09391e8 1.89470e8i 0.137750 0.238590i −0.788895 0.614529i \(-0.789346\pi\)
0.926645 + 0.375938i \(0.122680\pi\)
\(350\) −674746. −0.000841205
\(351\) 0 0
\(352\) −6.67792e7 −0.0816097
\(353\) −2.21516e8 + 3.83677e8i −0.268036 + 0.464252i −0.968355 0.249578i \(-0.919708\pi\)
0.700318 + 0.713831i \(0.253041\pi\)
\(354\) 0 0
\(355\) 3.44521e8 + 5.96729e8i 0.408712 + 0.707909i
\(356\) 3.75195e6 + 6.49857e6i 0.00440740 + 0.00763384i
\(357\) 0 0
\(358\) −2.43588e8 + 4.21908e8i −0.280586 + 0.485989i
\(359\) −4.34672e8 −0.495828 −0.247914 0.968782i \(-0.579745\pi\)
−0.247914 + 0.968782i \(0.579745\pi\)
\(360\) 0 0
\(361\) −7.34057e8 −0.821210
\(362\) 3.84878e8 6.66628e8i 0.426426 0.738591i
\(363\) 0 0
\(364\) −8.82526e6 1.52858e7i −0.00959119 0.0166124i
\(365\) 2.24823e8 + 3.89405e8i 0.242000 + 0.419157i
\(366\) 0 0
\(367\) 8.23673e8 1.42664e9i 0.869809 1.50655i 0.00761697 0.999971i \(-0.497575\pi\)
0.862192 0.506582i \(-0.169091\pi\)
\(368\) 2.02616e8 0.211937
\(369\) 0 0
\(370\) −1.21467e9 −1.24667
\(371\) 1.12379e8 1.94647e8i 0.114256 0.197896i
\(372\) 0 0
\(373\) −2.85414e8 4.94351e8i −0.284770 0.493235i 0.687784 0.725916i \(-0.258584\pi\)
−0.972553 + 0.232680i \(0.925250\pi\)
\(374\) 2.58294e8 + 4.47378e8i 0.255308 + 0.442206i
\(375\) 0 0
\(376\) 1.05183e8 1.82182e8i 0.102044 0.176746i
\(377\) 1.26761e7 0.0121840
\(378\) 0 0
\(379\) −1.71431e8 −0.161753 −0.0808763 0.996724i \(-0.525772\pi\)
−0.0808763 + 0.996724i \(0.525772\pi\)
\(380\) −1.13442e8 + 1.96488e8i −0.106055 + 0.183693i
\(381\) 0 0
\(382\) 2.95683e8 + 5.12138e8i 0.271397 + 0.470073i
\(383\) 3.33432e8 + 5.77522e8i 0.303258 + 0.525258i 0.976872 0.213825i \(-0.0685924\pi\)
−0.673614 + 0.739083i \(0.735259\pi\)
\(384\) 0 0
\(385\) 4.69545e7 8.13276e7i 0.0419339 0.0726316i
\(386\) 6.51756e8 0.576806
\(387\) 0 0
\(388\) −4.98717e8 −0.433454
\(389\) −2.54407e8 + 4.40646e8i −0.219132 + 0.379547i −0.954543 0.298074i \(-0.903656\pi\)
0.735411 + 0.677621i \(0.236989\pi\)
\(390\) 0 0
\(391\) −7.83696e8 1.35740e9i −0.663024 1.14839i
\(392\) 2.03914e8 + 3.53190e8i 0.170981 + 0.296147i
\(393\) 0 0
\(394\) 9.76133e7 1.69071e8i 0.0804030 0.139262i
\(395\) −1.56757e9 −1.27979
\(396\) 0 0
\(397\) 9.18742e8 0.736931 0.368466 0.929641i \(-0.379883\pi\)
0.368466 + 0.929641i \(0.379883\pi\)
\(398\) 6.08534e8 1.05401e9i 0.483832 0.838021i
\(399\) 0 0
\(400\) −1.05119e6 1.82071e6i −0.000821241 0.00142243i
\(401\) 9.88625e8 + 1.71235e9i 0.765643 + 1.32613i 0.939906 + 0.341433i \(0.110912\pi\)
−0.174264 + 0.984699i \(0.555754\pi\)
\(402\) 0 0
\(403\) 1.30940e8 2.26794e8i 0.0996560 0.172609i
\(404\) 7.39103e7 0.0557661
\(405\) 0 0
\(406\) 9.92880e6 0.00736301
\(407\) 5.51711e8 9.55591e8i 0.405631 0.702573i
\(408\) 0 0
\(409\) −1.24460e9 2.15572e9i −0.899497 1.55797i −0.828139 0.560523i \(-0.810600\pi\)
−0.0713582 0.997451i \(-0.522733\pi\)
\(410\) 6.03008e8 + 1.04444e9i 0.432095 + 0.748411i
\(411\) 0 0
\(412\) 5.43573e8 9.41496e8i 0.382928 0.663252i
\(413\) −1.31276e8 −0.0916981
\(414\) 0 0
\(415\) −2.75631e9 −1.89304
\(416\) 2.74978e7 4.76276e7i 0.0187271 0.0324364i
\(417\) 0 0
\(418\) −1.03053e8 1.78493e8i −0.0690149 0.119537i
\(419\) −8.95795e8 1.55156e9i −0.594921 1.03043i −0.993558 0.113325i \(-0.963850\pi\)
0.398637 0.917109i \(-0.369483\pi\)
\(420\) 0 0
\(421\) 6.98308e6 1.20950e7i 0.00456099 0.00789987i −0.863736 0.503945i \(-0.831882\pi\)
0.868297 + 0.496045i \(0.165215\pi\)
\(422\) −4.70259e8 −0.304610
\(423\) 0 0
\(424\) 7.00304e8 0.446176
\(425\) −8.13175e6 + 1.40846e7i −0.00513834 + 0.00889986i
\(426\) 0 0
\(427\) 4.67861e7 + 8.10359e7i 0.0290817 + 0.0503709i
\(428\) −7.17405e8 1.24258e9i −0.442294 0.766076i
\(429\) 0 0
\(430\) 2.24898e8 3.89535e8i 0.136410 0.236269i
