Properties

Label 1620.2.e.a.971.33
Level $1620$
Weight $2$
Character 1620.971
Analytic conductor $12.936$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(971,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.971");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 971.33
Character \(\chi\) \(=\) 1620.971
Dual form 1620.2.e.a.971.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.821961 - 1.15082i) q^{2} +(-0.648762 - 1.89185i) q^{4} +1.00000i q^{5} +1.74129i q^{7} +(-2.71043 - 0.808422i) q^{8} +(1.15082 + 0.821961i) q^{10} +1.35950 q^{11} -1.15926 q^{13} +(2.00391 + 1.43127i) q^{14} +(-3.15822 + 2.45472i) q^{16} +5.00950i q^{17} +5.40540i q^{19} +(1.89185 - 0.648762i) q^{20} +(1.11746 - 1.56454i) q^{22} +2.88925 q^{23} -1.00000 q^{25} +(-0.952868 + 1.33410i) q^{26} +(3.29426 - 1.12968i) q^{28} +3.97150i q^{29} -1.11895i q^{31} +(0.229010 + 5.65222i) q^{32} +(5.76502 + 4.11761i) q^{34} -1.74129 q^{35} -3.01838 q^{37} +(6.22063 + 4.44303i) q^{38} +(0.808422 - 2.71043i) q^{40} -9.26947i q^{41} +11.6746i q^{43} +(-0.881995 - 2.57198i) q^{44} +(2.37485 - 3.32500i) q^{46} +8.27157 q^{47} +3.96791 q^{49} +(-0.821961 + 1.15082i) q^{50} +(0.752085 + 2.19315i) q^{52} +4.96612i q^{53} +1.35950i q^{55} +(1.40770 - 4.71965i) q^{56} +(4.57047 + 3.26442i) q^{58} -3.49943 q^{59} -2.56067 q^{61} +(-1.28770 - 0.919731i) q^{62} +(6.69291 + 4.38235i) q^{64} -1.15926i q^{65} -5.64710i q^{67} +(9.47724 - 3.24997i) q^{68} +(-1.43127 + 2.00391i) q^{70} +13.9484 q^{71} -10.7264 q^{73} +(-2.48099 + 3.47361i) q^{74} +(10.2262 - 3.50682i) q^{76} +2.36729i q^{77} +11.0336i q^{79} +(-2.45472 - 3.15822i) q^{80} +(-10.6675 - 7.61914i) q^{82} +11.0896 q^{83} -5.00950 q^{85} +(13.4354 + 9.59610i) q^{86} +(-3.68485 - 1.09905i) q^{88} +9.36881i q^{89} -2.01861i q^{91} +(-1.87444 - 5.46604i) q^{92} +(6.79890 - 9.51906i) q^{94} -5.40540 q^{95} -13.2368 q^{97} +(3.26147 - 4.56634i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{16} - 24 q^{22} - 48 q^{25} + 24 q^{28} - 24 q^{34} - 24 q^{40} + 48 q^{46} - 48 q^{49} + 24 q^{58} + 24 q^{64} + 24 q^{76} + 24 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.821961 1.15082i 0.581214 0.813751i
\(3\) 0 0
\(4\) −0.648762 1.89185i −0.324381 0.945927i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.74129i 0.658145i 0.944305 + 0.329073i \(0.106736\pi\)
−0.944305 + 0.329073i \(0.893264\pi\)
\(8\) −2.71043 0.808422i −0.958283 0.285820i
\(9\) 0 0
\(10\) 1.15082 + 0.821961i 0.363920 + 0.259927i
\(11\) 1.35950 0.409906 0.204953 0.978772i \(-0.434296\pi\)
0.204953 + 0.978772i \(0.434296\pi\)
\(12\) 0 0
\(13\) −1.15926 −0.321522 −0.160761 0.986993i \(-0.551395\pi\)
−0.160761 + 0.986993i \(0.551395\pi\)
\(14\) 2.00391 + 1.43127i 0.535566 + 0.382523i
\(15\) 0 0
\(16\) −3.15822 + 2.45472i −0.789554 + 0.613681i
\(17\) 5.00950i 1.21498i 0.794326 + 0.607492i \(0.207824\pi\)
−0.794326 + 0.607492i \(0.792176\pi\)
\(18\) 0 0
\(19\) 5.40540i 1.24008i 0.784568 + 0.620042i \(0.212885\pi\)
−0.784568 + 0.620042i \(0.787115\pi\)
\(20\) 1.89185 0.648762i 0.423031 0.145068i
\(21\) 0 0
\(22\) 1.11746 1.56454i 0.238243 0.333561i
\(23\) 2.88925 0.602451 0.301226 0.953553i \(-0.402604\pi\)
0.301226 + 0.953553i \(0.402604\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −0.952868 + 1.33410i −0.186873 + 0.261638i
\(27\) 0 0
\(28\) 3.29426 1.12968i 0.622557 0.213490i
\(29\) 3.97150i 0.737489i 0.929531 + 0.368745i \(0.120212\pi\)
−0.929531 + 0.368745i \(0.879788\pi\)
\(30\) 0 0
\(31\) 1.11895i 0.200969i −0.994939 0.100485i \(-0.967961\pi\)
0.994939 0.100485i \(-0.0320393\pi\)
\(32\) 0.229010 + 5.65222i 0.0404837 + 0.999180i
\(33\) 0 0
\(34\) 5.76502 + 4.11761i 0.988693 + 0.706165i
\(35\) −1.74129 −0.294332
\(36\) 0 0
\(37\) −3.01838 −0.496219 −0.248110 0.968732i \(-0.579809\pi\)
−0.248110 + 0.968732i \(0.579809\pi\)
\(38\) 6.22063 + 4.44303i 1.00912 + 0.720754i
\(39\) 0 0
\(40\) 0.808422 2.71043i 0.127823 0.428557i
\(41\) 9.26947i 1.44765i −0.689985 0.723824i \(-0.742383\pi\)
0.689985 0.723824i \(-0.257617\pi\)
\(42\) 0 0
\(43\) 11.6746i 1.78037i 0.455603 + 0.890183i \(0.349424\pi\)
−0.455603 + 0.890183i \(0.650576\pi\)
\(44\) −0.881995 2.57198i −0.132966 0.387741i
\(45\) 0 0
\(46\) 2.37485 3.32500i 0.350153 0.490245i
\(47\) 8.27157 1.20653 0.603266 0.797540i \(-0.293866\pi\)
0.603266 + 0.797540i \(0.293866\pi\)
\(48\) 0 0
\(49\) 3.96791 0.566845
\(50\) −0.821961 + 1.15082i −0.116243 + 0.162750i
\(51\) 0 0
\(52\) 0.752085 + 2.19315i 0.104295 + 0.304136i
\(53\) 4.96612i 0.682150i 0.940036 + 0.341075i \(0.110791\pi\)
−0.940036 + 0.341075i \(0.889209\pi\)
\(54\) 0 0
\(55\) 1.35950i 0.183316i
\(56\) 1.40770 4.71965i 0.188111 0.630690i
\(57\) 0 0
\(58\) 4.57047 + 3.26442i 0.600132 + 0.428639i
\(59\) −3.49943 −0.455587 −0.227793 0.973709i \(-0.573151\pi\)
−0.227793 + 0.973709i \(0.573151\pi\)
\(60\) 0 0
\(61\) −2.56067 −0.327861 −0.163930 0.986472i \(-0.552417\pi\)
−0.163930 + 0.986472i \(0.552417\pi\)
\(62\) −1.28770 0.919731i −0.163539 0.116806i
\(63\) 0 0
\(64\) 6.69291 + 4.38235i 0.836613 + 0.547794i
\(65\) 1.15926i 0.143789i
\(66\) 0 0
\(67\) 5.64710i 0.689903i −0.938620 0.344952i \(-0.887895\pi\)
0.938620 0.344952i \(-0.112105\pi\)
\(68\) 9.47724 3.24997i 1.14928 0.394117i
\(69\) 0 0
\(70\) −1.43127 + 2.00391i −0.171070 + 0.239513i
\(71\) 13.9484 1.65537 0.827686 0.561191i \(-0.189657\pi\)
0.827686 + 0.561191i \(0.189657\pi\)
\(72\) 0 0
\(73\) −10.7264 −1.25543 −0.627716 0.778443i \(-0.716010\pi\)
