Properties

Label 1620.4.a.j
Level 16201620
Weight 44
Character orbit 1620.a
Self dual yes
Analytic conductor 95.58395.583
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(1,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1620=22345 1620 = 2^{2} \cdot 3^{4} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1620.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 95.583094209395.5830942093
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5151x4212x3+4412x2+8656x19148 x^{6} - 2x^{5} - 151x^{4} - 212x^{3} + 4412x^{2} + 8656x - 19148 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2235 2^{2}\cdot 3^{5}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+5q5+(β1+2)q7+(β5β4β2)q11+(β5β3+β2+14)q13+(3β3β25β12)q17+(β5+3β4+19)q19++(4β516β4+198)q97+O(q100) q + 5 q^{5} + (\beta_1 + 2) q^{7} + (\beta_{5} - \beta_{4} - \beta_{2}) q^{11} + ( - \beta_{5} - \beta_{3} + \beta_{2} + \cdots - 14) q^{13} + (3 \beta_{3} - \beta_{2} - 5 \beta_1 - 2) q^{17} + ( - \beta_{5} + 3 \beta_{4} + \cdots - 19) q^{19}+ \cdots + (4 \beta_{5} - 16 \beta_{4} + \cdots - 198) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+30q5+12q784q1312q17114q1930q23+150q25168q29324q31+60q35492q37312q41156q43462q47588q491014q53+1188q97+O(q100) 6 q + 30 q^{5} + 12 q^{7} - 84 q^{13} - 12 q^{17} - 114 q^{19} - 30 q^{23} + 150 q^{25} - 168 q^{29} - 324 q^{31} + 60 q^{35} - 492 q^{37} - 312 q^{41} - 156 q^{43} - 462 q^{47} - 588 q^{49} - 1014 q^{53}+ \cdots - 1188 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x5151x4212x3+4412x2+8656x19148 x^{6} - 2x^{5} - 151x^{4} - 212x^{3} + 4412x^{2} + 8656x - 19148 : Copy content Toggle raw display

β1\beta_{1}== (2ν5+15ν4+272ν32017ν21458ν+56542)/2520 ( -2\nu^{5} + 15\nu^{4} + 272\nu^{3} - 2017\nu^{2} - 1458\nu + 56542 ) / 2520 Copy content Toggle raw display
β2\beta_{2}== (19ν5195ν41429ν3+10079ν2+15216ν92054)/2520 ( 19\nu^{5} - 195\nu^{4} - 1429\nu^{3} + 10079\nu^{2} + 15216\nu - 92054 ) / 2520 Copy content Toggle raw display
β3\beta_{3}== (4ν530ν4439ν3+1409ν2+10056ν8714)/420 ( 4\nu^{5} - 30\nu^{4} - 439\nu^{3} + 1409\nu^{2} + 10056\nu - 8714 ) / 420 Copy content Toggle raw display
β4\beta_{4}== (2ν5+15ν4+230ν3967ν25826ν+15298)/252 ( -2\nu^{5} + 15\nu^{4} + 230\nu^{3} - 967\nu^{2} - 5826\nu + 15298 ) / 252 Copy content Toggle raw display
β5\beta_{5}== (ν5+4ν4+129ν318ν22822ν1024)/84 ( -\nu^{5} + 4\nu^{4} + 129\nu^{3} - 18\nu^{2} - 2822\nu - 1024 ) / 84 Copy content Toggle raw display
ν\nu== (3β42β3+6β1+6)/18 ( -3\beta_{4} - 2\beta_{3} + 6\beta _1 + 6 ) / 18 Copy content Toggle raw display
ν2\nu^{2}== (3β521β426β3+6β2+918)/18 ( -3\beta_{5} - 21\beta_{4} - 26\beta_{3} + 6\beta_{2} + 918 ) / 18 Copy content Toggle raw display
ν3\nu^{3}== (75β5321β4442β3+150β2+456β1+4650)/18 ( -75\beta_{5} - 321\beta_{4} - 442\beta_{3} + 150\beta_{2} + 456\beta _1 + 4650 ) / 18 Copy content Toggle raw display
ν4\nu^{4}== (1131β53507β45278β3+1398β2+1980β1+96246)/18 ( -1131\beta_{5} - 3507\beta_{4} - 5278\beta_{3} + 1398\beta_{2} + 1980\beta _1 + 96246 ) / 18 Copy content Toggle raw display
ν5\nu^{5}== (5219β515531β424006β3+8278β2+16604β1+310982)/6 ( -5219\beta_{5} - 15531\beta_{4} - 24006\beta_{3} + 8278\beta_{2} + 16604\beta _1 + 310982 ) / 6 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−7.39017
−6.01416
12.7486
−4.35846
5.63924
1.37492
0 0 0 5.00000 0 −23.3157 0 0 0
1.2 0 0 0 5.00000 0 −10.4813 0 0 0
1.3 0 0 0 5.00000 0 0.584898 0 0 0
1.4 0 0 0 5.00000 0 6.21414 0 0 0
1.5 0 0 0 5.00000 0 16.5713 0 0 0
1.6 0 0 0 5.00000 0 22.4267 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1620.4.a.j yes 6
3.b odd 2 1 1620.4.a.i 6
9.c even 3 2 1620.4.i.w 12
9.d odd 6 2 1620.4.i.x 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1620.4.a.i 6 3.b odd 2 1
1620.4.a.j yes 6 1.a even 1 1 trivial
1620.4.i.w 12 9.c even 3 2
1620.4.i.x 12 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1620))S_{4}^{\mathrm{new}}(\Gamma_0(1620)):

