Properties

Label 1620.4.i.u.1081.2
Level $1620$
Weight $4$
Character 1620.1081
Analytic conductor $95.583$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(95.5830942093\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 91x^{4} - 294x^{3} + 8292x^{2} - 17280x + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.2
Root \(4.38373 + 7.59284i\) of defining polynomial
Character \(\chi\) \(=\) 1620.1081
Dual form 1620.4.i.u.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 4.33013i) q^{5} +(-0.474792 - 0.822364i) q^{7} +(31.3276 + 54.2610i) q^{11} +(-3.47479 + 6.01852i) q^{13} +103.411 q^{17} +73.8064 q^{19} +(43.0795 - 74.6159i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(-27.7812 - 48.1184i) q^{29} +(-99.9323 + 173.088i) q^{31} -4.74792 q^{35} -18.9070 q^{37} +(-28.6512 + 49.6254i) q^{41} +(-148.016 - 256.371i) q^{43} +(28.7692 + 49.8298i) q^{47} +(171.049 - 296.266i) q^{49} -672.005 q^{53} +313.276 q^{55} +(-273.322 + 473.408i) q^{59} +(395.780 + 685.510i) q^{61} +(17.3740 + 30.0926i) q^{65} +(-315.780 + 546.947i) q^{67} -102.942 q^{71} -200.652 q^{73} +(29.7482 - 51.5253i) q^{77} +(332.966 + 576.714i) q^{79} +(673.703 + 1166.89i) q^{83} +(258.528 - 447.783i) q^{85} +12.6866 q^{89} +6.59922 q^{91} +(184.516 - 319.591i) q^{95} +(318.689 + 551.986i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{5} - 15 q^{7} + 24 q^{11} - 33 q^{13} - 84 q^{17} + 42 q^{19} - 33 q^{23} - 75 q^{25} + 222 q^{29} - 132 q^{31} - 150 q^{35} + 348 q^{37} - 99 q^{41} + 120 q^{43} + 537 q^{47} - 492 q^{49} - 534 q^{53}+ \cdots + 2556 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) −0.474792 0.822364i −0.0256364 0.0444035i 0.852923 0.522037i \(-0.174828\pi\)
−0.878559 + 0.477634i \(0.841495\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 31.3276 + 54.2610i 0.858693 + 1.48730i 0.873176 + 0.487404i \(0.162056\pi\)
−0.0144837 + 0.999895i \(0.504610\pi\)
\(12\) 0 0
\(13\) −3.47479 + 6.01852i −0.0741334 + 0.128403i −0.900709 0.434423i \(-0.856952\pi\)
0.826576 + 0.562826i \(0.190286\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 103.411 1.47535 0.737673 0.675158i \(-0.235925\pi\)
0.737673 + 0.675158i \(0.235925\pi\)
\(18\) 0 0
\(19\) 73.8064 0.891176 0.445588 0.895238i \(-0.352995\pi\)
0.445588 + 0.895238i \(0.352995\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 43.0795 74.6159i 0.390552 0.676456i −0.601970 0.798519i \(-0.705617\pi\)
0.992522 + 0.122062i \(0.0389507\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −27.7812 48.1184i −0.177891 0.308116i 0.763267 0.646083i \(-0.223594\pi\)
−0.941158 + 0.337967i \(0.890261\pi\)
\(30\) 0 0
\(31\) −99.9323 + 173.088i −0.578980 + 1.00282i 0.416617 + 0.909082i \(0.363216\pi\)
−0.995597 + 0.0937403i \(0.970118\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.74792 −0.0229299
\(36\) 0 0
\(37\) −18.9070 −0.0840078 −0.0420039 0.999117i \(-0.513374\pi\)
−0.0420039 + 0.999117i \(0.513374\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −28.6512 + 49.6254i −0.109136 + 0.189029i −0.915420 0.402499i \(-0.868142\pi\)
0.806285 + 0.591528i \(0.201475\pi\)
\(42\) 0 0
\(43\) −148.016 256.371i −0.524935 0.909214i −0.999578 0.0290360i \(-0.990756\pi\)
0.474643 0.880178i \(-0.342577\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 28.7692 + 49.8298i 0.0892856 + 0.154647i 0.907209 0.420679i \(-0.138208\pi\)
−0.817924 + 0.575327i \(0.804875\pi\)
\(48\) 0 0
\(49\) 171.049 296.266i 0.498686 0.863749i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −672.005 −1.74164 −0.870821 0.491600i \(-0.836412\pi\)
−0.870821 + 0.491600i \(0.836412\pi\)
\(54\) 0 0
\(55\) 313.276 0.768038
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −273.322 + 473.408i −0.603110 + 1.04462i 0.389237 + 0.921138i \(0.372739\pi\)
