Properties

Label 1620.2.r.g.109.3
Level $1620$
Weight $2$
Character 1620.109
Analytic conductor $12.936$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(109,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.3
Root \(-0.578737 + 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 1620.109
Dual form 1620.2.r.g.1189.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.578737 + 2.15988i) q^{5} +(-0.866025 + 0.500000i) q^{7} +(-1.58114 - 2.73861i) q^{11} +(-2.59808 - 1.50000i) q^{13} -6.32456i q^{17} -3.00000 q^{19} +(2.73861 + 1.58114i) q^{23} +(-4.33013 + 2.50000i) q^{25} +(-4.74342 - 8.21584i) q^{29} +(1.00000 - 1.73205i) q^{31} +(-1.58114 - 1.58114i) q^{35} -1.00000i q^{37} +(-1.58114 + 2.73861i) q^{41} +(8.66025 - 5.00000i) q^{43} +(5.47723 - 3.16228i) q^{47} +(-3.00000 + 5.19615i) q^{49} -9.48683i q^{53} +(5.00000 - 5.00000i) q^{55} +(3.16228 - 5.47723i) q^{59} +(0.500000 + 0.866025i) q^{61} +(1.73621 - 6.47963i) q^{65} +(9.52628 + 5.50000i) q^{67} -9.48683 q^{71} +13.0000i q^{73} +(2.73861 + 1.58114i) q^{77} +(-1.50000 - 2.59808i) q^{79} +(13.6931 - 7.90569i) q^{83} +(13.6603 - 3.66025i) q^{85} -12.6491 q^{89} +3.00000 q^{91} +(-1.73621 - 6.47963i) q^{95} +(0.866025 - 0.500000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{19} + 8 q^{31} - 24 q^{49} + 40 q^{55} + 4 q^{61} - 12 q^{79} + 40 q^{85} + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.578737 + 2.15988i 0.258819 + 0.965926i
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i −0.654654 0.755929i \(-0.727186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.58114 2.73861i −0.476731 0.825723i 0.522913 0.852386i \(-0.324845\pi\)
−0.999644 + 0.0266631i \(0.991512\pi\)
\(12\) 0 0
\(13\) −2.59808 1.50000i −0.720577 0.416025i 0.0943882 0.995535i \(-0.469911\pi\)
−0.814965 + 0.579510i \(0.803244\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.32456i 1.53393i −0.641689 0.766965i \(-0.721766\pi\)
0.641689 0.766965i \(-0.278234\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.73861 + 1.58114i 0.571040 + 0.329690i 0.757565 0.652760i \(-0.226389\pi\)
−0.186524 + 0.982450i \(0.559722\pi\)
\(24\) 0 0
\(25\) −4.33013 + 2.50000i −0.866025 + 0.500000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.74342 8.21584i −0.880830 1.52564i −0.850419 0.526105i \(-0.823652\pi\)
−0.0304110 0.999537i \(-0.509682\pi\)
\(30\) 0 0
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.58114 1.58114i −0.267261 0.267261i
\(36\) 0 0
\(37\) 1.00000i 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.58114 + 2.73861i −0.246932 + 0.427699i −0.962673 0.270667i \(-0.912756\pi\)
0.715741 + 0.698366i \(0.246089\pi\)
\(42\) 0 0
\(43\) 8.66025 5.00000i 1.32068 0.762493i 0.336840 0.941562i \(-0.390642\pi\)
0.983836 + 0.179069i \(0.0573086\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.47723 3.16228i 0.798935 0.461266i −0.0441633 0.999024i \(-0.514062\pi\)
0.843099 + 0.537759i \(0.180729\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.48683i 1.30312i −0.758599 0.651558i \(-0.774116\pi\)
0.758599 0.651558i \(-0.225884\pi\)
\(54\) 0 0
\(55\) 5.00000 5.00000i 0.674200 0.674200i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.16228 5.47723i 0.411693 0.713074i −0.583382 0.812198i \(-0.698271\pi\)
0.995075 + 0.0991242i \(0.0316041\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.73621 6.47963i 0.215350 0.803699i
\(66\) 0 0
\(67\) 9.52628 + 5.50000i 1.16382 + 0.671932i 0.952217 0.305424i \(-0.0987981\pi\)
0.211604 + 0.977356i \(0.432131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.48683 −1.12588 −0.562940 0.826498i \(-0.690330\pi\)
−0.562940 + 0.826498i \(0.690330\pi\)
\(72\) 0 0
\(73\) 13.0000i 1.52153i 0.649025 + 0.760767i \(0.275177\pi\)
−0.649025 + 0.760767i \(0.724823\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.73861 + 1.58114i 0.312094 + 0.180187i
\(78\) 0 0
\(79\) −1.50000 2.59808i −0.168763 0.292306i 0.769222 0.638982i \(-0.220644\pi\)
−0.937985 + 0.346675i \(0.887311\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.6931 7.90569i 1.50301 0.867763i 0.503015 0.864278i \(-0.332224\pi\)
0.999994 0.00348505i \(-0.00110933\pi\)
\(84\) 0 0
\(85\) 13.6603 3.66025i 1.48166 0.397010i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.6491 −1.34080 −0.670402 0.741999i \(-0.733878\pi\)