−0.627716 + 0.778443i \(0.716010\pi\)
\(74\) −2.48099 + 3.47361i −0.288409 + 0.403799i
\(75\) 0 0
\(76\) 10.2262 3.50682i 1.17303 0.402260i
\(77\) 2.36729i 0.269778i
\(78\) 0 0
\(79\) 11.0336i 1.24137i 0.784058 + 0.620687i \(0.213146\pi\)
−0.784058 + 0.620687i \(0.786854\pi\)
\(80\) −2.45472 3.15822i −0.274446 0.353099i
\(81\) 0 0
\(82\) −10.6675 7.61914i −1.17802 0.841393i
\(83\) 11.0896 1.21724 0.608621 0.793461i \(-0.291723\pi\)
0.608621 + 0.793461i \(0.291723\pi\)
\(84\) 0 0
\(85\) −5.00950 −0.543357
\(86\) 13.4354 + 9.59610i 1.44877 + 1.03477i
\(87\) 0 0
\(88\) −3.68485 1.09905i −0.392806 0.117160i
\(89\) 9.36881i 0.993092i 0.868010 + 0.496546i \(0.165399\pi\)
−0.868010 + 0.496546i \(0.834601\pi\)
\(90\) 0 0
\(91\) 2.01861i 0.211608i
\(92\) −1.87444 5.46604i −0.195424 0.569875i
\(93\) 0 0
\(94\) 6.79890 9.51906i 0.701253 0.981816i
\(95\) −5.40540 −0.554583
\(96\) 0 0
\(97\) −13.2368 −1.34400 −0.671999 0.740552i \(-0.734564\pi\)
−0.671999 + 0.740552i \(0.734564\pi\)
\(98\) 3.26147 4.56634i 0.329458 0.461270i
\(99\) 0 0
\(100\) 0.648762 + 1.89185i 0.0648762 + 0.189185i
\(101\) 5.33510i 0.530862i −0.964130 0.265431i \(-0.914486\pi\)
0.964130 0.265431i \(-0.0855142\pi\)
\(102\) 0 0
\(103\) 14.9529i 1.47336i 0.676243 + 0.736679i \(0.263607\pi\)
−0.676243 + 0.736679i \(0.736393\pi\)
\(104\) 3.14210 + 0.937173i 0.308109 + 0.0918974i
\(105\) 0 0
\(106\) 5.71510 + 4.08196i 0.555100 + 0.396475i
\(107\) 15.7052 1.51827 0.759137 0.650931i \(-0.225621\pi\)
0.759137 + 0.650931i \(0.225621\pi\)
\(108\) 0 0
\(109\) 4.34742 0.416407 0.208204 0.978085i \(-0.433238\pi\)
0.208204 + 0.978085i \(0.433238\pi\)
\(110\) 1.56454 + 1.11746i 0.149173 + 0.106546i
\(111\) 0 0
\(112\) −4.27438 5.49937i −0.403891 0.519641i
\(113\) 10.6598i 1.00279i −0.865218 0.501396i \(-0.832820\pi\)
0.865218 0.501396i \(-0.167180\pi\)
\(114\) 0 0
\(115\) 2.88925i 0.269424i
\(116\) 7.51350 2.57656i 0.697611 0.239227i
\(117\) 0 0
\(118\) −2.87639 + 4.02720i −0.264793 + 0.370734i
\(119\) −8.72299 −0.799635
\(120\) 0 0
\(121\) −9.15175 −0.831977
\(122\) −2.10477 + 2.94687i −0.190557 + 0.266797i
\(123\) 0 0
\(124\) −2.11689 + 0.725931i −0.190102 + 0.0651905i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.04665i 0.359082i −0.983751 0.179541i \(-0.942539\pi\)
0.983751 0.179541i \(-0.0574612\pi\)
\(128\) 10.5446 4.10020i 0.932019 0.362410i
\(129\) 0 0
\(130\) −1.33410 0.952868i −0.117008 0.0835721i
\(131\) −2.11548 −0.184830 −0.0924152 0.995721i \(-0.529459\pi\)
−0.0924152 + 0.995721i \(0.529459\pi\)
\(132\) 0 0
\(133\) −9.41237 −0.816156
\(134\) −6.49878 4.64170i −0.561409 0.400981i
\(135\) 0 0
\(136\) 4.04979 13.5779i 0.347267 1.16430i
\(137\) 5.47699i 0.467930i −0.972245 0.233965i \(-0.924830\pi\)
0.972245 0.233965i \(-0.0751702\pi\)
\(138\) 0 0
\(139\) 22.0116i 1.86700i −0.358576 0.933500i \(-0.616738\pi\)
0.358576 0.933500i \(-0.383262\pi\)
\(140\) 1.12968 + 3.29426i 0.0954755 + 0.278416i
\(141\) 0 0
\(142\) 11.4650 16.0521i 0.962125 1.34706i
\(143\) −1.57602 −0.131794
\(144\) 0 0
\(145\) −3.97150 −0.329815
\(146\) −8.81669 + 12.3441i −0.729674 + 1.02161i
\(147\) 0 0
\(148\) 1.95821 + 5.71034i 0.160964 + 0.469387i
\(149\) 12.7425i 1.04390i −0.852975 0.521952i \(-0.825204\pi\)
0.852975 0.521952i \(-0.174796\pi\)
\(150\) 0 0
\(151\) 14.9159i 1.21383i −0.794765 0.606917i \(-0.792406\pi\)
0.794765 0.606917i \(-0.207594\pi\)
\(152\) 4.36985 14.6510i 0.354441 1.18835i
\(153\) 0 0
\(154\) 2.72432 + 1.94582i 0.219532 + 0.156799i
\(155\) 1.11895 0.0898761
\(156\) 0 0
\(157\) 0.158102 0.0126180 0.00630898 0.999980i \(-0.497992\pi\)
0.00630898 + 0.999980i \(0.497992\pi\)
\(158\) 12.6976 + 9.06916i 1.01017 + 0.721504i
\(159\) 0 0
\(160\) −5.65222 + 0.229010i −0.446847 + 0.0181049i
\(161\) 5.03103i 0.396500i
\(162\) 0 0
\(163\) 6.97722i 0.546498i −0.961943 0.273249i \(-0.911902\pi\)
0.961943 0.273249i \(-0.0880983\pi\)
\(164\) −17.5365 + 6.01368i −1.36937 + 0.469589i
\(165\) 0 0
\(166\) 9.11522 12.7621i 0.707478 0.990532i
\(167\) −8.41426 −0.651115 −0.325557 0.945522i \(-0.605552\pi\)
−0.325557 + 0.945522i \(0.605552\pi\)
\(168\) 0 0
\(169\) −11.6561 −0.896624
\(170\) −4.11761 + 5.76502i −0.315807 + 0.442157i
\(171\) 0 0
\(172\) 22.0867 7.57406i 1.68410 0.577517i
\(173\) 19.3782i 1.47330i 0.676275 + 0.736649i \(0.263593\pi\)
−0.676275 + 0.736649i \(0.736407\pi\)
\(174\) 0 0
\(175\) 1.74129i 0.131629i
\(176\) −4.29361 + 3.33721i −0.323643 + 0.251552i
\(177\) 0 0
\(178\) 10.7818 + 7.70079i 0.808130 + 0.577199i
\(179\) 10.0067 0.747935 0.373967 0.927442i \(-0.377997\pi\)
0.373967 + 0.927442i \(0.377997\pi\)
\(180\) 0 0
\(181\) −6.51340 −0.484137 −0.242069 0.970259i \(-0.577826\pi\)
−0.242069 + 0.970259i \(0.577826\pi\)
\(182\) −2.32305 1.65922i −0.172196 0.122989i
\(183\) 0 0
\(184\) −7.83113 2.33574i −0.577319 0.172193i
\(185\) 3.01838i 0.221916i
\(186\) 0 0
\(187\) 6.81044i 0.498029i
\(188\) −5.36628 15.6486i −0.391376 1.14129i
\(189\) 0 0
\(190\) −4.44303 + 6.22063i −0.322331 + 0.451292i
\(191\) −26.8190 −1.94055 −0.970277 0.241996i \(-0.922198\pi\)
−0.970277 + 0.241996i \(0.922198\pi\)
\(192\) 0 0
\(193\) 5.72474 0.412076 0.206038 0.978544i \(-0.433943\pi\)
0.206038 + 0.978544i \(0.433943\pi\)
\(194\) −10.8802 + 15.2332i −0.781150 + 1.09368i
\(195\) 0 0
\(196\) −2.57423 7.50671i −0.183874 0.536194i
\(197\) 15.0858i 1.07482i 0.843323 + 0.537408i \(0.180596\pi\)
−0.843323 + 0.537408i \(0.819404\pi\)
\(198\) 0 0
