Properties

Label 162.9.f
Level $162$
Weight $9$
Character orbit 162.f
Rep. character $\chi_{162}(17,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $144$
Sturm bound $243$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.f (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(243\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(162, [\chi])\).

Total New Old
Modular forms 1332 144 1188
Cusp forms 1260 144 1116
Eisenstein series 72 0 72

Trace form

\( 144 q - 882 q^{5} + 45756 q^{11} - 94464 q^{14} + 225792 q^{20} + 185472 q^{22} - 552996 q^{23} - 1015182 q^{25} + 2856132 q^{29} - 1841490 q^{31} - 661248 q^{34} + 12450834 q^{35} - 14063616 q^{38} + 15673536 q^{41}+ \cdots + 234233856 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(162, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{9}^{\mathrm{old}}(162, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)