−0.670402 + 0.741999i \(0.733878\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.73621 6.47963i −0.178131 0.664796i
\(96\) 0 0
\(97\) 0.866025 0.500000i 0.0879316 0.0507673i −0.455389 0.890292i \(-0.650500\pi\)
0.543321 + 0.839525i \(0.317167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.16228 5.47723i −0.314658 0.545004i 0.664706 0.747105i \(-0.268557\pi\)
−0.979365 + 0.202100i \(0.935223\pi\)
\(102\) 0 0
\(103\) −14.7224 8.50000i −1.45064 0.837530i −0.452126 0.891954i \(-0.649334\pi\)
−0.998518 + 0.0544240i \(0.982668\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.48683i 0.917127i 0.888662 + 0.458563i \(0.151636\pi\)
−0.888662 + 0.458563i \(0.848364\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.21584 4.74342i −0.772881 0.446223i 0.0610203 0.998137i \(-0.480565\pi\)
−0.833901 + 0.551913i \(0.813898\pi\)
\(114\) 0 0
\(115\) −1.83013 + 6.83013i −0.170660 + 0.636913i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.16228 + 5.47723i 0.289886 + 0.502096i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.90569 7.90569i −0.707107 0.707107i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.48683 16.4317i 0.828868 1.43564i −0.0700581 0.997543i \(-0.522318\pi\)
0.898927 0.438099i \(-0.144348\pi\)
\(132\) 0 0
\(133\) 2.59808 1.50000i 0.225282 0.130066i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.21584 4.74342i 0.701926 0.405257i −0.106138 0.994351i \(-0.533849\pi\)
0.808065 + 0.589094i \(0.200515\pi\)
\(138\) 0 0
\(139\) −8.50000 + 14.7224i −0.720961 + 1.24874i 0.239655 + 0.970858i \(0.422966\pi\)
−0.960615 + 0.277882i \(0.910368\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.48683i 0.793329i
\(144\) 0 0
\(145\) 15.0000 15.0000i 1.24568 1.24568i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.32456 + 10.9545i −0.518128 + 0.897424i 0.481650 + 0.876363i \(0.340037\pi\)
−0.999778 + 0.0210602i \(0.993296\pi\)
\(150\) 0 0
\(151\) −0.500000 0.866025i −0.0406894 0.0704761i 0.844963 0.534824i \(-0.179622\pi\)
−0.885653 + 0.464348i \(0.846289\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.31975 + 1.15747i 0.346971 + 0.0929705i
\(156\) 0 0
\(157\) −8.66025 5.00000i −0.691164 0.399043i 0.112884 0.993608i \(-0.463991\pi\)
−0.804048 + 0.594565i \(0.797324\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.16228 −0.249222
\(162\) 0 0
\(163\) 17.0000i 1.33154i 0.746156 + 0.665771i \(0.231897\pi\)
−0.746156 + 0.665771i \(0.768103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) −2.00000 3.46410i −0.153846 0.266469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.47723 + 3.16228i −0.416426 + 0.240424i −0.693547 0.720411i \(-0.743953\pi\)
0.277121 + 0.960835i \(0.410620\pi\)
\(174\) 0 0
\(175\) 2.50000 4.33013i 0.188982 0.327327i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.16228 0.236360 0.118180 0.992992i \(-0.462294\pi\)
0.118180 + 0.992992i \(0.462294\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.15988 0.578737i 0.158797 0.0425496i
\(186\) 0 0
\(187\) −17.3205 + 10.0000i −1.26660 + 0.731272i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −6.06218 3.50000i −0.436365 0.251936i 0.265689 0.964059i \(-0.414400\pi\)
−0.702055 + 0.712123i \(0.747734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.6491i 0.901212i −0.892723 0.450606i \(-0.851208\pi\)
0.892723 0.450606i \(-0.148792\pi\)
\(198\) 0 0
\(199\) −27.0000 −1.91398 −0.956990 0.290122i \(-0.906304\pi\)
−0.956990 + 0.290122i \(0.906304\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.21584 + 4.74342i 0.576639 + 0.332923i
\(204\) 0 0
\(205\) −6.83013 1.83013i −0.477037 0.127822i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.74342 + 8.21584i 0.328109 + 0.568301i
\(210\) 0 0
\(211\) 10.5000 18.1865i 0.722850 1.25201i −0.237003 0.971509i \(-0.576165\pi\)
0.959853 0.280504i \(-0.0905015\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.8114 + 15.8114i 1.07833 + 1.07833i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.48683 + 16.4317i −0.638153 + 1.10531i
\(222\) 0 0
\(223\) 8.66025 5.00000i 0.579934 0.334825i −0.181173 0.983451i \(-0.557990\pi\)
0.761107 + 0.648626i \(0.224656\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.6931 + 7.90569i −0.908841 + 0.524719i −0.880058 0.474866i \(-0.842496\pi\)
−0.0287826 + 0.999586i \(0.509163\pi\)
\(228\) 0 0