\(431\) −2.57849e9 −1.55129 −0.775647 0.631166i \(-0.782577\pi\)
−0.775647 + 0.631166i \(0.782577\pi\)
\(432\) 0 0
\(433\) 1.82232e9 1.07874 0.539372 0.842068i \(-0.318662\pi\)
0.539372 + 0.842068i \(0.318662\pi\)
\(434\) 1.02561e8 1.77641e8i 0.0602238 0.104311i
\(435\) 0 0
\(436\) −5.62329e8 9.73983e8i −0.324929 0.562793i
\(437\) 3.12675e8 + 5.41569e8i 0.179229 + 0.310434i
\(438\) 0 0
\(439\) −6.65655e8 + 1.15295e9i −0.375512 + 0.650405i −0.990403 0.138206i \(-0.955866\pi\)
0.614892 + 0.788611i \(0.289200\pi\)
\(440\) 2.92603e8 0.163755
\(441\) 0 0
\(442\) −4.25433e8 −0.234344
\(443\) 1.85680e7 3.21607e7i 0.0101473 0.0175757i −0.860907 0.508762i \(-0.830103\pi\)
0.871054 + 0.491186i \(0.163437\pi\)
\(444\) 0 0
\(445\) −1.64397e7 2.84744e7i −0.00884371 0.0153178i
\(446\) 1.32726e8 + 2.29888e8i 0.0708409 + 0.122700i
\(447\) 0 0
\(448\) 2.15382e7 3.73052e7i 0.0113171 0.0196018i
\(449\) −1.95772e9 −1.02068 −0.510338 0.859974i \(-0.670480\pi\)
−0.510338 + 0.859974i \(0.670480\pi\)
\(450\) 0 0
\(451\) −1.09556e9 −0.562366
\(452\) 2.22604e8 3.85562e8i 0.113383 0.196386i
\(453\) 0 0
\(454\) −5.54367e8 9.60192e8i −0.278037 0.481574i
\(455\) 3.86691e7 + 6.69769e7i 0.0192453 + 0.0333338i
\(456\) 0 0
\(457\) −4.99589e8 + 8.65314e8i −0.244854 + 0.424099i −0.962090 0.272731i \(-0.912073\pi\)
0.717237 + 0.696829i \(0.245407\pi\)
\(458\) 5.36295e8 0.260840
\(459\) 0 0
\(460\) −8.87793e8 −0.425265
\(461\) 8.24033e8 1.42727e9i 0.391734 0.678503i −0.600944 0.799291i \(-0.705209\pi\)
0.992678 + 0.120788i \(0.0385420\pi\)
\(462\) 0 0
\(463\) −1.73531e9 3.00564e9i −0.812538 1.40736i −0.911083 0.412224i \(-0.864752\pi\)
0.0985450 0.995133i \(-0.468581\pi\)
\(464\) 1.54681e7 + 2.67916e7i 0.00718827 + 0.0124505i
\(465\) 0 0
\(466\) −5.23597e8 + 9.06896e8i −0.239688 + 0.415152i
\(467\) 2.49926e9 1.13554 0.567769 0.823188i \(-0.307807\pi\)
0.567769 + 0.823188i \(0.307807\pi\)
\(468\) 0 0
\(469\) 7.89496e8 0.353382
\(470\) −4.60874e8 + 7.98258e8i −0.204758 + 0.354651i
\(471\) 0 0
\(472\) −2.04516e8 3.54231e8i −0.0895219 0.155056i
\(473\) 2.04301e8 + 3.53859e8i 0.0887680 + 0.153751i
\(474\) 0 0
\(475\) 3.24436e6 5.61940e6i 0.00138900 0.00240582i
\(476\) −3.33229e8 −0.141618
\(477\) 0 0
\(478\) 1.54193e8 0.0645754
\(479\) 2.19805e9 3.80714e9i 0.913827 1.58280i 0.105219 0.994449i \(-0.466446\pi\)
0.808609 0.588347i \(-0.200221\pi\)
\(480\) 0 0
\(481\) 4.54358e8 + 7.86972e8i 0.186162 + 0.322442i
\(482\) −2.73996e8 4.74575e8i −0.111450 0.193037i
\(483\) 0 0
\(484\) 4.90687e8 8.49895e8i 0.196719 0.340727i
\(485\) 2.18520e9 0.869752
\(486\) 0 0
\(487\) −2.82989e9 −1.11025 −0.555123 0.831769i \(-0.687329\pi\)
−0.555123 + 0.831769i \(0.687329\pi\)
\(488\) −1.45776e8 + 2.52492e8i −0.0567830 + 0.0983510i
\(489\) 0 0
\(490\) −8.93480e8 1.54755e9i −0.343083 0.594237i
\(491\) −1.22921e9 2.12905e9i −0.468641 0.811710i 0.530716 0.847550i \(-0.321923\pi\)
−0.999358 + 0.0358390i \(0.988590\pi\)
\(492\) 0 0
\(493\) 1.19658e8 2.07253e8i 0.0449755 0.0778999i
\(494\) 1.69737e8 0.0633480
\(495\) 0 0
\(496\) 6.39121e8 0.235178
\(497\) 2.01882e8 3.49671e8i 0.0737651 0.127765i
\(498\) 0 0
\(499\) 1.50302e9 + 2.60331e9i 0.541518 + 0.937938i 0.998817 + 0.0486243i \(0.0154837\pi\)
−0.457299 + 0.889313i \(0.651183\pi\)
\(500\) −6.96457e8 1.20630e9i −0.249172 0.431579i
\(501\) 0 0
\(502\) −9.81459e7 + 1.69994e8i −0.0346266 + 0.0599750i
\(503\) −2.43279e8 −0.0852348 −0.0426174 0.999091i \(-0.513570\pi\)
−0.0426174 + 0.999091i \(0.513570\pi\)
\(504\) 0 0
\(505\) −3.23849e8 −0.111898
\(506\) 4.03242e8 6.98436e8i 0.138369 0.239662i
\(507\) 0 0
\(508\) 1.04016e9 + 1.80161e9i 0.352028 + 0.609731i
\(509\) 2.00216e9 + 3.46785e9i 0.672956 + 1.16559i 0.977062 + 0.212956i \(0.0683092\pi\)