\(199\) 17.4336i 1.23584i 0.786242 + 0.617919i \(0.212024\pi\)
−0.786242 + 0.617919i \(0.787976\pi\)
\(200\) 2.71043 + 0.808422i 0.191657 + 0.0571641i
\(201\) 0 0
\(202\) −6.13972 4.38524i −0.431989 0.308544i
\(203\) −6.91553 −0.485375
\(204\) 0 0
\(205\) 9.26947 0.647408
\(206\) 17.2081 + 12.2907i 1.19895 + 0.856336i
\(207\) 0 0
\(208\) 3.66120 2.84567i 0.253859 0.197312i
\(209\) 7.34867i 0.508318i
\(210\) 0 0
\(211\) 17.5682i 1.20944i 0.796436 + 0.604722i \(0.206716\pi\)
−0.796436 + 0.604722i \(0.793284\pi\)
\(212\) 9.39518 3.22183i 0.645263 0.221276i
\(213\) 0 0
\(214\) 12.9090 18.0738i 0.882442 1.23550i
\(215\) −11.6746 −0.796204
\(216\) 0 0
\(217\) 1.94841 0.132267
\(218\) 3.57341 5.00309i 0.242022 0.338852i
\(219\) 0 0
\(220\) 2.57198 0.881995i 0.173403 0.0594641i
\(221\) 5.80733i 0.390643i
\(222\) 0 0
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) −9.84214 + 0.398773i −0.657606 + 0.0266442i
\(225\) 0 0
\(226\) −12.2675 8.76195i −0.816022 0.582836i
\(227\) −14.8726 −0.987131 −0.493565 0.869709i \(-0.664307\pi\)
−0.493565 + 0.869709i \(0.664307\pi\)
\(228\) 0 0
\(229\) −23.2055 −1.53346 −0.766731 0.641968i \(-0.778118\pi\)
−0.766731 + 0.641968i \(0.778118\pi\)
\(230\) 3.32500 + 2.37485i 0.219244 + 0.156593i
\(231\) 0 0
\(232\) 3.21065 10.7645i 0.210789 0.706724i
\(233\) 10.4597i 0.685237i −0.939475 0.342619i \(-0.888686\pi\)
0.939475 0.342619i \(-0.111314\pi\)
\(234\) 0 0
\(235\) 8.27157i 0.539577i
\(236\) 2.27030 + 6.62041i 0.147784 + 0.430952i
\(237\) 0 0
\(238\) −7.16995 + 10.0386i −0.464759 + 0.650704i
\(239\) −4.27838 −0.276745 −0.138373 0.990380i \(-0.544187\pi\)
−0.138373 + 0.990380i \(0.544187\pi\)
\(240\) 0 0
\(241\) 27.2579 1.75583 0.877917 0.478812i \(-0.158932\pi\)
0.877917 + 0.478812i \(0.158932\pi\)
\(242\) −7.52237 + 10.5320i −0.483557 + 0.677022i
\(243\) 0 0
\(244\) 1.66127 + 4.84442i 0.106352 + 0.310132i
\(245\) 3.96791i 0.253501i
\(246\) 0 0
\(247\) 6.26628i 0.398714i
\(248\) −0.904582 + 3.03284i −0.0574410 + 0.192585i
\(249\) 0 0
\(250\) −1.15082 0.821961i −0.0727841 0.0519853i
\(251\) 14.5359 0.917500 0.458750 0.888565i \(-0.348297\pi\)
0.458750 + 0.888565i \(0.348297\pi\)
\(252\) 0 0
\(253\) 3.92795 0.246948
\(254\) −4.65695 3.32618i −0.292203 0.208703i
\(255\) 0 0
\(256\) 3.94866 15.5051i 0.246791 0.969069i
\(257\) 7.12993i 0.444753i −0.974961 0.222376i \(-0.928619\pi\)
0.974961 0.222376i \(-0.0713814\pi\)
\(258\) 0 0
\(259\) 5.25588i 0.326584i
\(260\) −2.19315 + 0.752085i −0.136014 + 0.0466423i
\(261\) 0 0
\(262\) −1.73884 + 2.43453i −0.107426 + 0.150406i
\(263\) 21.5707 1.33011 0.665054 0.746795i \(-0.268408\pi\)
0.665054 + 0.746795i \(0.268408\pi\)
\(264\) 0 0
\(265\) −4.96612 −0.305067
\(266\) −7.73660 + 10.8319i −0.474361 + 0.664148i
\(267\) 0 0
\(268\) −10.6835 + 3.66362i −0.652598 + 0.223791i
\(269\) 9.13678i 0.557079i 0.960425 + 0.278540i \(0.0898504\pi\)
−0.960425 + 0.278540i \(0.910150\pi\)
\(270\) 0 0
\(271\) 9.94313i 0.604002i −0.953308 0.302001i \(-0.902345\pi\)
0.953308 0.302001i \(-0.0976547\pi\)
\(272\) −12.2969 15.8211i −0.745612 0.959295i
\(273\) 0 0
\(274\) −6.30301 4.50187i −0.380779 0.271968i
\(275\) −1.35950 −0.0819812
\(276\) 0 0
\(277\) −21.6281 −1.29951 −0.649754 0.760145i \(-0.725128\pi\)
−0.649754 + 0.760145i \(0.725128\pi\)
\(278\) −25.3314 18.0927i −1.51927 1.08513i
\(279\) 0 0
\(280\) 4.71965 + 1.40770i 0.282053 + 0.0841259i
\(281\) 23.3650i 1.39384i −0.717151 0.696918i \(-0.754554\pi\)
0.717151 0.696918i \(-0.245446\pi\)
\(282\) 0 0
\(283\) 29.6975i 1.76533i 0.470001 + 0.882666i \(0.344254\pi\)
−0.470001 + 0.882666i \(0.655746\pi\)
\(284\) −9.04920 26.3884i −0.536971 1.56586i
\(285\) 0 0
\(286\) −1.29543 + 1.81371i −0.0766003 + 0.107247i
\(287\) 16.1408 0.952762
\(288\) 0 0
\(289\) −8.09512 −0.476184
\(290\) −3.26442 + 4.57047i −0.191693 + 0.268387i
\(291\) 0 0
\(292\) 6.95888 + 20.2928i 0.407238 + 1.18755i
\(293\) 4.44017i 0.259397i 0.991553 + 0.129699i \(0.0414010\pi\)
−0.991553 + 0.129699i \(0.958599\pi\)
\(294\) 0 0
\(295\) 3.49943i 0.203745i
\(296\) 8.18113 + 2.44013i 0.475518 + 0.141830i
\(297\) 0 0
\(298\) −14.6643 10.4738i −0.849477 0.606731i
\(299\) −3.34940 −0.193701
\(300\) 0 0
\(301\) −20.3289 −1.17174
\(302\) −17.1654 12.2602i −0.987759 0.705498i
\(303\) 0 0
\(304\) −13.2688 17.0714i −0.761016 0.979114i
\(305\) 2.56067i 0.146624i
\(306\) 0 0
\(307\) 4.96065i 0.283119i 0.989930 + 0.141560i \(0.0452117\pi\)
−0.989930 + 0.141560i \(0.954788\pi\)
\(308\) 4.47857 1.53581i 0.255190 0.0875108i
\(309\) 0 0
\(310\) 0.919731 1.28770i 0.0522372 0.0731367i
\(311\) −22.9852 −1.30337 −0.651685 0.758489i \(-0.725938\pi\)
−0.651685 + 0.758489i \(0.725938\pi\)
\(312\) 0 0
\(313\) 5.60425 0.316771 0.158385 0.987377i \(-0.449371\pi\)
0.158385 + 0.987377i \(0.449371\pi\)
\(314\) 0.129954 0.181947i 0.00733373 0.0102679i
\(315\) 0 0
\(316\) 20.8739 7.15816i 1.17425 0.402678i
\(317\) 18.7505i 1.05313i 0.850134 + 0.526567i \(0.176521\pi\)
−0.850134 + 0.526567i \(0.823479\pi\)
\(318\) 0 0
\(319\) 5.39927i 0.302301i
\(320\) −4.38235 + 6.69291i −0.244981 + 0.374145i
\(321\) 0 0
\(322\) 5.78979 + 4.13530i 0.322653 + 0.230452i
\(323\) −27.0784 −1.50668
\(324\) 0 0
\(325\) 1.15926 0.0643043
\(326\) −8.02951 5.73500i −0.444713 0.317632i
\(327\) 0 0
\(328\) −7.49364 + 25.1243i −0.413767 + 1.38726i
\(329\) 14.4032i 0.794073i
\(330\) 0 0
\(331\) 29.6495i 1.62969i −0.579681 0.814843i \(-0.696823\pi\)
0.579681 0.814843i \(-0.303177\pi\)