\(229\) −8.00000 + 13.8564i −0.528655 + 0.915657i 0.470787 + 0.882247i \(0.343970\pi\)
−0.999442 + 0.0334101i \(0.989363\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.32456i 0.414335i −0.978305 0.207168i \(-0.933575\pi\)
0.978305 0.207168i \(-0.0664246\pi\)
\(234\) 0 0
\(235\) 10.0000 + 10.0000i 0.652328 + 0.652328i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.58114 2.73861i 0.102275 0.177146i −0.810346 0.585951i \(-0.800721\pi\)
0.912622 + 0.408805i \(0.134054\pi\)
\(240\) 0 0
\(241\) 5.50000 + 9.52628i 0.354286 + 0.613642i 0.986996 0.160748i \(-0.0513906\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.9593 3.47242i −0.827936 0.221845i
\(246\) 0 0
\(247\) 7.79423 + 4.50000i 0.495935 + 0.286328i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 28.4605 1.79641 0.898205 0.439576i \(-0.144871\pi\)
0.898205 + 0.439576i \(0.144871\pi\)
\(252\) 0 0
\(253\) 10.0000i 0.628695i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.4317 9.48683i −1.02498 0.591772i −0.109437 0.993994i \(-0.534905\pi\)
−0.915542 + 0.402221i \(0.868238\pi\)
\(258\) 0 0
\(259\) 0.500000 + 0.866025i 0.0310685 + 0.0538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.3861 + 15.8114i −1.68870 + 0.974972i −0.733187 + 0.680028i \(0.761968\pi\)
−0.955514 + 0.294944i \(0.904699\pi\)
\(264\) 0 0
\(265\) 20.4904 5.49038i 1.25871 0.337271i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.9737 1.15684 0.578422 0.815737i \(-0.303669\pi\)
0.578422 + 0.815737i \(0.303669\pi\)
\(270\) 0 0
\(271\) 19.0000 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.6931 + 7.90569i 0.825723 + 0.476731i
\(276\) 0 0
\(277\) 17.3205 10.0000i 1.04069 0.600842i 0.120660 0.992694i \(-0.461499\pi\)
0.920028 + 0.391852i \(0.128166\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.48683 + 16.4317i 0.565937 + 0.980232i 0.996962 + 0.0778916i \(0.0248188\pi\)
−0.431025 + 0.902340i \(0.641848\pi\)
\(282\) 0 0
\(283\) 8.66025 + 5.00000i 0.514799 + 0.297219i 0.734804 0.678280i \(-0.237274\pi\)
−0.220005 + 0.975499i \(0.570607\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.16228i 0.186663i
\(288\) 0 0
\(289\) −23.0000 −1.35294
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.21584 + 4.74342i 0.479974 + 0.277113i 0.720406 0.693553i \(-0.243956\pi\)
−0.240431 + 0.970666i \(0.577289\pi\)
\(294\) 0 0
\(295\) 13.6603 + 3.66025i 0.795331 + 0.213108i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.74342 8.21584i −0.274319 0.475134i
\(300\) 0 0
\(301\) −5.00000 + 8.66025i −0.288195 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.58114 + 1.58114i −0.0905357 + 0.0905357i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.48683 + 16.4317i −0.537949 + 0.931755i 0.461065 + 0.887366i \(0.347467\pi\)
−0.999014 + 0.0443887i \(0.985866\pi\)
\(312\) 0 0
\(313\) 6.06218 3.50000i 0.342655 0.197832i −0.318791 0.947825i \(-0.603277\pi\)
0.661445 + 0.749993i \(0.269943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.9089 + 12.6491i −1.23053 + 0.710445i −0.967140 0.254245i \(-0.918173\pi\)
−0.263387 + 0.964690i \(0.584840\pi\)
\(318\) 0 0
\(319\) −15.0000 + 25.9808i −0.839839 + 1.45464i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.9737i 1.05572i
\(324\) 0 0
\(325\) 15.0000 0.832050
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.16228 + 5.47723i −0.174342 + 0.301969i
\(330\) 0 0
\(331\) −9.50000 16.4545i −0.522167 0.904420i −0.999667 0.0257885i \(-0.991790\pi\)
0.477500 0.878632i \(-0.341543\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.36611 + 23.7586i −0.347818 + 1.29807i
\(336\) 0 0
\(337\) −9.52628 5.50000i −0.518930 0.299604i 0.217567 0.976045i \(-0.430188\pi\)
−0.736497 + 0.676441i \(0.763521\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.32456 −0.342494
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.6475 + 14.2302i 1.32315 + 0.763920i 0.984230 0.176896i \(-0.0566056\pi\)
0.338918 + 0.940816i \(0.389939\pi\)
\(348\) 0 0
\(349\) −8.50000 14.7224i −0.454995 0.788074i 0.543693 0.839284i \(-0.317025\pi\)
−0.998688 + 0.0512103i \(0.983692\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9545 6.32456i 0.583047 0.336622i −0.179297 0.983795i \(-0.557382\pi\)
0.762343 + 0.647173i \(0.224049\pi\)
\(354\) 0 0
\(355\) −5.49038 20.4904i −0.291399 1.08752i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.4605 1.50209 0.751044 0.660252i \(-0.229551\pi\)