−0.304105 + 0.952638i \(0.598357\pi\)
\(510\) 0 0
\(511\) 1.31742e8 2.28183e8i 0.0436767 0.0756503i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 2.66180e9 0.864578
\(515\) −2.38174e9 + 4.12530e9i −0.768369 + 1.33085i
\(516\) 0 0
\(517\) −4.18665e8 7.25149e8i −0.133245 0.230786i
\(518\) 3.55885e8 + 6.16411e8i 0.112501 + 0.194857i
\(519\) 0 0
\(520\) −1.20486e8 + 2.08687e8i −0.0375771 + 0.0650855i
\(521\) 5.72614e9 1.77390 0.886951 0.461864i \(-0.152819\pi\)
0.886951 + 0.461864i \(0.152819\pi\)
\(522\) 0 0
\(523\) 1.53753e9 0.469966 0.234983 0.971999i \(-0.424497\pi\)
0.234983 + 0.971999i \(0.424497\pi\)
\(524\) −5.22046e8 + 9.04210e8i −0.158507 + 0.274543i
\(525\) 0 0
\(526\) 1.48220e9 + 2.56725e9i 0.444077 + 0.769163i
\(527\) −2.47204e9 4.28170e9i −0.735731 1.27432i
\(528\) 0 0
\(529\) 4.78926e8 8.29523e8i 0.140661 0.243632i
\(530\) −3.06848e9 −0.895279
\(531\) 0 0
\(532\) 1.32950e8 0.0382822
\(533\) 4.51122e8 7.81366e8i 0.129047 0.223516i
\(534\) 0 0
\(535\) 3.14341e9 + 5.44455e9i 0.887490 + 1.53718i
\(536\) 1.22996e9 + 2.13035e9i 0.344996 + 0.597550i
\(537\) 0 0
\(538\) −1.72392e9 + 2.98592e9i −0.477287 + 0.826685i
\(539\) 1.62330e9 0.446518
\(540\) 0 0
\(541\) 3.90611e9 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(542\) −1.36400e9 + 2.36252e9i −0.367974 + 0.637349i
\(543\) 0 0
\(544\) −5.19138e8 8.99174e8i −0.138257 0.239468i
\(545\) 2.46393e9 + 4.26764e9i 0.651988 + 1.12928i
\(546\) 0 0
\(547\) 2.50427e9 4.33752e9i 0.654222 1.13315i −0.327866 0.944724i \(-0.606330\pi\)
0.982088 0.188422i \(-0.0603372\pi\)
\(548\) −2.31420e9 −0.600716
\(549\) 0 0
\(550\) −8.36820e6 −0.00214468
\(551\) −4.77404e7 + 8.26888e7i −0.0121578 + 0.0210580i
\(552\) 0 0
\(553\) 4.59282e8 + 7.95500e8i 0.115489 + 0.200033i
\(554\) −2.72833e9 4.72560e9i −0.681730 1.18079i
\(555\) 0 0
\(556\) −1.71259e9 + 2.96629e9i −0.422562 + 0.731899i
\(557\) −1.45387e9 −0.356479 −0.178239 0.983987i \(-0.557040\pi\)
−0.178239 + 0.983987i \(0.557040\pi\)
\(558\) 0 0
\(559\) −3.36502e8 −0.0814790
\(560\) −9.43727e7 + 1.63458e8i −0.0227085 + 0.0393323i
\(561\) 0 0
\(562\) −2.69695e8 4.67126e8i −0.0640909 0.111009i
\(563\) −2.95600e9 5.11994e9i −0.698111 1.20916i −0.969121 0.246587i \(-0.920691\pi\)
0.271009 0.962577i \(-0.412643\pi\)
\(564\) 0 0
\(565\) −9.75373e8 + 1.68940e9i −0.227510 + 0.394060i
\(566\) −4.12577e9 −0.956418
\(567\) 0 0
\(568\) 1.25805e9 0.288058
\(569\) −3.81277e9 + 6.60392e9i −0.867657 + 1.50283i −0.00327263 + 0.999995i \(0.501042\pi\)
−0.864384 + 0.502831i \(0.832292\pi\)
\(570\) 0 0
\(571\) 3.68647e9 + 6.38515e9i 0.828675 + 1.43531i 0.899078 + 0.437788i \(0.144238\pi\)
−0.0704037 + 0.997519i \(0.522429\pi\)
\(572\) −1.09451e8 1.89574e8i −0.0244531 0.0423539i
\(573\) 0 0
\(574\) 3.53350e8 6.12020e8i 0.0779854 0.135075i
\(575\) 2.53902e7 0.00556965
\(576\) 0 0
\(577\) 1.95790e9 0.424302 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(578\) −2.37458e9 + 4.11289e9i −0.511492 + 0.885930i
\(579\) 0 0
\(580\) −6.77758e7 1.17391e8i −0.0144237 0.0249826i
\(581\) 8.07571e8 + 1.39875e9i 0.170830 + 0.295886i
\(582\) 0 0
\(583\) 1.39373e9 2.41401e9i 0.291298 0.504543i
\(584\) 8.20964e8 0.170561
\(585\) 0 0
\(586\) 6.44815e8 0.132371
\(587\) 1.09928e9 1.90401e9i 0.224324 0.388541i −0.731792 0.681528i \(-0.761316\pi\)
0.956117 + 0.292987i \(0.0946492\pi\)
\(588\) 0 0
\(589\) 9.86283e8 + 1.70829e9i 0.198883 + 0.344476i
\(590\) 8.96114e8 + 1.55212e9i 0.179631 + 0.311130i
\(591\) 0 0
\(592\) −1.10887e9 + 1.92062e9i −0.219662 + 0.380465i
\(593\) 6.54769e9 1.28943 0.644713 0.764425i \(-0.276977\pi\)
0.644713 + 0.764425i \(0.276977\pi\)
\(594\) 0 0
\(595\) 1.46009e9 0.284165
\(596\) 1.74150e8 3.01636e8i 0.0336946 0.0583608i