\(332\) −7.19451 20.9799i −0.394850 1.15142i
\(333\) 0 0
\(334\) −6.91619 + 9.68328i −0.378437 + 0.529845i
\(335\) 5.64710 0.308534
\(336\) 0 0
\(337\) 33.8222 1.84241 0.921207 0.389073i \(-0.127205\pi\)
0.921207 + 0.389073i \(0.127205\pi\)
\(338\) −9.58086 + 13.4141i −0.521130 + 0.729628i
\(339\) 0 0
\(340\) 3.24997 + 9.47724i 0.176255 + 0.513976i
\(341\) 1.52122i 0.0823784i
\(342\) 0 0
\(343\) 19.0983i 1.03121i
\(344\) 9.43804 31.6434i 0.508865 1.70610i
\(345\) 0 0
\(346\) 22.3008 + 15.9281i 1.19890 + 0.856301i
\(347\) 22.9318 1.23104 0.615521 0.788120i \(-0.288945\pi\)
0.615521 + 0.788120i \(0.288945\pi\)
\(348\) 0 0
\(349\) −2.20201 −0.117871 −0.0589355 0.998262i \(-0.518771\pi\)
−0.0589355 + 0.998262i \(0.518771\pi\)
\(350\) −2.00391 1.43127i −0.107113 0.0765046i
\(351\) 0 0
\(352\) 0.311341 + 7.68422i 0.0165945 + 0.409570i
\(353\) 22.0545i 1.17384i −0.809645 0.586920i \(-0.800340\pi\)
0.809645 0.586920i \(-0.199660\pi\)
\(354\) 0 0
\(355\) 13.9484i 0.740305i
\(356\) 17.7244 6.07813i 0.939392 0.322140i
\(357\) 0 0
\(358\) 8.22510 11.5159i 0.434710 0.608633i
\(359\) −19.8808 −1.04927 −0.524633 0.851328i \(-0.675798\pi\)
−0.524633 + 0.851328i \(0.675798\pi\)
\(360\) 0 0
\(361\) −10.2184 −0.537810
\(362\) −5.35376 + 7.49573i −0.281387 + 0.393967i
\(363\) 0 0
\(364\) −3.81891 + 1.30960i −0.200166 + 0.0686416i
\(365\) 10.7264i 0.561446i
\(366\) 0 0
\(367\) 6.76071i 0.352906i −0.984309 0.176453i \(-0.943538\pi\)
0.984309 0.176453i \(-0.0564624\pi\)
\(368\) −9.12489 + 7.09232i −0.475668 + 0.369713i
\(369\) 0 0
\(370\) −3.47361 2.48099i −0.180584 0.128981i
\(371\) −8.64746 −0.448954
\(372\) 0 0
\(373\) −13.3772 −0.692646 −0.346323 0.938115i \(-0.612570\pi\)
−0.346323 + 0.938115i \(0.612570\pi\)
\(374\) 7.83758 + 5.59792i 0.405271 + 0.289461i
\(375\) 0 0
\(376\) −22.4195 6.68692i −1.15620 0.344851i
\(377\) 4.60401i 0.237119i
\(378\) 0 0
\(379\) 15.3512i 0.788537i −0.918995 0.394269i \(-0.870998\pi\)
0.918995 0.394269i \(-0.129002\pi\)
\(380\) 3.50682 + 10.2262i 0.179896 + 0.524595i
\(381\) 0 0
\(382\) −22.0442 + 30.8638i −1.12788 + 1.57913i
\(383\) 11.4736 0.586275 0.293137 0.956070i \(-0.405301\pi\)
0.293137 + 0.956070i \(0.405301\pi\)
\(384\) 0 0
\(385\) −2.36729 −0.120648
\(386\) 4.70551 6.58813i 0.239504 0.335327i
\(387\) 0 0
\(388\) 8.58755 + 25.0422i 0.435967 + 1.27132i
\(389\) 9.76634i 0.495173i −0.968866 0.247587i \(-0.920363\pi\)
0.968866 0.247587i \(-0.0796375\pi\)
\(390\) 0 0
\(391\) 14.4737i 0.731968i
\(392\) −10.7548 3.20775i −0.543198 0.162016i
\(393\) 0 0
\(394\) 17.3609 + 12.3999i 0.874632 + 0.624698i
\(395\) −11.0336 −0.555159
\(396\) 0 0
\(397\) 4.14351 0.207957 0.103978 0.994580i \(-0.466843\pi\)
0.103978 + 0.994580i \(0.466843\pi\)
\(398\) 20.0629 + 14.3298i 1.00566 + 0.718286i
\(399\) 0 0
\(400\) 3.15822 2.45472i 0.157911 0.122736i
\(401\) 25.9587i 1.29632i −0.761506 0.648158i \(-0.775540\pi\)
0.761506 0.648158i \(-0.224460\pi\)
\(402\) 0 0
\(403\) 1.29715i 0.0646159i
\(404\) −10.0932 + 3.46121i −0.502156 + 0.172201i
\(405\) 0 0
\(406\) −5.68429 + 7.95851i −0.282107 + 0.394974i
\(407\) −4.10351 −0.203403
\(408\) 0 0
\(409\) 36.7101 1.81520 0.907600 0.419836i \(-0.137912\pi\)
0.907600 + 0.419836i \(0.137912\pi\)
\(410\) 7.61914 10.6675i 0.376282 0.526829i
\(411\) 0 0
\(412\) 28.2888 9.70090i 1.39369 0.477929i
\(413\) 6.09352i 0.299842i
\(414\) 0 0
\(415\) 11.0896i 0.544367i
\(416\) −0.265483 6.55240i −0.0130164 0.321258i
\(417\) 0 0
\(418\) 8.45698 + 6.04032i 0.413644 + 0.295442i
\(419\) −23.1443 −1.13067 −0.565336 0.824861i \(-0.691253\pi\)
−0.565336 + 0.824861i \(0.691253\pi\)
\(420\) 0 0
\(421\) 38.3585 1.86948 0.934739 0.355336i \(-0.115633\pi\)
0.934739 + 0.355336i \(0.115633\pi\)
\(422\) 20.2178 + 14.4404i 0.984187 + 0.702946i
\(423\) 0 0
\(424\) 4.01472 13.4604i 0.194972 0.653693i
\(425\) 5.00950i 0.242997i
\(426\) 0 0
\(427\) 4.45887i 0.215780i
\(428\) −10.1889 29.7118i −0.492499 1.43618i
\(429\) 0 0
\(430\) −9.59610 + 13.4354i −0.462765 + 0.647912i
\(431\) −25.1032 −1.20918 −0.604589 0.796538i \(-0.706662\pi\)
−0.604589 + 0.796538i \(0.706662\pi\)
\(432\) 0 0
\(433\) −14.2379 −0.684229 −0.342115 0.939658i \(-0.611143\pi\)
−0.342115 + 0.939658i \(0.611143\pi\)
\(434\) 1.60152 2.24227i 0.0768753 0.107632i
\(435\) 0 0
\(436\) −2.82044 8.22468i −0.135075 0.393891i
\(437\) 15.6176i 0.747090i
\(438\) 0 0
\(439\) 9.40530i 0.448890i −0.974487 0.224445i \(-0.927943\pi\)
0.974487 0.224445i \(-0.0720570\pi\)
\(440\) 1.09905 3.68485i 0.0523953 0.175668i
\(441\) 0 0
\(442\) −6.68318 4.77340i −0.317886 0.227047i
\(443\) 33.9700 1.61396 0.806981 0.590577i \(-0.201100\pi\)
0.806981 + 0.590577i \(0.201100\pi\)
\(444\) 0 0
\(445\) −9.36881 −0.444124
\(446\) 4.60327 + 3.28784i 0.217971 + 0.155684i
\(447\) 0 0
\(448\) −7.63094 + 11.6543i −0.360528 + 0.550613i
\(449\) 2.34426i 0.110632i 0.998469 + 0.0553161i \(0.0176167\pi\)
−0.998469 + 0.0553161i \(0.982383\pi\)
\(450\) 0 0
\(451\) 12.6019i 0.593400i
\(452\) −20.1668 + 6.91568i −0.948567 + 0.325286i
\(453\) 0 0
\(454\) −12.2247 + 17.1157i −0.573734 + 0.803279i
\(455\) 2.01861 0.0946339
\(456\) 0 0
\(457\) 20.3496 0.951912 0.475956 0.879469i \(-0.342102\pi\)
0.475956 + 0.879469i \(0.342102\pi\)
\(458\) −19.0740 + 26.7053i −0.891270 + 1.24786i
\(459\) 0 0
\(460\) 5.46604 1.87444i 0.254856 0.0873961i
\(461\) 15.8303i 0.737290i −0.929570 0.368645i \(-0.879822\pi\)
0.929570 0.368645i \(-0.120178\pi\)
\(462\) 0 0
\(463\) 5.75697i 0.267549i −0.991012 0.133775i \(-0.957290\pi\)
