Properties

Label 1620.4.a.j
Level $1620$
Weight $4$
Character orbit 1620.a
Self dual yes
Analytic conductor $95.583$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(1,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.5830942093\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 151x^{4} - 212x^{3} + 4412x^{2} + 8656x - 19148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 q^{5} + (\beta_1 + 2) q^{7} + (\beta_{5} - \beta_{4} - \beta_{2}) q^{11} + ( - \beta_{5} - \beta_{3} + \beta_{2} + \cdots - 14) q^{13} + (3 \beta_{3} - \beta_{2} - 5 \beta_1 - 2) q^{17} + ( - \beta_{5} + 3 \beta_{4} + \cdots - 19) q^{19}+ \cdots + (4 \beta_{5} - 16 \beta_{4} + \cdots - 198) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 30 q^{5} + 12 q^{7} - 84 q^{13} - 12 q^{17} - 114 q^{19} - 30 q^{23} + 150 q^{25} - 168 q^{29} - 324 q^{31} + 60 q^{35} - 492 q^{37} - 312 q^{41} - 156 q^{43} - 462 q^{47} - 588 q^{49} - 1014 q^{53}+ \cdots - 1188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 151x^{4} - 212x^{3} + 4412x^{2} + 8656x - 19148 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{5} + 15\nu^{4} + 272\nu^{3} - 2017\nu^{2} - 1458\nu + 56542 ) / 2520 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 19\nu^{5} - 195\nu^{4} - 1429\nu^{3} + 10079\nu^{2} + 15216\nu - 92054 ) / 2520 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{5} - 30\nu^{4} - 439\nu^{3} + 1409\nu^{2} + 10056\nu - 8714 ) / 420 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{5} + 15\nu^{4} + 230\nu^{3} - 967\nu^{2} - 5826\nu + 15298 ) / 252 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 4\nu^{4} + 129\nu^{3} - 18\nu^{2} - 2822\nu - 1024 ) / 84 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -3\beta_{4} - 2\beta_{3} + 6\beta _1 + 6 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{5} - 21\beta_{4} - 26\beta_{3} + 6\beta_{2} + 918 ) / 18 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -75\beta_{5} - 321\beta_{4} - 442\beta_{3} + 150\beta_{2} + 456\beta _1 + 4650 ) / 18 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -1131\beta_{5} - 3507\beta_{4} - 5278\beta_{3} + 1398\beta_{2} + 1980\beta _1 + 96246 ) / 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5219\beta_{5} - 15531\beta_{4} - 24006\beta_{3} + 8278\beta_{2} + 16604\beta _1 + 310982 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.39017
−6.01416
12.7486
−4.35846
5.63924
1.37492
0 0 0 5.00000 0 −23.3157 0 0 0
1.2 0 0 0 5.00000 0 −10.4813 0 0 0
1.3 0 0 0 5.00000 0 0.584898 0 0 0
1.4 0 0 0 5.00000 0 6.21414 0 0 0
1.5 0 0 0 5.00000 0 16.5713 0 0 0
1.6 0 0 0 5.00000 0 22.4267 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1620.4.a.j yes 6
3.b odd 2 1 1620.4.a.i 6
9.c even 3 2 1620.4.i.w 12
9.d odd 6 2 1620.4.i.x 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1620.4.a.i 6 3.b odd 2 1
1620.4.a.j yes 6 1.a even 1 1 trivial
1620.4.i.w 12 9.c even 3 2
1620.4.i.x 12 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1620))\):

\( T_{7}^{6} - 12T_{7}^{5} - 663T_{7}^{4} + 7784T_{7}^{3} + 67668T_{7}^{2} - 606480T_{7} + 330100 \) Copy content Toggle raw display
\( T_{11}^{6} - 5826T_{11}^{4} - 60480T_{11}^{3} + 6699969T_{11}^{2} + 69128640T_{11} - 1558917900 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T - 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 12 T^{5} + \cdots + 330100 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 1558917900 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 2569403200 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 20589584400 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 171382733975 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 744074650800 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 114663336912 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 12590888425912 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 147577423801600 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 17516232477189 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 125509315266400 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 621571802557500 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 24472129608900 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 59585194478763 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 275038338099200 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 36\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 14\!\cdots\!92 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 157896529778448 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
show more
show less