\(597\) 0 0
\(598\) 3.32088e8 + 5.75193e8i 0.0635037 + 0.109992i
\(599\) 2.63642e9 + 4.56641e9i 0.501210 + 0.868122i 0.999999 + 0.00139803i \(0.000445007\pi\)
−0.498789 + 0.866724i \(0.666222\pi\)
\(600\) 0 0
\(601\) −2.59635e9 + 4.49701e9i −0.487869 + 0.845013i −0.999903 0.0139518i \(-0.995559\pi\)
0.512034 + 0.858965i \(0.328892\pi\)
\(602\) −2.63571e8 −0.0492392
\(603\) 0 0
\(604\) 1.40391e9 0.259245
\(605\) −2.15002e9 + 3.72394e9i −0.394728 + 0.683689i
\(606\) 0 0
\(607\) 1.21854e9 + 2.11058e9i 0.221147 + 0.383037i 0.955156 0.296102i \(-0.0956868\pi\)
−0.734010 + 0.679139i \(0.762353\pi\)
\(608\) 2.07123e8 + 3.58748e8i 0.0373737 + 0.0647332i
\(609\) 0 0
\(610\) 6.38741e8 1.10633e9i 0.113938 0.197347i
\(611\) 6.89579e8 0.122304
\(612\) 0 0
\(613\) −3.31215e9 −0.580763 −0.290382 0.956911i \(-0.593782\pi\)
−0.290382 + 0.956911i \(0.593782\pi\)
\(614\) −1.54880e9 + 2.68261e9i −0.270027 + 0.467700i
\(615\) 0 0
\(616\) −8.57295e7 1.48488e8i −0.0147774 0.0255952i
\(617\) −1.63565e9 2.83303e9i −0.280345 0.485572i 0.691125 0.722736i \(-0.257116\pi\)
−0.971470 + 0.237164i \(0.923782\pi\)
\(618\) 0 0
\(619\) 7.18024e8 1.24365e9i 0.121681 0.210757i −0.798750 0.601663i \(-0.794505\pi\)
0.920431 + 0.390906i \(0.127838\pi\)
\(620\) −2.80040e9 −0.471899
\(621\) 0 0
\(622\) 5.04620e9 0.840811
\(623\) −9.63334e6 + 1.66854e7i −0.00159613 + 0.00276458i
\(624\) 0 0
\(625\) 3.07168e9 + 5.32030e9i 0.503263 + 0.871678i
\(626\) −1.89980e9 3.29056e9i −0.309527 0.536117i
\(627\) 0 0
\(628\) −1.59701e8 + 2.76611e8i −0.0257306 + 0.0445667i
\(629\) 1.71559e10 2.74876
\(630\) 0 0
\(631\) −7.26152e9 −1.15060 −0.575301 0.817942i \(-0.695115\pi\)
−0.575301 + 0.817942i \(0.695115\pi\)
\(632\) −1.43104e9 + 2.47863e9i −0.225497 + 0.390572i
\(633\) 0 0
\(634\) −1.16124e9 2.01132e9i −0.180971 0.313451i
\(635\) −4.55762e9 7.89402e9i −0.706366 1.22346i
\(636\) 0 0
\(637\) −6.68430e8 + 1.15776e9i −0.102463 + 0.177472i
\(638\) 1.23137e8 0.0187722
\(639\) 0 0
\(640\) −5.88094e8 −0.0886782
\(641\) 4.47848e9 7.75695e9i 0.671625 1.16329i −0.305818 0.952090i \(-0.598930\pi\)
0.977443 0.211199i \(-0.0677369\pi\)
\(642\) 0 0
\(643\) 1.29774e9 + 2.24774e9i 0.192508 + 0.333433i 0.946081 0.323931i \(-0.105005\pi\)
−0.753573 + 0.657364i \(0.771671\pi\)
\(644\) 2.60114e8 + 4.50531e8i 0.0383763 + 0.0664698i
\(645\) 0 0
\(646\) 1.60226e9 2.77519e9i 0.233840 0.405022i
\(647\) −9.11067e9 −1.32247 −0.661234 0.750180i \(-0.729967\pi\)
−0.661234 + 0.750180i \(0.729967\pi\)
\(648\) 0 0
\(649\) −1.62809e9 −0.233787
\(650\) 3.44579e6 5.96829e6i 0.000492144 0.000852418i
\(651\) 0 0
\(652\) 1.43245e9 + 2.48108e9i 0.202402 + 0.350570i
\(653\) 5.11670e9 + 8.86238e9i 0.719107 + 1.24553i 0.961354 + 0.275315i \(0.0887823\pi\)
−0.242247 + 0.970215i \(0.577884\pi\)
\(654\) 0 0
\(655\) 2.28742e9 3.96193e9i 0.318054 0.550886i
\(656\) 2.20194e9 0.304539
\(657\) 0 0
\(658\) 5.40126e8 0.0739102
\(659\) 5.37910e9 9.31688e9i 0.732168 1.26815i −0.223786 0.974638i \(-0.571842\pi\)
0.955955 0.293515i \(-0.0948249\pi\)
\(660\) 0 0
\(661\) −3.02911e9 5.24658e9i −0.407953 0.706596i 0.586707 0.809799i \(-0.300424\pi\)
−0.994660 + 0.103204i \(0.967091\pi\)
\(662\) −4.19930e9 7.27340e9i −0.562567 0.974394i
\(663\) 0 0
\(664\) −2.51624e9 + 4.35825e9i −0.333552 + 0.577729i
\(665\) −5.82539e8 −0.0768156
\(666\) 0 0
\(667\) −3.73613e8 −0.0487508
\(668\) 1.96730e9 3.40746e9i 0.255360 0.442296i
\(669\) 0 0
\(670\) −5.38924e9 9.33444e9i −0.692254 1.19902i
\(671\) 5.80241e8 + 1.00501e9i 0.0741446 + 0.128422i
\(672\) 0 0
\(673\) −2.11743e9 + 3.66750e9i −0.267767 + 0.463786i −0.968285 0.249849i \(-0.919619\pi\)
0.700518 + 0.713635i \(0.252952\pi\)
\(674\) 4.07408e9 0.512530
\(675\) 0 0