0.991012 0.133775i \(-0.0427098\pi\)
\(464\) −9.74894 12.5429i −0.452583 0.582288i
\(465\) 0 0
\(466\) −12.0372 8.59745i −0.557612 0.398269i
\(467\) −13.5706 −0.627973 −0.313987 0.949427i \(-0.601665\pi\)
−0.313987 + 0.949427i \(0.601665\pi\)
\(468\) 0 0
\(469\) 9.83324 0.454057
\(470\) 9.51906 + 6.79890i 0.439082 + 0.313610i
\(471\) 0 0
\(472\) 9.48497 + 2.82902i 0.436581 + 0.130216i
\(473\) 15.8717i 0.729783i
\(474\) 0 0
\(475\) 5.40540i 0.248017i
\(476\) 5.65914 + 16.5026i 0.259386 + 0.756396i
\(477\) 0 0
\(478\) −3.51666 + 4.92363i −0.160848 + 0.225202i
\(479\) 14.2028 0.648941 0.324471 0.945896i \(-0.394814\pi\)
0.324471 + 0.945896i \(0.394814\pi\)
\(480\) 0 0
\(481\) 3.49910 0.159545
\(482\) 22.4049 31.3689i 1.02052 1.42881i
\(483\) 0 0
\(484\) 5.93730 + 17.3138i 0.269877 + 0.786989i
\(485\) 13.2368i 0.601054i
\(486\) 0 0
\(487\) 25.3676i 1.14952i −0.818323 0.574759i \(-0.805096\pi\)
0.818323 0.574759i \(-0.194904\pi\)
\(488\) 6.94054 + 2.07011i 0.314183 + 0.0937093i
\(489\) 0 0
\(490\) 4.56634 + 3.26147i 0.206286 + 0.147338i
\(491\) −3.69314 −0.166669 −0.0833346 0.996522i \(-0.526557\pi\)
−0.0833346 + 0.996522i \(0.526557\pi\)
\(492\) 0 0
\(493\) −19.8952 −0.896037
\(494\) −7.21135 5.15064i −0.324454 0.231738i
\(495\) 0 0
\(496\) 2.74671 + 3.53388i 0.123331 + 0.158676i
\(497\) 24.2882i 1.08948i
\(498\) 0 0
\(499\) 2.10274i 0.0941315i 0.998892 + 0.0470658i \(0.0149870\pi\)
−0.998892 + 0.0470658i \(0.985013\pi\)
\(500\) −1.89185 + 0.648762i −0.0846062 + 0.0290135i
\(501\) 0 0
\(502\) 11.9480 16.7282i 0.533264 0.746616i
\(503\) −10.1166 −0.451079 −0.225539 0.974234i \(-0.572414\pi\)
−0.225539 + 0.974234i \(0.572414\pi\)
\(504\) 0 0
\(505\) 5.33510 0.237409
\(506\) 3.22862 4.52036i 0.143530 0.200954i
\(507\) 0 0
\(508\) −7.65566 + 2.62531i −0.339665 + 0.116479i
\(509\) 39.8463i 1.76616i 0.469225 + 0.883079i \(0.344533\pi\)
−0.469225 + 0.883079i \(0.655467\pi\)
\(510\) 0 0
\(511\) 18.6778i 0.826256i
\(512\) −14.5979 17.2888i −0.645142 0.764063i
\(513\) 0 0
\(514\) −8.20525 5.86052i −0.361918 0.258497i
\(515\) −14.9529 −0.658906
\(516\) 0 0
\(517\) 11.2452 0.494565
\(518\) −6.04855 4.32012i −0.265758 0.189815i
\(519\) 0 0
\(520\) −0.937173 + 3.14210i −0.0410978 + 0.137790i
\(521\) 37.2574i 1.63227i −0.577858 0.816137i \(-0.696111\pi\)
0.577858 0.816137i \(-0.303889\pi\)
\(522\) 0 0
\(523\) 33.5724i 1.46802i 0.679140 + 0.734008i \(0.262353\pi\)
−0.679140 + 0.734008i \(0.737647\pi\)
\(524\) 1.37244 + 4.00218i 0.0599555 + 0.174836i
\(525\) 0 0
\(526\) 17.7303 24.8240i 0.773078 1.08238i
\(527\) 5.60537 0.244174
\(528\) 0 0
\(529\) −14.6522 −0.637053
\(530\) −4.08196 + 5.71510i −0.177309 + 0.248248i
\(531\) 0 0
\(532\) 6.10639 + 17.8068i 0.264745 + 0.772023i
\(533\) 10.7457i 0.465450i
\(534\) 0 0
\(535\) 15.7052i 0.678993i
\(536\) −4.56524 + 15.3061i −0.197188 + 0.661123i
\(537\) 0 0
\(538\) 10.5148 + 7.51007i 0.453324 + 0.323782i
\(539\) 5.39440 0.232353
\(540\) 0 0
\(541\) 45.6679 1.96342 0.981709 0.190387i \(-0.0609744\pi\)
0.981709 + 0.190387i \(0.0609744\pi\)
\(542\) −11.4427 8.17286i −0.491507 0.351055i
\(543\) 0 0
\(544\) −28.3148 + 1.14723i −1.21399 + 0.0491870i
\(545\) 4.34742i 0.186223i
\(546\) 0 0
\(547\) 32.0547i 1.37056i 0.728279 + 0.685281i \(0.240321\pi\)
−0.728279 + 0.685281i \(0.759679\pi\)
\(548\) −10.3617 + 3.55326i −0.442628 + 0.151788i
\(549\) 0 0
\(550\) −1.11746 + 1.56454i −0.0476486 + 0.0667123i
\(551\) −21.4676 −0.914549
\(552\) 0 0
\(553\) −19.2126 −0.817004
\(554\) −17.7775 + 24.8900i −0.755292 + 1.05748i
\(555\) 0 0
\(556\) −41.6427 + 14.2803i −1.76605 + 0.605619i
\(557\) 26.7136i 1.13189i 0.824442 + 0.565946i \(0.191489\pi\)
−0.824442 + 0.565946i \(0.808511\pi\)
\(558\) 0 0
\(559\) 13.5340i 0.572426i
\(560\) 5.49937 4.27438i 0.232391 0.180626i
\(561\) 0 0
\(562\) −26.8888 19.2051i −1.13424 0.810117i
\(563\) 19.1364 0.806504 0.403252 0.915089i \(-0.367880\pi\)
0.403252 + 0.915089i \(0.367880\pi\)
\(564\) 0 0
\(565\) 10.6598 0.448462
\(566\) 34.1764 + 24.4102i 1.43654 + 1.02604i
\(567\) 0 0
\(568\) −37.8063 11.2762i −1.58632 0.473139i
\(569\) 5.57968i 0.233912i −0.993137 0.116956i \(-0.962686\pi\)
0.993137 0.116956i \(-0.0373137\pi\)
\(570\) 0 0
\(571\) 19.1782i 0.802582i −0.915951 0.401291i \(-0.868562\pi\)
0.915951 0.401291i \(-0.131438\pi\)
\(572\) 1.02246 + 2.98160i 0.0427513 + 0.124667i
\(573\) 0 0
\(574\) 13.2671 18.5751i 0.553759 0.775311i
\(575\) −2.88925 −0.120490
\(576\) 0 0
\(577\) 3.36261 0.139987 0.0699935 0.997547i \(-0.477702\pi\)
0.0699935 + 0.997547i \(0.477702\pi\)
\(578\) −6.65387 + 9.31601i −0.276765 + 0.387495i
\(579\) 0 0
\(580\) 2.57656 + 7.51350i 0.106986 + 0.311981i
\(581\) 19.3102i 0.801122i
\(582\) 0 0
\(583\) 6.75147i 0.279617i
\(584\) 29.0732 + 8.67147i 1.20306 + 0.358828i
\(585\) 0 0
\(586\) 5.10982 + 3.64964i 0.211085 + 0.150765i
\(587\) 3.50152 0.144523 0.0722616 0.997386i \(-0.476978\pi\)
0.0722616 + 0.997386i \(0.476978\pi\)
\(588\) 0 0
\(589\) 6.04837 0.249219
\(590\) −4.02720 2.87639i −0.165797 0.118419i
\(591\) 0 0
\(592\) 9.53271 7.40930i 0.391792 0.304520i
\(593\) 17.5704i 0.721528i −0.932657 0.360764i \(-0.882516\pi\)
0.932657 0.360764i \(-0.117484\pi\)
\(594\) 0 0
\(595\) 8.72299i 0.357608i
\(596\) −24.1069 + 8.26683i −0.987456 + 0.338622i
\(597\) 0 0
\(598\) −2.75308 + 3.85455i −0.112582 + 0.157624i
\(599\) 38.6768 1.58029 0.790146 0.612919i \(-0.210005\pi\)
0.790146 + 0.612919i \(0.210005\pi\)