0.751044 + 0.660252i \(0.229551\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −28.0784 + 7.52358i −1.46969 + 0.393802i
\(366\) 0 0
\(367\) −16.4545 + 9.50000i −0.858917 + 0.495896i −0.863649 0.504093i \(-0.831827\pi\)
0.00473247 + 0.999989i \(0.498494\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.74342 + 8.21584i 0.246266 + 0.426545i
\(372\) 0 0
\(373\) 23.3827 + 13.5000i 1.21071 + 0.699004i 0.962914 0.269809i \(-0.0869605\pi\)
0.247796 + 0.968812i \(0.420294\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 28.4605i 1.46579i
\(378\) 0 0
\(379\) −23.0000 −1.18143 −0.590715 0.806880i \(-0.701154\pi\)
−0.590715 + 0.806880i \(0.701154\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.9545 6.32456i −0.559746 0.323170i 0.193297 0.981140i \(-0.438082\pi\)
−0.753044 + 0.657971i \(0.771415\pi\)
\(384\) 0 0
\(385\) −1.83013 + 6.83013i −0.0932719 + 0.348096i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.32456 + 10.9545i 0.320668 + 0.555413i 0.980626 0.195890i \(-0.0627594\pi\)
−0.659958 + 0.751302i \(0.729426\pi\)
\(390\) 0 0
\(391\) 10.0000 17.3205i 0.505722 0.875936i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.74342 4.74342i 0.238667 0.238667i
\(396\) 0 0
\(397\) 20.0000i 1.00377i 0.864934 + 0.501886i \(0.167360\pi\)
−0.864934 + 0.501886i \(0.832640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.0680 19.1703i 0.552708 0.957319i −0.445370 0.895347i \(-0.646928\pi\)
0.998078 0.0619718i \(-0.0197389\pi\)
\(402\) 0 0
\(403\) −5.19615 + 3.00000i −0.258839 + 0.149441i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.73861 + 1.58114i −0.135748 + 0.0783741i
\(408\) 0 0
\(409\) −3.50000 + 6.06218i −0.173064 + 0.299755i −0.939490 0.342578i \(-0.888700\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.32456i 0.311211i
\(414\) 0 0
\(415\) 25.0000 + 25.0000i 1.22720 + 1.22720i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.32456 10.9545i 0.308975 0.535160i −0.669164 0.743115i \(-0.733347\pi\)
0.978138 + 0.207955i \(0.0666808\pi\)
\(420\) 0 0
\(421\) 14.5000 + 25.1147i 0.706687 + 1.22402i 0.966079 + 0.258245i \(0.0831443\pi\)
−0.259393 + 0.965772i \(0.583522\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.8114 + 27.3861i 0.766965 + 1.32842i
\(426\) 0 0
\(427\) −0.866025 0.500000i −0.0419099 0.0241967i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.1359 1.06625 0.533125 0.846036i \(-0.321017\pi\)
0.533125 + 0.846036i \(0.321017\pi\)
\(432\) 0 0
\(433\) 20.0000i 0.961139i −0.876957 0.480569i \(-0.840430\pi\)
0.876957 0.480569i \(-0.159570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.21584 4.74342i −0.393017 0.226908i
\(438\) 0 0
\(439\) 3.00000 + 5.19615i 0.143182 + 0.247999i 0.928693 0.370849i \(-0.120933\pi\)
−0.785511 + 0.618848i \(0.787600\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.4317 + 9.48683i −0.780693 + 0.450733i −0.836676 0.547699i \(-0.815504\pi\)
0.0559831 + 0.998432i \(0.482171\pi\)
\(444\) 0 0
\(445\) −7.32051 27.3205i −0.347025 1.29512i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −37.9473 −1.79085 −0.895423 0.445217i \(-0.853127\pi\)
−0.895423 + 0.445217i \(0.853127\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.73621 + 6.47963i 0.0813948 + 0.303770i
\(456\) 0 0
\(457\) 17.3205 10.0000i 0.810219 0.467780i −0.0368128 0.999322i \(-0.511721\pi\)
0.847032 + 0.531542i \(0.178387\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) −2.59808 1.50000i −0.120743 0.0697109i 0.438412 0.898774i \(-0.355541\pi\)
−0.559155 + 0.829063i \(0.688874\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.9473i 1.75599i 0.478667 + 0.877997i \(0.341120\pi\)
−0.478667 + 0.877997i \(0.658880\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −27.3861 15.8114i −1.25922 0.727008i
\(474\) 0 0
\(475\) 12.9904 7.50000i 0.596040 0.344124i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.0680 + 19.1703i 0.505709 + 0.875913i 0.999978 + 0.00660425i \(0.00210221\pi\)
−0.494270 + 0.869309i \(0.664564\pi\)
\(480\) 0 0
\(481\) −1.50000 + 2.59808i −0.0683941 + 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.58114 + 1.58114i 0.0717958 + 0.0717958i
\(486\) 0 0
\(487\) 21.0000i 0.951601i −0.879553 0.475800i \(-0.842158\pi\)