−0.992347 + 0.123480i \(0.960595\pi\)
\(60\) 0 0
\(61\) 395.780 + 685.510i 0.830728 + 1.43886i 0.897462 + 0.441092i \(0.145409\pi\)
−0.0667342 + 0.997771i \(0.521258\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.3740 + 30.0926i 0.0331535 + 0.0574235i
\(66\) 0 0
\(67\) −315.780 + 546.947i −0.575801 + 0.997316i 0.420153 + 0.907453i \(0.361976\pi\)
−0.995954 + 0.0898632i \(0.971357\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −102.942 −0.172069 −0.0860346 0.996292i \(-0.527420\pi\)
−0.0860346 + 0.996292i \(0.527420\pi\)
\(72\) 0 0
\(73\) −200.652 −0.321707 −0.160853 0.986978i \(-0.551425\pi\)
−0.160853 + 0.986978i \(0.551425\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 29.7482 51.5253i 0.0440275 0.0762579i
\(78\) 0 0
\(79\) 332.966 + 576.714i 0.474197 + 0.821333i 0.999564 0.0295426i \(-0.00940508\pi\)
−0.525366 + 0.850876i \(0.676072\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 673.703 + 1166.89i 0.890946 + 1.54316i 0.838743 + 0.544527i \(0.183291\pi\)
0.0522027 + 0.998637i \(0.483376\pi\)
\(84\) 0 0
\(85\) 258.528 447.783i 0.329897 0.571399i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.6866 0.0151099 0.00755496 0.999971i \(-0.497595\pi\)
0.00755496 + 0.999971i \(0.497595\pi\)
\(90\) 0 0
\(91\) 6.59922 0.00760204
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 184.516 319.591i 0.199273 0.345151i
\(96\) 0 0
\(97\) 318.689 + 551.986i 0.333588 + 0.577791i 0.983213 0.182464i \(-0.0584073\pi\)
−0.649625 + 0.760255i \(0.725074\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −368.452 638.177i −0.362993 0.628723i 0.625459 0.780257i \(-0.284912\pi\)
−0.988452 + 0.151535i \(0.951579\pi\)
\(102\) 0 0
\(103\) 698.320 1209.53i 0.668034 1.15707i −0.310419 0.950600i \(-0.600469\pi\)
0.978453 0.206470i \(-0.0661974\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 181.225 0.163735 0.0818677 0.996643i \(-0.473911\pi\)
0.0818677 + 0.996643i \(0.473911\pi\)
\(108\) 0 0
\(109\) 1495.62 1.31426 0.657132 0.753775i \(-0.271769\pi\)
0.657132 + 0.753775i \(0.271769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1119.25 1938.60i 0.931771 1.61387i 0.151477 0.988461i \(-0.451597\pi\)
0.780294 0.625413i \(-0.215070\pi\)
\(114\) 0 0
\(115\) −215.398 373.080i −0.174660 0.302521i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −49.0988 85.0416i −0.0378225 0.0655105i
\(120\) 0 0
\(121\) −1297.33 + 2247.05i −0.974706 + 1.68824i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1163.69 0.813075 0.406537 0.913634i \(-0.366736\pi\)
0.406537 + 0.913634i \(0.366736\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −49.4973 + 85.7319i −0.0330122 + 0.0571789i −0.882059 0.471138i \(-0.843843\pi\)
0.849047 + 0.528317i \(0.177177\pi\)
\(132\) 0 0
\(133\) −35.0427 60.6957i −0.0228465 0.0395713i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 87.4537 + 151.474i 0.0545378 + 0.0944622i 0.892005 0.452025i \(-0.149298\pi\)
−0.837468 + 0.546487i \(0.815965\pi\)
\(138\) 0 0
\(139\) −490.757 + 850.016i −0.299464 + 0.518686i −0.976013 0.217711i \(-0.930141\pi\)
0.676550 + 0.736397i \(0.263474\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −435.427 −0.254631
\(144\) 0 0
\(145\) −277.812 −0.159111
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1153.47 1997.86i 0.634200 1.09847i −0.352484 0.935818i \(-0.614663\pi\)
0.986684 0.162649i \(-0.0520037\pi\)
\(150\) 0 0
\(151\) 990.901 + 1716.29i 0.534029 + 0.924965i 0.999210 + 0.0397495i \(0.0126560\pi\)
−0.465181 + 0.885216i \(0.654011\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 499.662 + 865.439i 0.258928 + 0.448476i
\(156\) 0 0