\(676\) −3.83563e9 −0.477555
\(677\) −9.92582e8 + 1.71920e9i −0.122944 + 0.212945i −0.920927 0.389735i \(-0.872567\pi\)
0.797984 + 0.602679i \(0.205900\pi\)
\(678\) 0 0
\(679\) −6.40241e8 1.10893e9i −0.0784873 0.135944i
\(680\) 2.27468e9 + 3.93986e9i 0.277421 + 0.480507i
\(681\) 0 0
\(682\) 1.27196e9 2.20310e9i 0.153543 0.265943i
\(683\) −2.07576e9 −0.249290 −0.124645 0.992201i \(-0.539779\pi\)
−0.124645 + 0.992201i \(0.539779\pi\)
\(684\) 0 0
\(685\) 1.01400e10 1.20537
\(686\) −1.06487e9 + 1.84441e9i −0.125940 + 0.218134i
\(687\) 0 0
\(688\) −4.10619e8 7.11213e8i −0.0480706 0.0832607i
\(689\) 1.14780e9 + 1.98804e9i 0.133690 + 0.231557i
\(690\) 0 0
\(691\) −7.28221e8 + 1.26132e9i −0.0839634 + 0.145429i −0.904949 0.425520i \(-0.860091\pi\)
0.820986 + 0.570949i \(0.193425\pi\)
\(692\) −6.55943e9 −0.752479
\(693\) 0 0
\(694\) 3.75259e9 0.426160
\(695\) 7.50394e9 1.29972e10i 0.847896 1.46860i
\(696\) 0 0
\(697\) −8.51685e9 1.47516e10i −0.952718 1.65016i
\(698\) 8.75127e8 + 1.51576e9i 0.0974040 + 0.168709i
\(699\) 0 0
\(700\) 2.69898e6 4.67478e6i 0.000297411 0.000515131i
\(701\) −6.55669e9 −0.718905 −0.359452 0.933163i \(-0.617036\pi\)
−0.359452 + 0.933163i \(0.617036\pi\)
\(702\) 0 0
\(703\) −6.84477e9 −0.743046
\(704\) 2.67117e8 4.62660e8i 0.0288534 0.0499755i
\(705\) 0 0
\(706\) −1.77213e9 3.06941e9i −0.189530 0.328276i
\(707\) 9.48843e7 + 1.64344e8i 0.0100978 + 0.0174899i
\(708\) 0 0
\(709\) −3.20151e9 + 5.54518e9i −0.337360 + 0.584324i −0.983935 0.178526i \(-0.942867\pi\)
0.646576 + 0.762850i \(0.276200\pi\)
\(710\) −5.51234e9 −0.578005
\(711\) 0 0
\(712\) −6.00313e7 −0.00623301
\(713\) −3.85929e9 + 6.68449e9i −0.398744 + 0.690645i
\(714\) 0 0
\(715\) 4.79575e8 + 8.30648e8i 0.0490665 + 0.0849857i
\(716\) −1.94871e9 3.37526e9i −0.198404 0.343646i
\(717\) 0 0
\(718\) 1.73869e9 3.01150e9i 0.175302 0.303631i
\(719\) −1.33984e10 −1.34432 −0.672158 0.740408i \(-0.734632\pi\)
−0.672158 + 0.740408i \(0.734632\pi\)
\(720\) 0 0
\(721\) 2.79130e9 0.277354
\(722\) 2.93623e9 5.08569e9i 0.290342 0.502887i
\(723\) 0 0
\(724\) 3.07902e9 + 5.33303e9i 0.301528 + 0.522262i
\(725\) 1.93833e6 + 3.35729e6i 0.000188906 + 0.000327194i
\(726\) 0 0
\(727\) 7.20401e9 1.24777e10i 0.695351 1.20438i −0.274711 0.961527i \(-0.588582\pi\)
0.970062 0.242856i \(-0.0780844\pi\)
\(728\) 1.41204e8 0.0135640
\(729\) 0 0
\(730\) −3.59717e9 −0.342240
\(731\) −3.17645e9 + 5.50178e9i −0.300768 + 0.520945i
\(732\) 0 0
\(733\) −5.60638e9 9.71053e9i −0.525797 0.910708i −0.999548 0.0300489i \(-0.990434\pi\)
0.473751 0.880659i \(-0.342900\pi\)
\(734\) 6.58939e9 + 1.14132e10i 0.615048 + 1.06529i
\(735\) 0 0
\(736\) −8.10466e8 + 1.40377e9i −0.0749311 + 0.129785i
\(737\) 9.79133e9 0.900960
\(738\) 0 0
\(739\) 7.79784e9 0.710753 0.355377 0.934723i \(-0.384353\pi\)
0.355377 + 0.934723i \(0.384353\pi\)
\(740\) 4.85867e9 8.41546e9i 0.440764 0.763426i
\(741\) 0 0
\(742\) 8.99034e8 + 1.55717e9i 0.0807909 + 0.139934i
\(743\) −7.80793e9 1.35237e10i −0.698353 1.20958i −0.969037 0.246915i \(-0.920583\pi\)
0.270684 0.962668i \(-0.412750\pi\)
\(744\) 0 0
\(745\) −7.63062e8 + 1.32166e9i −0.0676103 + 0.117104i
\(746\) 4.56662e9 0.402725
\(747\) 0 0
\(748\) −4.13270e9 −0.361059
\(749\) 1.84198e9 3.19040e9i 0.160176 0.277433i
\(750\) 0 0
\(751\) −6.37283e9 1.10381e10i −0.549025 0.950940i −0.998342 0.0575671i \(-0.981666\pi\)
0.449316 0.893373i \(-0.351668\pi\)
\(752\) 8.41464e8 + 1.45746e9i 0.0721561 + 0.124978i
\(753\) 0 0
\(754\) −5.07044e7 + 8.78226e7i −0.00430770 + 0.00746116i
\(755\) −6.15144e9 −0.520190
\(756\) 0 0
\(757\) −2.31819e10 −1.94229 −0.971144 0.238492i \(-0.923347\pi\)
−0.971144 + 0.238492i \(0.923347\pi\)
\(758\) 6.85722e8 1.18771e9i 0.0571882 0.0990528i