0.879553 0.475800i \(-0.157842\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.74342 8.21584i 0.214067 0.370776i −0.738916 0.673797i \(-0.764662\pi\)
0.952984 + 0.303022i \(0.0979955\pi\)
\(492\) 0 0
\(493\) −51.9615 + 30.0000i −2.34023 + 1.35113i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.21584 4.74342i 0.368531 0.212771i
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.48683i 0.422997i −0.977378 0.211498i \(-0.932166\pi\)
0.977378 0.211498i \(-0.0678343\pi\)
\(504\) 0 0
\(505\) 10.0000 10.0000i 0.444994 0.444994i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.2302 24.6475i 0.630745 1.09248i −0.356655 0.934236i \(-0.616083\pi\)
0.987400 0.158246i \(-0.0505838\pi\)
\(510\) 0 0
\(511\) −6.50000 11.2583i −0.287543 0.498039i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.83853 36.7179i 0.433537 1.61798i
\(516\) 0 0
\(517\) −17.3205 10.0000i −0.761755 0.439799i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −22.1359 −0.969793 −0.484897 0.874571i \(-0.661143\pi\)
−0.484897 + 0.874571i \(0.661143\pi\)
\(522\) 0 0
\(523\) 7.00000i 0.306089i −0.988219 0.153044i \(-0.951092\pi\)
0.988219 0.153044i \(-0.0489077\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.9545 6.32456i −0.477183 0.275502i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.21584 4.74342i 0.355867 0.205460i
\(534\) 0 0
\(535\) −20.4904 + 5.49038i −0.885876 + 0.237370i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.9737 0.817254
\(540\) 0 0
\(541\) 19.0000 0.816874 0.408437 0.912787i \(-0.366074\pi\)
0.408437 + 0.912787i \(0.366074\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.25979 34.5580i −0.396646 1.48030i
\(546\) 0 0
\(547\) 9.52628 5.50000i 0.407314 0.235163i −0.282321 0.959320i \(-0.591104\pi\)
0.689635 + 0.724157i \(0.257771\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.2302 + 24.6475i 0.606229 + 1.05002i
\(552\) 0 0
\(553\) 2.59808 + 1.50000i 0.110481 + 0.0637865i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.9737i 0.803940i −0.915653 0.401970i \(-0.868326\pi\)
0.915653 0.401970i \(-0.131674\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.9089 + 12.6491i 0.923350 + 0.533096i 0.884702 0.466156i \(-0.154362\pi\)
0.0386478 + 0.999253i \(0.487695\pi\)
\(564\) 0 0
\(565\) 5.49038 20.4904i 0.230982 0.862037i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.16228 5.47723i −0.132570 0.229617i 0.792097 0.610395i \(-0.208989\pi\)
−0.924666 + 0.380778i \(0.875656\pi\)
\(570\) 0 0
\(571\) 5.50000 9.52628i 0.230168 0.398662i −0.727690 0.685907i \(-0.759406\pi\)
0.957857 + 0.287244i \(0.0927391\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −15.8114 −0.659380
\(576\) 0 0
\(577\) 41.0000i 1.70685i 0.521214 + 0.853426i \(0.325479\pi\)
−0.521214 + 0.853426i \(0.674521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.90569 + 13.6931i −0.327983 + 0.568084i
\(582\) 0 0
\(583\) −25.9808 + 15.0000i −1.07601 + 0.621237i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.21584 4.74342i 0.339104 0.195782i −0.320772 0.947157i \(-0.603942\pi\)
0.659876 + 0.751375i \(0.270609\pi\)
\(588\) 0 0
\(589\) −3.00000 + 5.19615i −0.123613 + 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.4605i 1.16873i 0.811490 + 0.584366i \(0.198657\pi\)
−0.811490 + 0.584366i \(0.801343\pi\)
\(594\) 0 0
\(595\) −10.0000 + 10.0000i −0.409960 + 0.409960i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.2302 + 24.6475i −0.581432 + 1.00707i 0.413878 + 0.910333i \(0.364174\pi\)
−0.995310 + 0.0967377i \(0.969159\pi\)
\(600\) 0 0
\(601\) −4.00000 6.92820i −0.163163 0.282607i 0.772838 0.634603i \(-0.218836\pi\)
−0.936002 + 0.351996i \(0.885503\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.15988 + 0.578737i 0.0878114 + 0.0235290i
\(606\) 0 0
\(607\) 9.52628 + 5.50000i 0.386660 + 0.223238i 0.680712 0.732551i \(-0.261671\pi\)
−0.294052 + 0.955789i \(0.595004\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.9737 −0.767592
\(612\) 0 0
\(613\) 23.0000i 0.928961i −0.885583 0.464481i \(-0.846241\pi\)
0.885583 0.464481i \(-0.153759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.73861 1.58114i −0.110252 0.0636543i 0.443860 0.896096i \(-0.353609\pi\)
−0.554112 + 0.832442i \(0.686942\pi\)
\(618\) 0 0
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.9545 6.32456i 0.438881 0.253388i
\(624\) 0 0