\(157\) 216.573 375.116i 0.110092 0.190685i −0.805715 0.592303i \(-0.798219\pi\)
0.915807 + 0.401618i \(0.131552\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −81.8153 −0.0400494
\(162\) 0 0
\(163\) 3447.72 1.65673 0.828363 0.560192i \(-0.189273\pi\)
0.828363 + 0.560192i \(0.189273\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 527.445 913.561i 0.244401 0.423314i −0.717562 0.696494i \(-0.754742\pi\)
0.961963 + 0.273180i \(0.0880755\pi\)
\(168\) 0 0
\(169\) 1074.35 + 1860.83i 0.489008 + 0.846988i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 316.072 + 547.453i 0.138905 + 0.240590i 0.927082 0.374858i \(-0.122309\pi\)
−0.788178 + 0.615448i \(0.788975\pi\)
\(174\) 0 0
\(175\) −11.8698 + 20.5591i −0.00512727 + 0.00888070i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1329.33 −0.555078 −0.277539 0.960714i \(-0.589519\pi\)
−0.277539 + 0.960714i \(0.589519\pi\)
\(180\) 0 0
\(181\) 1468.52 0.603062 0.301531 0.953456i \(-0.402502\pi\)
0.301531 + 0.953456i \(0.402502\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −47.2674 + 81.8696i −0.0187847 + 0.0325361i
\(186\) 0 0
\(187\) 3239.62 + 5611.19i 1.26687 + 2.19428i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 241.195 + 417.762i 0.0913732 + 0.158263i 0.908089 0.418777i \(-0.137541\pi\)
−0.816716 + 0.577040i \(0.804208\pi\)
\(192\) 0 0
\(193\) 171.677 297.353i 0.0640287 0.110901i −0.832234 0.554425i \(-0.812938\pi\)
0.896263 + 0.443524i \(0.146272\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4507.54 −1.63020 −0.815099 0.579321i \(-0.803318\pi\)
−0.815099 + 0.579321i \(0.803318\pi\)
\(198\) 0 0
\(199\) −1750.03 −0.623397 −0.311699 0.950181i \(-0.600898\pi\)
−0.311699 + 0.950181i \(0.600898\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26.3806 + 45.6925i −0.00912096 + 0.0157980i
\(204\) 0 0
\(205\) 143.256 + 248.127i 0.0488071 + 0.0845363i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2312.18 + 4004.81i 0.765247 + 1.32545i
\(210\) 0 0
\(211\) 2600.02 4503.38i 0.848308 1.46931i −0.0344082 0.999408i \(-0.510955\pi\)
0.882717 0.469906i \(-0.155712\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1480.16 −0.469516
\(216\) 0 0
\(217\) 189.788 0.0593717
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −359.332 + 622.382i −0.109372 + 0.189439i
\(222\) 0 0
\(223\) 1452.74 + 2516.21i 0.436244 + 0.755597i 0.997396 0.0721155i \(-0.0229750\pi\)
−0.561152 + 0.827713i \(0.689642\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 867.010 + 1501.71i 0.253504 + 0.439082i 0.964488 0.264126i \(-0.0850835\pi\)
−0.710984 + 0.703208i \(0.751750\pi\)
\(228\) 0 0
\(229\) −1736.48 + 3007.68i −0.501092 + 0.867917i 0.498907 + 0.866656i \(0.333735\pi\)
−0.999999 + 0.00126168i \(0.999598\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 595.216 0.167356 0.0836779 0.996493i \(-0.473333\pi\)
0.0836779 + 0.996493i \(0.473333\pi\)
\(234\) 0 0
\(235\) 287.692 0.0798595
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1089.58 1887.21i 0.294892 0.510768i −0.680068 0.733149i \(-0.738050\pi\)
0.974960 + 0.222381i \(0.0713830\pi\)
\(240\) 0 0
\(241\) 2181.08 + 3777.74i 0.582970 + 1.00973i 0.995125 + 0.0986197i \(0.0314427\pi\)
−0.412155 + 0.911114i \(0.635224\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −855.246 1481.33i −0.223019 0.386280i
\(246\) 0 0
\(247\) −256.462 + 444.205i −0.0660659 + 0.114430i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2738.00 −0.688531 −0.344266 0.938872i \(-0.611872\pi\)
−0.344266 + 0.938872i \(0.611872\pi\)
\(252\) 0 0
\(253\) 5398.31 1.34146
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −997.546 + 1727.80i −0.242122 + 0.419367i −0.961318 0.275440i \(-0.911177\pi\)
0.719197 + 0.694806i \(0.244510\pi\)
\(258\) 0 0