\(759\) 0 0
\(760\) −9.07540e8 1.57191e9i −0.0749926 0.129891i
\(761\) 1.11016e10 + 1.92286e10i 0.913148 + 1.58162i 0.809591 + 0.586995i \(0.199689\pi\)
0.103557 + 0.994624i \(0.466978\pi\)
\(762\) 0 0
\(763\) 1.44381e9 2.50075e9i 0.117672 0.203814i
\(764\) −4.73093e9 −0.383813
\(765\) 0 0
\(766\) −5.33492e9 −0.428871
\(767\) 6.70401e8 1.16117e9i 0.0536477 0.0929205i
\(768\) 0 0
\(769\) −1.09956e10 1.90449e10i −0.871916 1.51020i −0.860012 0.510275i \(-0.829544\pi\)
−0.0119049 0.999929i \(-0.503790\pi\)
\(770\) 3.75636e8 + 6.50621e8i 0.0296517 + 0.0513583i
\(771\) 0 0
\(772\) −2.60702e9 + 4.51550e9i −0.203932 + 0.353220i
\(773\) −1.12771e10 −0.878151 −0.439075 0.898450i \(-0.644694\pi\)
−0.439075 + 0.898450i \(0.644694\pi\)
\(774\) 0 0
\(775\) 8.00891e7 0.00618042
\(776\) 1.99487e9 3.45521e9i 0.153249 0.265435i
\(777\) 0 0
\(778\) −2.03525e9 3.52516e9i −0.154950 0.268380i
\(779\) 3.39801e9 + 5.88553e9i 0.257539 + 0.446071i
\(780\) 0 0
\(781\) 2.50375e9 4.33662e9i 0.188067 0.325741i
\(782\) 1.25391e10 0.937657
\(783\) 0 0
\(784\) −3.26263e9 −0.241803
\(785\) 6.99755e8 1.21201e9i 0.0516300 0.0894258i
\(786\) 0 0
\(787\) 9.17090e9 + 1.58845e10i 0.670657 + 1.16161i 0.977718 + 0.209922i \(0.0673210\pi\)
−0.307061 + 0.951690i \(0.599346\pi\)
\(788\) 7.80906e8 + 1.35257e9i 0.0568535 + 0.0984731i
\(789\) 0 0
\(790\) 6.27029e9 1.08605e10i 0.452473 0.783706i
\(791\) 1.14310e9 0.0821231
\(792\) 0 0
\(793\) −9.55709e8 −0.0680565
\(794\) −3.67497e9 + 6.36523e9i −0.260544 + 0.451276i
\(795\) 0 0
\(796\) 4.86827e9 + 8.43210e9i 0.342121 + 0.592570i
\(797\) −7.85176e8 1.35997e9i −0.0549368 0.0951533i 0.837249 0.546822i \(-0.184162\pi\)
−0.892186 + 0.451668i \(0.850829\pi\)
\(798\) 0 0
\(799\) 6.50937e9 1.12746e10i 0.451466 0.781962i
\(800\) 1.68190e7 0.00116141
\(801\) 0 0
\(802\) −1.58180e10 −1.08278
\(803\) 1.63386e9 2.82993e9i 0.111355 0.192873i
\(804\) 0 0
\(805\) −1.13973e9 1.97407e9i −0.0770044 0.133376i
\(806\) 1.04752e9 + 1.81435e9i 0.0704674 + 0.122053i
\(807\) 0 0
\(808\) −2.95641e8 + 5.12066e8i −0.0197163 + 0.0341496i
\(809\) −3.66110e9 −0.243104 −0.121552 0.992585i \(-0.538787\pi\)
−0.121552 + 0.992585i \(0.538787\pi\)
\(810\) 0 0
\(811\) −2.32307e10 −1.52929 −0.764645 0.644451i \(-0.777086\pi\)
−0.764645 + 0.644451i \(0.777086\pi\)
\(812\) −3.97152e7 + 6.87887e7i −0.00260322 + 0.00450891i
\(813\) 0 0
\(814\) 4.41369e9 + 7.64473e9i 0.286824 + 0.496794i
\(815\) −6.27650e9 1.08712e10i −0.406131 0.703439i
\(816\) 0 0
\(817\) 1.26732e9 2.19507e9i 0.0813038 0.140822i
\(818\) 1.99137e10 1.27208
\(819\) 0 0
\(820\) −9.64812e9 −0.611075
\(821\) −1.26531e10 + 2.19157e10i −0.797984 + 1.38215i 0.122943 + 0.992414i \(0.460767\pi\)
−0.920927 + 0.389736i \(0.872566\pi\)
\(822\) 0 0
\(823\) −4.14339e9 7.17655e9i −0.259093 0.448763i 0.706906 0.707307i \(-0.250090\pi\)
−0.965999 + 0.258545i \(0.916757\pi\)
\(824\) 4.34858e9 + 7.53197e9i 0.270771 + 0.468990i
\(825\) 0 0
\(826\) 5.25104e8 9.09507e8i 0.0324202 0.0561534i
\(827\) −3.06921e10 −1.88694 −0.943470 0.331459i \(-0.892459\pi\)
−0.943470 + 0.331459i \(0.892459\pi\)
\(828\) 0 0
\(829\) 1.83150e10 1.11652 0.558260 0.829666i \(-0.311469\pi\)
0.558260 + 0.829666i \(0.311469\pi\)
\(830\) 1.10253e10 1.90963e10i 0.669291 1.15925i
\(831\) 0 0
\(832\) 2.19982e8 + 3.81021e8i 0.0132421 + 0.0229360i
\(833\) 1.26195e10 + 2.18576e10i 0.756456 + 1.31022i
\(834\) 0 0
\(835\) −8.62000e9 + 1.49303e10i −0.512395 + 0.887494i
\(836\) 1.64885e9 0.0976018
\(837\) 0 0
\(838\) 1.43327e10 0.841346
\(839\) −1.50106e10 + 2.59991e10i −0.877466 + 1.51982i −0.0233529 + 0.999727i \(0.507434\pi\)
−0.854113 + 0.520088i \(0.825899\pi\)
\(840\) 0 0
\(841\) 8.59642e9 + 1.48894e10i 0.498347 + 0.863161i