\(600\) 0 0
\(601\) 21.4186 0.873685 0.436842 0.899538i \(-0.356097\pi\)
0.436842 + 0.899538i \(0.356097\pi\)
\(602\) −16.7096 + 23.3949i −0.681031 + 0.953504i
\(603\) 0 0
\(604\) −28.2186 + 9.67684i −1.14820 + 0.393745i
\(605\) 9.15175i 0.372071i
\(606\) 0 0
\(607\) 30.3914i 1.23355i −0.787140 0.616775i \(-0.788439\pi\)
0.787140 0.616775i \(-0.211561\pi\)
\(608\) −30.5525 + 1.23789i −1.23907 + 0.0502032i
\(609\) 0 0
\(610\) −2.94687 2.10477i −0.119315 0.0852198i
\(611\) −9.58892 −0.387926
\(612\) 0 0
\(613\) 22.5432 0.910513 0.455256 0.890360i \(-0.349548\pi\)
0.455256 + 0.890360i \(0.349548\pi\)
\(614\) 5.70880 + 4.07746i 0.230388 + 0.164553i
\(615\) 0 0
\(616\) 1.91377 6.41638i 0.0771080 0.258523i
\(617\) 16.1234i 0.649105i 0.945868 + 0.324552i \(0.105214\pi\)
−0.945868 + 0.324552i \(0.894786\pi\)
\(618\) 0 0
\(619\) 0.140171i 0.00563395i −0.999996 0.00281697i \(-0.999103\pi\)
0.999996 0.00281697i \(-0.000896672\pi\)
\(620\) −0.725931 2.11689i −0.0291541 0.0850162i
\(621\) 0 0
\(622\) −18.8929 + 26.4518i −0.757537 + 1.06062i
\(623\) −16.3138 −0.653599
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 4.60647 6.44947i 0.184112 0.257773i
\(627\) 0 0
\(628\) −0.102571 0.299107i −0.00409302 0.0119357i
\(629\) 15.1206i 0.602898i
\(630\) 0 0
\(631\) 15.6203i 0.621833i −0.950437 0.310917i \(-0.899364\pi\)
0.950437 0.310917i \(-0.100636\pi\)
\(632\) 8.91978 29.9058i 0.354810 1.18959i
\(633\) 0 0
\(634\) 21.5784 + 15.4122i 0.856988 + 0.612096i
\(635\) 4.04665 0.160586
\(636\) 0 0
\(637\) −4.59985 −0.182253
\(638\) 6.21358 + 4.43799i 0.245998 + 0.175702i
\(639\) 0 0
\(640\) 4.10020 + 10.5446i 0.162074 + 0.416812i
\(641\) 8.17846i 0.323030i −0.986870 0.161515i \(-0.948362\pi\)
0.986870 0.161515i \(-0.0516380\pi\)
\(642\) 0 0
\(643\) 29.6547i 1.16947i −0.811226 0.584733i \(-0.801199\pi\)
0.811226 0.584733i \(-0.198801\pi\)
\(644\) 9.51796 3.26394i 0.375060 0.128617i
\(645\) 0 0
\(646\) −22.2574 + 31.1623i −0.875704 + 1.22606i
\(647\) 18.4489 0.725299 0.362650 0.931926i \(-0.381872\pi\)
0.362650 + 0.931926i \(0.381872\pi\)
\(648\) 0 0
\(649\) −4.75749 −0.186748
\(650\) 0.952868 1.33410i 0.0373746 0.0523277i
\(651\) 0 0
\(652\) −13.1999 + 4.52655i −0.516947 + 0.177274i
\(653\) 5.25538i 0.205659i 0.994699 + 0.102829i \(0.0327896\pi\)
−0.994699 + 0.102829i \(0.967210\pi\)
\(654\) 0 0
\(655\) 2.11548i 0.0826587i
\(656\) 22.7540 + 29.2750i 0.888394 + 1.14300i
\(657\) 0 0
\(658\) 16.5754 + 11.8388i 0.646178 + 0.461526i
\(659\) 5.12900 0.199798 0.0998988 0.994998i \(-0.468148\pi\)
0.0998988 + 0.994998i \(0.468148\pi\)
\(660\) 0 0
\(661\) −51.0402 −1.98523 −0.992617 0.121288i \(-0.961297\pi\)
−0.992617 + 0.121288i \(0.961297\pi\)
\(662\) −34.1212 24.3708i −1.32616 0.947196i
\(663\) 0 0
\(664\) −30.0576 8.96508i −1.16646 0.347913i
\(665\) 9.41237i 0.364996i
\(666\) 0 0
\(667\) 11.4747i 0.444301i
\(668\) 5.45885 + 15.9185i 0.211209 + 0.615907i
\(669\) 0 0
\(670\) 4.64170 6.49878i 0.179324 0.251070i
\(671\) −3.48125 −0.134392
\(672\) 0 0
\(673\) −21.5381 −0.830232 −0.415116 0.909769i \(-0.636259\pi\)
−0.415116 + 0.909769i \(0.636259\pi\)
\(674\) 27.8005 38.9232i 1.07084 1.49927i
\(675\) 0 0
\(676\) 7.56204 + 22.0516i 0.290848 + 0.848140i
\(677\) 13.6880i 0.526071i 0.964786 + 0.263036i \(0.0847237\pi\)
−0.964786 + 0.263036i \(0.915276\pi\)
\(678\) 0 0
\(679\) 23.0492i 0.884545i
\(680\) 13.5779 + 4.04979i 0.520690 + 0.155302i
\(681\) 0 0
\(682\) −1.75064 1.25038i −0.0670355 0.0478795i
\(683\) −35.3198 −1.35148 −0.675738 0.737142i \(-0.736175\pi\)
−0.675738 + 0.737142i \(0.736175\pi\)
\(684\) 0 0
\(685\) 5.47699 0.209265
\(686\) 21.9787 + 15.6981i 0.839149 + 0.599354i
\(687\) 0 0
\(688\) −28.6580 36.8710i −1.09258 1.40570i
\(689\) 5.75704i 0.219326i
\(690\) 0 0
\(691\) 27.6204i 1.05073i −0.850877 0.525365i \(-0.823929\pi\)
0.850877 0.525365i \(-0.176071\pi\)
\(692\) 36.6607 12.5718i 1.39363 0.477910i
\(693\) 0 0
\(694\) 18.8490 26.3903i 0.715499 1.00176i
\(695\) 22.0116 0.834948
\(696\) 0 0
\(697\) 46.4354 1.75887
\(698\) −1.80997 + 2.53412i −0.0685083 + 0.0959177i
\(699\) 0 0
\(700\) −3.29426 + 1.12968i −0.124511 + 0.0426980i
\(701\) 10.3877i 0.392338i −0.980570 0.196169i \(-0.937150\pi\)
0.980570 0.196169i \(-0.0628501\pi\)
\(702\) 0 0
\(703\) 16.3156i 0.615354i
\(704\) 9.09904 + 5.95783i 0.342933 + 0.224544i
\(705\) 0 0
\(706\) −25.3807 18.1279i −0.955214 0.682252i
\(707\) 9.28994 0.349384
\(708\) 0 0
\(709\) 9.35085 0.351179 0.175589 0.984464i \(-0.443817\pi\)
0.175589 + 0.984464i \(0.443817\pi\)
\(710\) 16.0521 + 11.4650i 0.602424 + 0.430276i
\(711\) 0 0
\(712\) 7.57396 25.3936i 0.283846 0.951664i
\(713\) 3.23293i 0.121074i
\(714\) 0 0
\(715\) 1.57602i 0.0589399i
\(716\) −6.49196 18.9312i −0.242616 0.707492i
\(717\) 0 0
\(718\) −16.3412 + 22.8791i −0.609849 + 0.853842i
\(719\) 39.1679 1.46072 0.730358 0.683064i \(-0.239353\pi\)
0.730358 + 0.683064i \(0.239353\pi\)
\(720\) 0 0
\(721\) −26.0374 −0.969683
\(722\) −8.39911 + 11.7595i −0.312583 + 0.437643i
\(723\) 0 0
\(724\) 4.22564 + 12.3224i 0.157045 + 0.457958i
\(725\) 3.97150i 0.147498i
\(726\) 0 0
\(727\) 20.9691i 0.777700i 0.921301 + 0.388850i \(0.127128\pi\)
−0.921301 + 0.388850i \(0.872872\pi\)
\(728\) −1.63189 + 5.47131i −0.0604818 + 0.202780i
\(729\) 0 0
\(730\) −12.3441 8.81669i −0.456877 0.326320i
\(731\) −58.4842 −2.16311
\(732\) 0 0
\(733\) 52.1208 1.92513 0.962564 0.271055i \(-0.0873727\pi\)
0.962564 + 0.271055i \(0.0873727\pi\)