\(625\) 12.5000 21.6506i 0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.32456 −0.252177
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.5988 5.78737i 0.857121 0.229665i
\(636\) 0 0
\(637\) 15.5885 9.00000i 0.617637 0.356593i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.32456 10.9545i −0.249805 0.432675i 0.713667 0.700485i \(-0.247033\pi\)
−0.963472 + 0.267811i \(0.913700\pi\)
\(642\) 0 0
\(643\) 25.9808 + 15.0000i 1.02458 + 0.591542i 0.915428 0.402483i \(-0.131853\pi\)
0.109154 + 0.994025i \(0.465186\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.4605i 1.11890i −0.828865 0.559449i \(-0.811013\pi\)
0.828865 0.559449i \(-0.188987\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.9545 + 6.32456i 0.428681 + 0.247499i 0.698784 0.715332i \(-0.253725\pi\)
−0.270104 + 0.962831i \(0.587058\pi\)
\(654\) 0 0
\(655\) 40.9808 + 10.9808i 1.60125 + 0.429054i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.32456 10.9545i −0.246370 0.426725i 0.716146 0.697950i \(-0.245904\pi\)
−0.962516 + 0.271226i \(0.912571\pi\)
\(660\) 0 0
\(661\) −5.50000 + 9.52628i −0.213925 + 0.370529i −0.952940 0.303160i \(-0.901958\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.74342 + 4.74342i 0.183942 + 0.183942i
\(666\) 0 0
\(667\) 30.0000i 1.16160i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.58114 2.73861i 0.0610392 0.105723i
\(672\) 0 0
\(673\) 2.59808 1.50000i 0.100148 0.0578208i −0.449089 0.893487i \(-0.648251\pi\)
0.549238 + 0.835666i \(0.314918\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27.3861 15.8114i 1.05253 0.607681i 0.129177 0.991622i \(-0.458767\pi\)
0.923358 + 0.383941i \(0.125433\pi\)
\(678\) 0 0
\(679\) −0.500000 + 0.866025i −0.0191882 + 0.0332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.1359i 0.847008i −0.905894 0.423504i \(-0.860800\pi\)
0.905894 0.423504i \(-0.139200\pi\)
\(684\) 0 0
\(685\) 15.0000 + 15.0000i 0.573121 + 0.573121i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.2302 + 24.6475i −0.542129 + 0.938996i
\(690\) 0 0
\(691\) 1.00000 + 1.73205i 0.0380418 + 0.0658903i 0.884419 0.466693i \(-0.154555\pi\)
−0.846378 + 0.532583i \(0.821221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −36.7179 9.83853i −1.39279 0.373197i
\(696\) 0 0
\(697\) 17.3205 + 10.0000i 0.656061 + 0.378777i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.16228 0.119438 0.0597188 0.998215i \(-0.480980\pi\)
0.0597188 + 0.998215i \(0.480980\pi\)
\(702\) 0 0
\(703\) 3.00000i 0.113147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.47723 + 3.16228i 0.205992 + 0.118930i
\(708\) 0 0
\(709\) 1.50000 + 2.59808i 0.0563337 + 0.0975728i 0.892817 0.450420i \(-0.148726\pi\)
−0.836483 + 0.547992i \(0.815392\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.47723 3.16228i 0.205124 0.118428i
\(714\) 0 0
\(715\) −20.4904 + 5.49038i −0.766297 + 0.205329i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −41.1096 −1.53313 −0.766565 0.642167i \(-0.778036\pi\)
−0.766565 + 0.642167i \(0.778036\pi\)
\(720\) 0 0
\(721\) 17.0000 0.633113
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 41.0792 + 23.7171i 1.52564 + 0.880830i
\(726\) 0 0
\(727\) 25.9808 15.0000i 0.963573 0.556319i 0.0663022 0.997800i \(-0.478880\pi\)
0.897271 + 0.441480i \(0.145547\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −31.6228 54.7723i −1.16961 2.02583i
\(732\) 0 0
\(733\) 34.6410 + 20.0000i 1.27950 + 0.738717i 0.976756 0.214356i \(-0.0687654\pi\)
0.302740 + 0.953073i \(0.402099\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.7851i 1.28132i
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.4317 9.48683i −0.602820 0.348038i 0.167330 0.985901i \(-0.446485\pi\)
−0.770150 + 0.637863i \(0.779819\pi\)
\(744\) 0 0
\(745\) −27.3205 7.32051i −1.00095 0.268203i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.74342 8.21584i −0.173321 0.300200i
\(750\) 0 0
\(751\) 24.5000 42.4352i 0.894018 1.54848i 0.0590021 0.998258i \(-0.481208\pi\)
0.835016 0.550226i \(-0.185459\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.58114 1.58114i 0.0575435 0.0575435i
\(756\) 0 0
\(757\) 29.0000i 1.05402i 0.849858 + 0.527011i \(0.176688\pi\)
−0.849858 + 0.527011i \(0.823312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.74342 8.21584i 0.171949 0.297824i −0.767152 0.641465i \(-0.778327\pi\)
0.939101 + 0.343641i \(0.111660\pi\)