T7612T75663T74+7784T73+67668T72606480T7+330100 T_{7}^{6} - 12T_{7}^{5} - 663T_{7}^{4} + 7784T_{7}^{3} + 67668T_{7}^{2} - 606480T_{7} + 330100 Copy content Toggle raw display
T1165826T11460480T113+6699969T112+69128640T111558917900 T_{11}^{6} - 5826T_{11}^{4} - 60480T_{11}^{3} + 6699969T_{11}^{2} + 69128640T_{11} - 1558917900 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T5)6 (T - 5)^{6} Copy content Toggle raw display
77 T612T5++330100 T^{6} - 12 T^{5} + \cdots + 330100 Copy content Toggle raw display
1111 T6+1558917900 T^{6} + \cdots - 1558917900 Copy content Toggle raw display
1313 T6++2569403200 T^{6} + \cdots + 2569403200 Copy content Toggle raw display
1717 T6++20589584400 T^{6} + \cdots + 20589584400 Copy content Toggle raw display
1919 T6+171382733975 T^{6} + \cdots - 171382733975 Copy content Toggle raw display
2323 T6+744074650800 T^{6} + \cdots - 744074650800 Copy content Toggle raw display
2929 T6++114663336912 T^{6} + \cdots + 114663336912 Copy content Toggle raw display
3131 T6++12590888425912 T^{6} + \cdots + 12590888425912 Copy content Toggle raw display
3737 T6++147577423801600 T^{6} + \cdots + 147577423801600 Copy content Toggle raw display
4141 T6++17516232477189 T^{6} + \cdots + 17516232477189 Copy content Toggle raw display
4343 T6++125509315266400 T^{6} + \cdots + 125509315266400 Copy content Toggle raw display
4747 T6+621571802557500 T^{6} + \cdots - 621571802557500 Copy content Toggle raw display
5353 T6++24472129608900 T^{6} + \cdots + 24472129608900 Copy content Toggle raw display
5959 T6+59585194478763 T^{6} + \cdots - 59585194478763 Copy content Toggle raw display
6161 T6+275038338099200 T^{6} + \cdots - 275038338099200 Copy content Toggle raw display
6767 T6+76 ⁣ ⁣00 T^{6} + \cdots - 76\!\cdots\!00 Copy content Toggle raw display
7171 T6+36 ⁣ ⁣24 T^{6} + \cdots - 36\!\cdots\!24 Copy content Toggle raw display
7373 T6++68 ⁣ ⁣00 T^{6} + \cdots + 68\!\cdots\!00 Copy content Toggle raw display
7979 T6+14 ⁣ ⁣92 T^{6} + \cdots - 14\!\cdots\!92 Copy content Toggle raw display
8383 T6++23 ⁣ ⁣00 T^{6} + \cdots + 23\!\cdots\!00 Copy content Toggle raw display
8989 T6++157896529778448 T^{6} + \cdots + 157896529778448 Copy content Toggle raw display
9797 T6++65 ⁣ ⁣00 T^{6} + \cdots + 65\!\cdots\!00 Copy content Toggle raw display
show more
show less