\(734\) −7.78035 5.55704i −0.287178 0.205114i
\(735\) 0 0
\(736\) 0.661669 + 16.3307i 0.0243894 + 0.601957i
\(737\) 7.67726i 0.282796i
\(738\) 0 0
\(739\) 26.2861i 0.966950i −0.875358 0.483475i \(-0.839374\pi\)
0.875358 0.483475i \(-0.160626\pi\)
\(740\) −5.71034 + 1.95821i −0.209916 + 0.0719853i
\(741\) 0 0
\(742\) −7.10787 + 9.95164i −0.260938 + 0.365336i
\(743\) −2.21190 −0.0811466 −0.0405733 0.999177i \(-0.512918\pi\)
−0.0405733 + 0.999177i \(0.512918\pi\)
\(744\) 0 0
\(745\) 12.7425 0.466848
\(746\) −10.9955 + 15.3947i −0.402575 + 0.563641i
\(747\) 0 0
\(748\) 12.8844 4.41836i 0.471099 0.161551i
\(749\) 27.3472i 0.999245i
\(750\) 0 0
\(751\) 6.63335i 0.242054i −0.992649 0.121027i \(-0.961381\pi\)
0.992649 0.121027i \(-0.0386188\pi\)
\(752\) −26.1234 + 20.3044i −0.952622 + 0.740426i
\(753\) 0 0
\(754\) −5.29838 3.78432i −0.192956 0.137817i
\(755\) 14.9159 0.542843
\(756\) 0 0
\(757\) 48.2838 1.75490 0.877452 0.479664i \(-0.159241\pi\)
0.877452 + 0.479664i \(0.159241\pi\)
\(758\) −17.6664 12.6181i −0.641673 0.458309i
\(759\) 0 0
\(760\) 14.6510 + 4.36985i 0.531447 + 0.158511i
\(761\) 32.1481i 1.16537i −0.812699 0.582684i \(-0.802002\pi\)
0.812699 0.582684i \(-0.197998\pi\)
\(762\) 0 0
\(763\) 7.57012i 0.274057i
\(764\) 17.3991 + 50.7376i 0.629479 + 1.83562i
\(765\) 0 0
\(766\) 9.43086 13.2040i 0.340751 0.477081i
\(767\) 4.05676 0.146481
\(768\) 0 0
\(769\) 32.5866 1.17510 0.587552 0.809187i \(-0.300092\pi\)
0.587552 + 0.809187i \(0.300092\pi\)
\(770\) −1.94582 + 2.72432i −0.0701225 + 0.0981776i
\(771\) 0 0
\(772\) −3.71399 10.8304i −0.133670 0.389793i
\(773\) 1.55573i 0.0559558i 0.999609 + 0.0279779i \(0.00890681\pi\)
−0.999609 + 0.0279779i \(0.991093\pi\)
\(774\) 0 0
\(775\) 1.11895i 0.0401938i
\(776\) 35.8776 + 10.7010i 1.28793 + 0.384142i
\(777\) 0 0
\(778\) −11.2393 8.02755i −0.402948 0.287802i
\(779\) 50.1052 1.79521
\(780\) 0 0
\(781\) 18.9629 0.678547
\(782\) 16.6566 + 11.8968i 0.595639 + 0.425430i
\(783\) 0 0
\(784\) −12.5315 + 9.74013i −0.447555 + 0.347862i
\(785\) 0.158102i 0.00564292i
\(786\) 0 0
\(787\) 23.0137i 0.820351i −0.912007 0.410175i \(-0.865467\pi\)
0.912007 0.410175i \(-0.134533\pi\)
\(788\) 28.5400 9.78706i 1.01670 0.348650i
\(789\) 0 0
\(790\) −9.06916 + 12.6976i −0.322666 + 0.451761i
\(791\) 18.5618 0.659982
\(792\) 0 0
\(793\) 2.96849 0.105414
\(794\) 3.40580 4.76842i 0.120867 0.169225i
\(795\) 0 0
\(796\) 32.9819 11.3103i 1.16901 0.400882i
\(797\) 50.6180i 1.79298i 0.443064 + 0.896490i \(0.353892\pi\)
−0.443064 + 0.896490i \(0.646108\pi\)
\(798\) 0 0
\(799\) 41.4364i 1.46592i
\(800\) −0.229010 5.65222i −0.00809674 0.199836i
\(801\) 0 0
\(802\) −29.8737 21.3370i −1.05488 0.753436i
\(803\) −14.5826 −0.514609
\(804\) 0 0
\(805\) −5.03103 −0.177320
\(806\) 1.49279 + 1.06621i 0.0525812 + 0.0375556i
\(807\) 0 0
\(808\) −4.31301 + 14.4604i −0.151731 + 0.508716i
\(809\) 29.7823i 1.04709i −0.851998 0.523545i \(-0.824609\pi\)
0.851998 0.523545i \(-0.175391\pi\)
\(810\) 0 0
\(811\) 11.2021i 0.393360i 0.980468 + 0.196680i \(0.0630160\pi\)
−0.980468 + 0.196680i \(0.936984\pi\)
\(812\) 4.48653 + 13.0832i 0.157446 + 0.459129i
\(813\) 0 0
\(814\) −3.37292 + 4.72239i −0.118221 + 0.165520i
\(815\) 6.97722 0.244401
\(816\) 0 0
\(817\) −63.1062 −2.20780
\(818\) 30.1743 42.2467i 1.05502 1.47712i
\(819\) 0 0
\(820\) −6.01368 17.5365i −0.210007 0.612400i
\(821\) 6.81943i 0.238000i −0.992894 0.119000i \(-0.962031\pi\)
0.992894 0.119000i \(-0.0379688\pi\)
\(822\) 0 0
\(823\) 35.4043i 1.23412i −0.786917 0.617059i \(-0.788324\pi\)
0.786917 0.617059i \(-0.211676\pi\)
\(824\) 12.0883 40.5290i 0.421116 1.41189i
\(825\) 0 0
\(826\) −7.01253 5.00863i −0.243997 0.174273i
\(827\) 22.5867 0.785418 0.392709 0.919663i \(-0.371538\pi\)
0.392709 + 0.919663i \(0.371538\pi\)
\(828\) 0 0
\(829\) 8.09060 0.280998 0.140499 0.990081i \(-0.455129\pi\)
0.140499 + 0.990081i \(0.455129\pi\)
\(830\) 12.7621 + 9.11522i 0.442979 + 0.316394i
\(831\) 0 0
\(832\) −7.75884 5.08029i −0.268989 0.176127i
\(833\) 19.8773i 0.688707i
\(834\) 0 0
\(835\) 8.41426i 0.291187i
\(836\) 13.9026 4.76754i 0.480832 0.164889i
\(837\) 0 0
\(838\) −19.0237 + 26.6348i −0.657162 + 0.920085i
\(839\) 33.6024 1.16008 0.580042 0.814586i \(-0.303036\pi\)
0.580042 + 0.814586i \(0.303036\pi\)
\(840\) 0 0
\(841\) 13.2272 0.456110
\(842\) 31.5291 44.1436i 1.08657 1.52129i
\(843\) 0 0
\(844\) 33.2364 11.3976i 1.14405 0.392321i
\(845\) 11.6561i 0.400982i
\(846\) 0 0
\(847\) 15.9358i 0.547562i
\(848\) −12.1905 15.6841i −0.418622 0.538594i
\(849\) 0 0
\(850\) −5.76502 4.11761i −0.197739 0.141233i
\(851\) −8.72087 −0.298948
\(852\) 0 0
\(853\) 49.9296 1.70956 0.854778 0.518993i \(-0.173693\pi\)
0.854778 + 0.518993i \(0.173693\pi\)
\(854\) −5.13135 3.66502i −0.175591 0.125414i
\(855\) 0 0
\(856\) −42.5678 12.6964i −1.45494 0.433954i
\(857\) 19.3790i 0.661974i −0.943635 0.330987i \(-0.892618\pi\)
0.943635 0.330987i \(-0.107382\pi\)
\(858\) 0 0
\(859\) 3.45436i 0.117861i 0.998262 + 0.0589305i \(0.0187690\pi\)
−0.998262 + 0.0589305i \(0.981231\pi\)
\(860\) 7.57406 + 22.0867i 0.258273 + 0.753151i
\(861\) 0 0
\(862\) −20.6338 + 28.8892i −0.702791 + 0.983969i
\(863\) 9.29456 0.316390 0.158195 0.987408i \(-0.449432\pi\)
0.158195 + 0.987408i \(0.449432\pi\)
\(864\) 0 0
\(865\) −19.3782 −0.658879
\(866\) −11.7030 + 16.3852i −0.397684 + 0.556792i
\(867\) 0 0
\(868\) −1.26406 3.68611i −0.0429048 0.125115i
\(869\) 15.0002i 0.508847i
\(870\) 0 0
\(871\) 6.54647i 0.221819i