\(762\) 0 0
\(763\) 13.8564 8.00000i 0.501636 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.4317 + 9.48683i −0.593313 + 0.342550i
\(768\) 0 0
\(769\) −1.50000 + 2.59808i −0.0540914 + 0.0936890i −0.891803 0.452423i \(-0.850560\pi\)
0.837712 + 0.546113i \(0.183893\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 47.4342i 1.70609i −0.521839 0.853044i \(-0.674754\pi\)
0.521839 0.853044i \(-0.325246\pi\)
\(774\) 0 0
\(775\) 10.0000i 0.359211i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.74342 8.21584i 0.169951 0.294363i
\(780\) 0 0
\(781\) 15.0000 + 25.9808i 0.536742 + 0.929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.78737 21.5988i 0.206560 0.770893i
\(786\) 0 0
\(787\) 0.866025 + 0.500000i 0.0308705 + 0.0178231i 0.515356 0.856976i \(-0.327660\pi\)
−0.484485 + 0.874799i \(0.660993\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.48683 0.337313
\(792\) 0 0
\(793\) 3.00000i 0.106533i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.47723 + 3.16228i 0.194013 + 0.112014i 0.593860 0.804568i \(-0.297603\pi\)
−0.399847 + 0.916582i \(0.630937\pi\)
\(798\) 0 0
\(799\) −20.0000 34.6410i −0.707549 1.22551i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 35.6020 20.5548i 1.25637 0.725363i
\(804\) 0 0
\(805\) −1.83013 6.83013i −0.0645035 0.240730i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.9737 0.667079 0.333539 0.942736i \(-0.391757\pi\)
0.333539 + 0.942736i \(0.391757\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.7179 + 9.83853i −1.28617 + 0.344629i
\(816\) 0 0
\(817\) −25.9808 + 15.0000i −0.908952 + 0.524784i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.1359 38.3406i −0.772550 1.33810i −0.936161 0.351571i \(-0.885648\pi\)
0.163612 0.986525i \(-0.447686\pi\)
\(822\) 0 0
\(823\) 2.59808 + 1.50000i 0.0905632 + 0.0522867i 0.544598 0.838697i \(-0.316682\pi\)
−0.454034 + 0.890984i \(0.650016\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.2719i 1.53948i −0.638355 0.769742i \(-0.720385\pi\)
0.638355 0.769742i \(-0.279615\pi\)
\(828\) 0 0
\(829\) −3.00000 −0.104194 −0.0520972 0.998642i \(-0.516591\pi\)
−0.0520972 + 0.998642i \(0.516591\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32.8634 + 18.9737i 1.13865 + 0.657399i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.8114 27.3861i −0.545870 0.945474i −0.998552 0.0538020i \(-0.982866\pi\)
0.452682 0.891672i \(-0.350467\pi\)
\(840\) 0 0
\(841\) −30.5000 + 52.8275i −1.05172 + 1.82164i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.32456 6.32456i 0.217571 0.217571i
\(846\) 0 0
\(847\) 1.00000i 0.0343604i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.58114 2.73861i 0.0542007 0.0938784i
\(852\) 0 0
\(853\) −6.06218 + 3.50000i −0.207565 + 0.119838i −0.600179 0.799866i \(-0.704904\pi\)
0.392614 + 0.919703i \(0.371571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.21584 + 4.74342i −0.280648 + 0.162032i −0.633717 0.773565i \(-0.718471\pi\)
0.353069 + 0.935597i \(0.385138\pi\)
\(858\) 0 0
\(859\) −6.50000 + 11.2583i −0.221777 + 0.384129i −0.955348 0.295484i \(-0.904519\pi\)
0.733571 + 0.679613i \(0.237852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −10.0000 10.0000i −0.340010 0.340010i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.74342 + 8.21584i −0.160909 + 0.278703i
\(870\) 0 0
\(871\) −16.5000 28.5788i −0.559081 0.968357i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.7994 + 2.89368i 0.365086 + 0.0978244i
\(876\) 0 0
\(877\) −42.4352 24.5000i −1.43294 0.827306i −0.435593 0.900144i \(-0.643461\pi\)
−0.997344 + 0.0728377i \(0.976794\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.48683 −0.319620 −0.159810 0.987148i \(-0.551088\pi\)
−0.159810 + 0.987148i \(0.551088\pi\)
\(882\) 0 0
\(883\) 27.0000i 0.908622i −0.890843 0.454311i \(-0.849885\pi\)
0.890843 0.454311i \(-0.150115\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 5.00000 + 8.66025i 0.167695 + 0.290456i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.4317 + 9.48683i −0.549865 + 0.317465i
\(894\) 0 0
\(895\) 1.83013 + 6.83013i 0.0611744 + 0.228306i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.9737 −0.632807
\(900\) 0 0
\(901\) −60.0000 −1.99889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.36611 + 23.7586i 0.211617 + 0.789764i
\(906\) 0 0