\(842\) 5.58646e7 + 9.67603e7i 0.00322511 + 0.00558605i
\(843\) 0 0
\(844\) 1.88104e9 3.25805e9i 0.107696 0.186535i
\(845\) 1.68064e10 0.958242
\(846\) 0 0
\(847\) 2.51973e9 0.142483
\(848\) −2.80122e9 + 4.85185e9i −0.157747 + 0.273226i
\(849\) 0 0
\(850\) −6.50540e7 1.12677e8i −0.00363335 0.00629315i
\(851\) −1.33917e10 2.31951e10i −0.744872 1.29016i
\(852\) 0 0
\(853\) −1.39325e10 + 2.41319e10i −0.768615 + 1.33128i 0.169699 + 0.985496i \(0.445720\pi\)
−0.938314 + 0.345784i \(0.887613\pi\)
\(854\) −7.48578e8 −0.0411277
\(855\) 0 0
\(856\) 1.14785e10 0.625499
\(857\) 1.70531e9 2.95369e9i 0.0925488 0.160299i −0.816034 0.578004i \(-0.803832\pi\)
0.908583 + 0.417704i \(0.137165\pi\)
\(858\) 0 0
\(859\) −4.50766e9 7.80749e9i −0.242647 0.420277i 0.718820 0.695196i \(-0.244682\pi\)
−0.961467 + 0.274919i \(0.911349\pi\)
\(860\) 1.79919e9 + 3.11628e9i 0.0964565 + 0.167068i
\(861\) 0 0
\(862\) 1.03139e10 1.78643e10i 0.548466 0.949970i
\(863\) −2.43096e9 −0.128748 −0.0643739 0.997926i \(-0.520505\pi\)
−0.0643739 + 0.997926i \(0.520505\pi\)
\(864\) 0 0
\(865\) 2.87411e10 1.50989
\(866\) −7.28930e9 + 1.26254e10i −0.381393 + 0.660593i
\(867\) 0 0
\(868\) 8.20488e8 + 1.42113e9i 0.0425847 + 0.0737588i
\(869\) 5.69602e9 + 9.86579e9i 0.294444 + 0.509991i
\(870\) 0 0
\(871\) −4.03180e9 + 6.98328e9i −0.206745 + 0.358093i
\(872\) 8.99727e9 0.459518
\(873\) 0 0
\(874\) −5.00280e9 −0.253468
\(875\) 1.78819e9 3.09724e9i 0.0902372 0.156295i
\(876\) 0 0
\(877\) 4.99117e9 + 8.64495e9i 0.249864 + 0.432777i 0.963488 0.267752i \(-0.0862808\pi\)
−0.713624 + 0.700529i \(0.752947\pi\)
\(878\) −5.32524e9 9.22359e9i −0.265527 0.459906i
\(879\) 0 0
\(880\) −1.17041e9 + 2.02721e9i −0.0578960 + 0.100279i
\(881\) −2.89122e10 −1.42451 −0.712256 0.701920i \(-0.752327\pi\)
−0.712256 + 0.701920i \(0.752327\pi\)
\(882\) 0 0
\(883\) −8.55345e9 −0.418099 −0.209049 0.977905i \(-0.567037\pi\)
−0.209049 + 0.977905i \(0.567037\pi\)
\(884\) 1.70173e9 2.94749e9i 0.0828530 0.143506i
\(885\) 0 0
\(886\) 1.48544e8 + 2.57286e8i 0.00717525 + 0.0124279i
\(887\) −8.91592e9 1.54428e10i −0.428977 0.743009i 0.567806 0.823162i \(-0.307792\pi\)
−0.996783 + 0.0801531i \(0.974459\pi\)
\(888\) 0 0
\(889\) −2.67067e9 + 4.62573e9i −0.127486 + 0.220813i
\(890\) 2.63036e8 0.0125069
\(891\) 0 0
\(892\) −2.12362e9 −0.100184
\(893\) −2.59707e9 + 4.49826e9i −0.122041 + 0.211380i
\(894\) 0 0
\(895\) 8.53854e9 + 1.47892e10i 0.398110 + 0.689547i
\(896\) 1.72306e8 + 2.98442e8i 0.00800242 + 0.0138606i
\(897\) 0 0
\(898\) 7.83088e9 1.35635e10i 0.360864 0.625034i
\(899\) −1.17850e9 −0.0540968
\(900\) 0 0
\(901\) 4.33391e10 1.97398
\(902\) 4.38225e9 7.59028e9i 0.198826 0.344377i
\(903\) 0 0
\(904\) 1.78084e9 + 3.08450e9i 0.0801742 + 0.138866i
\(905\) −1.34912e10 2.33674e10i −0.605035 1.04795i
\(906\) 0 0
\(907\) 3.21315e8 5.56534e8i 0.0142990 0.0247666i −0.858787 0.512332i \(-0.828782\pi\)
0.873086 + 0.487566i \(0.162115\pi\)
\(908\) 8.86988e9 0.393203
\(909\) 0 0
\(910\) −6.18706e8 −0.0272170
\(911\) 4.61488e9 7.99321e9i 0.202230 0.350273i −0.747016 0.664806i \(-0.768514\pi\)
0.949247 + 0.314533i \(0.101848\pi\)
\(912\) 0 0
\(913\) 1.00155e10 + 1.73474e10i 0.435537 + 0.754372i
\(914\) −3.99671e9 6.92251e9i −0.173138 0.299883i
\(915\) 0 0
\(916\) −2.14518e9 + 3.71556e9i −0.0922209 + 0.159731i
\(917\) −2.68076e9 −0.114806
\(918\) 0 0
\(919\) 1.03928e10 0.441701 0.220850 0.975308i \(-0.429117\pi\)
0.220850 + 0.975308i \(0.429117\pi\)
\(920\) 3.55117e9 6.15081e9i 0.150354 0.260420i
\(921\) 0 0
\(922\) 6.59226e9 + 1.14181e10i 0.276998 + 0.479774i
\(923\) 2.06195e9 + 3.57140e9i 0.0863120 + 0.149497i
\(924\) 0 0
\(925\) −1.38954e8 + 2.40675e8i −0.00577265 + 0.00999852i
\(926\) 2.77650e10 1.14910