\(872\) −11.7834 3.51455i −0.399036 0.119018i
\(873\) 0 0
\(874\) 17.9730 + 12.8370i 0.607945 + 0.434219i
\(875\) 1.74129 0.0588663
\(876\) 0 0
\(877\) −7.78775 −0.262974 −0.131487 0.991318i \(-0.541975\pi\)
−0.131487 + 0.991318i \(0.541975\pi\)
\(878\) −10.8238 7.73078i −0.365285 0.260901i
\(879\) 0 0
\(880\) −3.33721 4.29361i −0.112497 0.144738i
\(881\) 12.9152i 0.435124i −0.976047 0.217562i \(-0.930190\pi\)
0.976047 0.217562i \(-0.0698104\pi\)
\(882\) 0 0
\(883\) 2.69260i 0.0906132i −0.998973 0.0453066i \(-0.985574\pi\)
0.998973 0.0453066i \(-0.0144265\pi\)
\(884\) −10.9866 + 3.76757i −0.369520 + 0.126717i
\(885\) 0 0
\(886\) 27.9220 39.0932i 0.938057 1.31336i
\(887\) 46.9841 1.57757 0.788787 0.614667i \(-0.210710\pi\)
0.788787 + 0.614667i \(0.210710\pi\)
\(888\) 0 0
\(889\) 7.04638 0.236328
\(890\) −7.70079 + 10.7818i −0.258131 + 0.361407i
\(891\) 0 0
\(892\) 7.56742 2.59505i 0.253376 0.0868887i
\(893\) 44.7112i 1.49620i
\(894\) 0 0
\(895\) 10.0067i 0.334487i
\(896\) 7.13963 + 18.3612i 0.238518 + 0.613404i
\(897\) 0 0
\(898\) 2.69781 + 1.92689i 0.0900271 + 0.0643010i
\(899\) 4.44390 0.148212
\(900\) 0 0
\(901\) −24.8778 −0.828800
\(902\) −14.5025 10.3583i −0.482879 0.344892i
\(903\) 0 0
\(904\) −8.61763 + 28.8927i −0.286618 + 0.960958i
\(905\) 6.51340i 0.216513i
\(906\) 0 0
\(907\) 26.3971i 0.876501i −0.898853 0.438250i \(-0.855598\pi\)
0.898853 0.438250i \(-0.144402\pi\)
\(908\) 9.64879 + 28.1368i 0.320206 + 0.933753i
\(909\) 0 0
\(910\) 1.65922 2.32305i 0.0550026 0.0770084i
\(911\) 21.9089 0.725875 0.362938 0.931813i \(-0.381774\pi\)
0.362938 + 0.931813i \(0.381774\pi\)
\(912\) 0 0
\(913\) 15.0764 0.498955
\(914\) 16.7265 23.4186i 0.553265 0.774619i
\(915\) 0 0
\(916\) 15.0548 + 43.9014i 0.497426 + 1.45054i
\(917\) 3.68366i 0.121645i
\(918\) 0 0
\(919\) 23.7234i 0.782564i −0.920271 0.391282i \(-0.872032\pi\)
0.920271 0.391282i \(-0.127968\pi\)
\(920\) 2.33574 7.83113i 0.0770070 0.258185i
\(921\) 0 0
\(922\) −18.2178 13.0119i −0.599970 0.428523i
\(923\) −16.1699 −0.532238
\(924\) 0 0
\(925\) 3.01838 0.0992438
\(926\) −6.62522 4.73200i −0.217718 0.155503i
\(927\) 0 0
\(928\) −22.4478 + 0.909515i −0.736885 + 0.0298563i
\(929\) 18.3538i 0.602170i −0.953597 0.301085i \(-0.902651\pi\)
0.953597 0.301085i \(-0.0973488\pi\)
\(930\) 0 0
\(931\) 21.4482i 0.702936i
\(932\) −19.7882 + 6.78585i −0.648184 + 0.222278i
\(933\) 0 0
\(934\) −11.1545 + 15.6173i −0.364987 + 0.511014i
\(935\) −6.81044 −0.222725
\(936\) 0 0
\(937\) −48.9513 −1.59917 −0.799584 0.600554i \(-0.794947\pi\)
−0.799584 + 0.600554i \(0.794947\pi\)
\(938\) 8.08253 11.3163i 0.263904 0.369489i
\(939\) 0 0
\(940\) 15.6486 5.36628i 0.510401 0.175029i
\(941\) 55.9548i 1.82408i 0.410106 + 0.912038i \(0.365492\pi\)
−0.410106 + 0.912038i \(0.634508\pi\)
\(942\) 0 0
\(943\) 26.7818i 0.872137i
\(944\) 11.0520 8.59013i 0.359711 0.279585i
\(945\) 0 0
\(946\) 18.2655 + 13.0459i 0.593862 + 0.424160i
\(947\) 44.0368 1.43101 0.715503 0.698610i \(-0.246198\pi\)
0.715503 + 0.698610i \(0.246198\pi\)
\(948\) 0 0
\(949\) 12.4347 0.403648
\(950\) −6.22063 4.44303i −0.201824 0.144151i
\(951\) 0 0
\(952\) 23.6431 + 7.05186i 0.766277 + 0.228552i
\(953\) 4.87597i 0.157948i 0.996877 + 0.0789741i \(0.0251644\pi\)
−0.996877 + 0.0789741i \(0.974836\pi\)
\(954\) 0 0
\(955\) 26.8190i 0.867842i
\(956\) 2.77565 + 8.09406i 0.0897709 + 0.261781i
\(957\) 0 0
\(958\) 11.6741 16.3448i 0.377174 0.528076i
\(959\) 9.53701 0.307966
\(960\) 0 0
\(961\) 29.7480 0.959611
\(962\) 2.87612 4.02682i 0.0927298 0.129830i
\(963\) 0 0
\(964\) −17.6839 51.5679i −0.569559 1.66089i
\(965\) 5.72474i 0.184286i
\(966\) 0 0
\(967\) 44.9997i 1.44709i −0.690277 0.723546i \(-0.742511\pi\)
0.690277 0.723546i \(-0.257489\pi\)
\(968\) 24.8052 + 7.39847i 0.797270 + 0.237796i
\(969\) 0 0
\(970\) −15.2332 10.8802i −0.489108 0.349341i
\(971\) −27.0511 −0.868110 −0.434055 0.900886i \(-0.642918\pi\)
−0.434055 + 0.900886i \(0.642918\pi\)
\(972\) 0 0
\(973\) 38.3286 1.22876
\(974\) −29.1935 20.8512i −0.935421 0.668116i
\(975\) 0 0
\(976\) 8.08716 6.28575i 0.258864 0.201202i
\(977\) 24.8309i 0.794410i 0.917730 + 0.397205i \(0.130020\pi\)
−0.917730 + 0.397205i \(0.869980\pi\)
\(978\) 0 0
\(979\) 12.7369i 0.407075i
\(980\) 7.50671 2.57423i 0.239793 0.0822308i
\(981\) 0 0
\(982\) −3.03562 + 4.25013i −0.0968704 + 0.135627i
\(983\) −3.34535 −0.106700 −0.0533501 0.998576i \(-0.516990\pi\)
−0.0533501 + 0.998576i \(0.516990\pi\)
\(984\) 0 0
\(985\) −15.0858 −0.480672
\(986\) −16.3531 + 22.8958i −0.520789 + 0.729151i
\(987\) 0 0
\(988\) −11.8549 + 4.06532i −0.377154 + 0.129335i
\(989\) 33.7310i 1.07258i
\(990\) 0 0
\(991\) 19.7659i 0.627884i 0.949442 + 0.313942i \(0.101650\pi\)
−0.949442 + 0.313942i \(0.898350\pi\)
\(992\) 6.32454 0.256251i 0.200804 0.00813597i
\(993\) 0 0
\(994\) 27.9513 + 19.9640i 0.886562 + 0.633218i
\(995\) −17.4336 −0.552683
\(996\) 0 0
\(997\) −40.6056 −1.28599 −0.642996 0.765870i \(-0.722309\pi\)
−0.642996 + 0.765870i \(0.722309\pi\)
\(998\) 2.41987 + 1.72837i 0.0765996 + 0.0547105i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.e.a.971.33 yes 48
3.2 odd 2 inner 1620.2.e.a.971.16 yes 48
4.3 odd 2 inner 1620.2.e.a.971.15 48
12.11 even 2 inner 1620.2.e.a.971.34 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1620.2.e.a.971.15 48 4.3 odd 2 inner
1620.2.e.a.971.16 yes 48 3.2 odd 2 inner
1620.2.e.a.971.33 yes 48 1.1 even 1 trivial
1620.2.e.a.971.34 yes 48 12.11 even 2 inner