\(907\) −18.1865 + 10.5000i −0.603874 + 0.348647i −0.770564 0.637363i \(-0.780025\pi\)
0.166690 + 0.986009i \(0.446692\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.48683 + 16.4317i 0.314313 + 0.544406i 0.979291 0.202457i \(-0.0648926\pi\)
−0.664978 + 0.746863i \(0.731559\pi\)
\(912\) 0 0
\(913\) −43.3013 25.0000i −1.43306 0.827379i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.9737i 0.626566i
\(918\) 0 0
\(919\) 6.00000 0.197922 0.0989609 0.995091i \(-0.468448\pi\)
0.0989609 + 0.995091i \(0.468448\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24.6475 + 14.2302i 0.811283 + 0.468394i
\(924\) 0 0
\(925\) 2.50000 + 4.33013i 0.0821995 + 0.142374i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.74342 8.21584i −0.155626 0.269553i 0.777661 0.628684i \(-0.216406\pi\)
−0.933287 + 0.359132i \(0.883073\pi\)
\(930\) 0 0
\(931\) 9.00000 15.5885i 0.294963 0.510891i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −31.6228 31.6228i −1.03418 1.03418i
\(936\) 0 0
\(937\) 11.0000i 0.359354i −0.983726 0.179677i \(-0.942495\pi\)
0.983726 0.179677i \(-0.0575053\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.90569 13.6931i 0.257718 0.446381i −0.707912 0.706301i \(-0.750363\pi\)
0.965630 + 0.259919i \(0.0836960\pi\)
\(942\) 0 0
\(943\) −8.66025 + 5.00000i −0.282017 + 0.162822i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 49.2950 28.4605i 1.60187 0.924842i 0.610761 0.791815i \(-0.290864\pi\)
0.991112 0.133027i \(-0.0424696\pi\)
\(948\) 0 0
\(949\) 19.5000 33.7750i 0.632997 1.09638i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.2982i 0.819490i −0.912200 0.409745i \(-0.865618\pi\)
0.912200 0.409745i \(-0.134382\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.74342 + 8.21584i −0.153173 + 0.265303i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.05116 15.1191i 0.130411 0.486702i
\(966\) 0 0
\(967\) 9.52628 + 5.50000i 0.306344 + 0.176868i 0.645290 0.763938i \(-0.276737\pi\)
−0.338945 + 0.940806i \(0.610070\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.9737 −0.608894 −0.304447 0.952529i \(-0.598472\pi\)
−0.304447 + 0.952529i \(0.598472\pi\)
\(972\) 0 0
\(973\) 17.0000i 0.544995i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.6475 + 14.2302i 0.788544 + 0.455266i 0.839450 0.543437i \(-0.182877\pi\)
−0.0509058 + 0.998703i \(0.516211\pi\)
\(978\) 0 0
\(979\) 20.0000 + 34.6410i 0.639203 + 1.10713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.73861 1.58114i 0.0873482 0.0504305i −0.455690 0.890139i \(-0.650607\pi\)
0.543038 + 0.839708i \(0.317274\pi\)
\(984\) 0 0
\(985\) 27.3205 7.32051i 0.870504 0.233251i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 31.6228 1.00555
\(990\) 0 0
\(991\) 19.0000 0.603555 0.301777 0.953378i \(-0.402420\pi\)
0.301777 + 0.953378i \(0.402420\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −15.6259 58.3166i −0.495374 1.84876i
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.r.g.109.3 8
3.2 odd 2 inner 1620.2.r.g.109.2 8
5.4 even 2 inner 1620.2.r.g.109.1 8
9.2 odd 6 inner 1620.2.r.g.1189.4 8
9.4 even 3 540.2.d.c.109.3 yes 4
9.5 odd 6 540.2.d.c.109.2 yes 4
9.7 even 3 inner 1620.2.r.g.1189.1 8
15.14 odd 2 inner 1620.2.r.g.109.4 8
36.23 even 6 2160.2.f.l.1729.2 4
36.31 odd 6 2160.2.f.l.1729.3 4
45.4 even 6 540.2.d.c.109.4 yes 4
45.13 odd 12 2700.2.a.v.1.2 2
45.14 odd 6 540.2.d.c.109.1 4
45.22 odd 12 2700.2.a.w.1.2 2
45.23 even 12 2700.2.a.v.1.1 2
45.29 odd 6 inner 1620.2.r.g.1189.2 8
45.32 even 12 2700.2.a.w.1.1 2
45.34 even 6 inner 1620.2.r.g.1189.3 8
180.59 even 6 2160.2.f.l.1729.1 4
180.139 odd 6 2160.2.f.l.1729.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.2.d.c.109.1 4 45.14 odd 6
540.2.d.c.109.2 yes 4 9.5 odd 6
540.2.d.c.109.3 yes 4 9.4 even 3
540.2.d.c.109.4 yes 4 45.4 even 6
1620.2.r.g.109.1 8 5.4 even 2 inner
1620.2.r.g.109.2 8 3.2 odd 2 inner
1620.2.r.g.109.3 8 1.1 even 1 trivial
1620.2.r.g.109.4 8 15.14 odd 2 inner
1620.2.r.g.1189.1 8 9.7 even 3 inner
1620.2.r.g.1189.2 8 45.29 odd 6 inner
1620.2.r.g.1189.3 8 45.34 even 6 inner
1620.2.r.g.1189.4 8 9.2 odd 6 inner
2160.2.f.l.1729.1 4 180.59 even 6
2160.2.f.l.1729.2 4 36.23 even 6
2160.2.f.l.1729.3 4 36.31 odd 6
2160.2.f.l.1729.4 4 180.139 odd 6
2700.2.a.v.1.1 2 45.23 even 12
2700.2.a.v.1.2 2 45.13 odd 12
2700.2.a.w.1.1 2 45.32 even 12
2700.2.a.w.1.2 2 45.22 odd 12