\(927\) 0 0
\(928\) −2.47490e8 −0.0101658
\(929\) −8.38051e9 + 1.45155e10i −0.342938 + 0.593986i −0.984977 0.172686i \(-0.944755\pi\)
0.642039 + 0.766672i \(0.278089\pi\)
\(930\) 0 0
\(931\) −5.03485e9 8.72062e9i −0.204486 0.354180i
\(932\) −4.18877e9 7.25517e9i −0.169485 0.293557i
\(933\) 0 0
\(934\) −9.99702e9 + 1.73153e10i −0.401473 + 0.695372i
\(935\) 1.81080e10 0.724487
\(936\) 0 0
\(937\) 2.27134e9 0.0901973 0.0450987 0.998983i \(-0.485640\pi\)
0.0450987 + 0.998983i \(0.485640\pi\)
\(938\) −3.15798e9 + 5.46979e9i −0.124940 + 0.216402i
\(939\) 0 0
\(940\) −3.68699e9 6.38606e9i −0.144785 0.250776i
\(941\) 9.34719e8 + 1.61898e9i 0.0365694 + 0.0633400i 0.883731 0.467996i \(-0.155024\pi\)
−0.847161 + 0.531336i \(0.821690\pi\)
\(942\) 0 0
\(943\) −1.32963e10 + 2.30299e10i −0.516345 + 0.894335i
\(944\) 3.27225e9 0.126603
\(945\) 0 0
\(946\) −3.26881e9 −0.125537
\(947\) 2.49897e9 4.32834e9i 0.0956171 0.165614i −0.814249 0.580516i \(-0.802851\pi\)
0.909866 + 0.414902i \(0.136184\pi\)
\(948\) 0 0
\(949\) 1.34556e9 + 2.33057e9i 0.0511058 + 0.0885179i
\(950\) 2.59549e7 + 4.49552e7i 0.000982171 + 0.00170117i
\(951\) 0 0
\(952\) 1.33291e9 2.30868e9i 0.0500695 0.0867229i
\(953\) 4.30036e10 1.60946 0.804730 0.593641i \(-0.202310\pi\)
0.804730 + 0.593641i \(0.202310\pi\)
\(954\) 0 0
\(955\) 2.07292e10 0.770143
\(956\) −6.16772e8 + 1.06828e9i −0.0228309 + 0.0395442i
\(957\) 0 0
\(958\) 1.75844e10 + 3.04571e10i 0.646174 + 1.11921i
\(959\) −2.97092e9 5.14578e9i −0.108774 0.188402i
\(960\) 0 0
\(961\) 1.58280e9 2.74149e9i 0.0575300 0.0996449i
\(962\) −7.26973e9 −0.263273
\(963\) 0 0
\(964\) 4.38394e9 0.157614
\(965\) 1.14230e10 1.97853e10i 0.409201 0.708756i
\(966\) 0 0
\(967\) 2.30180e10 + 3.98684e10i 0.818607 + 1.41787i 0.906709 + 0.421758i \(0.138587\pi\)
−0.0881016 + 0.996111i \(0.528080\pi\)
\(968\) 3.92550e9 + 6.79916e9i 0.139101 + 0.240930i
\(969\) 0 0
\(970\) −8.74080e9 + 1.51395e10i −0.307504 + 0.532612i
\(971\) 3.33640e10 1.16953 0.584765 0.811203i \(-0.301187\pi\)
0.584765 + 0.811203i \(0.301187\pi\)
\(972\) 0 0
\(973\) −8.79431e9 −0.306060
\(974\) 1.13196e10 1.96061e10i 0.392531 0.679884i
\(975\) 0 0
\(976\) −1.16621e9 2.01994e9i −0.0401516 0.0695446i
\(977\) −1.39320e10 2.41309e10i −0.477950 0.827833i 0.521731 0.853110i \(-0.325287\pi\)
−0.999680 + 0.0252770i \(0.991953\pi\)
\(978\) 0 0
\(979\) −1.19473e8 + 2.06933e8i −0.00406939 + 0.00704839i
\(980\) 1.42957e10 0.485192
\(981\) 0 0
\(982\) 1.96673e10 0.662759
\(983\) −1.54698e10 + 2.67945e10i −0.519455 + 0.899722i 0.480290 + 0.877110i \(0.340532\pi\)
−0.999744 + 0.0226119i \(0.992802\pi\)
\(984\) 0 0
\(985\) −3.42165e9 5.92647e9i −0.114080 0.197592i
\(986\) 9.57261e8 + 1.65803e9i 0.0318025 + 0.0550836i
\(987\) 0 0
\(988\) −6.78949e8 + 1.17597e9i −0.0223969 + 0.0387925i
\(989\) 9.91799e9 0.326014
\(990\) 0 0
\(991\) −1.80515e10 −0.589192 −0.294596 0.955622i \(-0.595185\pi\)
−0.294596 + 0.955622i \(0.595185\pi\)
\(992\) −2.55648e9 + 4.42796e9i −0.0831480 + 0.144017i
\(993\) 0 0
\(994\) 1.61506e9 + 2.79737e9i 0.0521598 + 0.0903435i
\(995\) −2.13310e10 3.69465e10i −0.686485 1.18903i
\(996\) 0 0
\(997\) −1.31421e9 + 2.27627e9i −0.0419982 + 0.0727429i −0.886260 0.463187i \(-0.846706\pi\)
0.844262 + 0.535930i \(0.180039\pi\)
\(998\) −2.40483e10 −0.765823
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.q.55.4 8
3.2 odd 2 162.8.c.r.55.1 8
9.2 odd 6 162.8.a.g.1.4 4
9.4 even 3 inner 162.8.c.q.109.4 8
9.5 odd 6 162.8.c.r.109.1 8
9.7 even 3 162.8.a.j.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.4 4 9.2 odd 6
162.8.a.j.1.1 yes 4 9.7 even 3
162.8.c.q.55.4 8 1.1 even 1 trivial
162.8.c.q.109.4 8 9.4 even 3 inner
162.8.c.r.55.1 8 3.2 odd 2
162.8.c.r.109.1 8 9.5 odd 6