\(259\) 8.97689 + 15.5484i 0.00215365 + 0.00373024i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1276.78 2211.45i −0.299352 0.518493i 0.676636 0.736318i \(-0.263437\pi\)
−0.975988 + 0.217825i \(0.930104\pi\)
\(264\) 0 0
\(265\) −1680.01 + 2909.87i −0.389443 + 0.674535i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4534.66 −1.02782 −0.513909 0.857845i \(-0.671803\pi\)
−0.513909 + 0.857845i \(0.671803\pi\)
\(270\) 0 0
\(271\) 4390.49 0.984145 0.492073 0.870554i \(-0.336239\pi\)
0.492073 + 0.870554i \(0.336239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 783.189 1356.52i 0.171739 0.297460i
\(276\) 0 0
\(277\) −3363.39 5825.57i −0.729555 1.26363i −0.957072 0.289852i \(-0.906394\pi\)
0.227517 0.973774i \(-0.426939\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3619.36 + 6268.92i 0.768374 + 1.33086i 0.938444 + 0.345431i \(0.112267\pi\)
−0.170070 + 0.985432i \(0.554399\pi\)
\(282\) 0 0
\(283\) −3726.68 + 6454.79i −0.782784 + 1.35582i 0.147530 + 0.989058i \(0.452868\pi\)
−0.930314 + 0.366764i \(0.880466\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 54.4135 0.0111914
\(288\) 0 0
\(289\) 5780.86 1.17665
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1532.37 2654.14i 0.305535 0.529203i −0.671845 0.740692i \(-0.734498\pi\)
0.977380 + 0.211489i \(0.0678312\pi\)
\(294\) 0 0
\(295\) 1366.61 + 2367.04i 0.269719 + 0.467167i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 299.385 + 518.550i 0.0579059 + 0.100296i
\(300\) 0 0
\(301\) −140.554 + 243.446i −0.0269149 + 0.0466179i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3957.80 0.743026
\(306\) 0 0
\(307\) 7427.82 1.38087 0.690437 0.723393i \(-0.257418\pi\)
0.690437 + 0.723393i \(0.257418\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3787.39 6559.96i 0.690557 1.19608i −0.281098 0.959679i \(-0.590699\pi\)
0.971655 0.236402i \(-0.0759681\pi\)
\(312\) 0 0
\(313\) 4314.30 + 7472.59i 0.779101 + 1.34944i 0.932460 + 0.361273i \(0.117658\pi\)
−0.153359 + 0.988171i \(0.549009\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1473.04 + 2551.38i 0.260992 + 0.452051i 0.966506 0.256645i \(-0.0826172\pi\)
−0.705514 + 0.708696i \(0.749284\pi\)
\(318\) 0 0
\(319\) 1740.63 3014.87i 0.305507 0.529154i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7632.40 1.31479
\(324\) 0 0
\(325\) 173.740 0.0296534
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 27.3188 47.3176i 0.00457792 0.00792918i
\(330\) 0 0
\(331\) −1568.72 2717.11i −0.260498 0.451196i 0.705876 0.708335i \(-0.250553\pi\)
−0.966374 + 0.257139i \(0.917220\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1578.90 + 2734.73i 0.257506 + 0.446013i
\(336\) 0 0
\(337\) 1857.87 3217.93i 0.300311 0.520153i −0.675896 0.736997i \(-0.736243\pi\)
0.976206 + 0.216844i \(0.0695763\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12522.5 −1.98866
\(342\) 0 0
\(343\) −650.559 −0.102411
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3030.01 5248.13i 0.468759 0.811915i −0.530603 0.847620i \(-0.678035\pi\)
0.999362 + 0.0357056i \(0.0113679\pi\)
\(348\) 0 0
\(349\) 2817.33 + 4879.75i 0.432115 + 0.748444i 0.997055 0.0766872i \(-0.0244343\pi\)
−0.564941 + 0.825132i \(0.691101\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2278.94 + 3947.24i 0.343614 + 0.595158i 0.985101 0.171977i \(-0.0550154\pi\)
−0.641487 + 0.767134i \(0.721682\pi\)
\(354\) 0 0
\(355\) −257.354 + 445.750i −0.0384758 + 0.0666421i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3206.54 0.471406 0.235703 0.971825i \(-0.424261\pi\)
0.235703 + 0.971825i \(0.424261\pi\)
\(360\) 0 0
\(361\) −1411.62 −0.205805
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −501.631 + 868.850i −0.0719358 + 0.124596i
\(366\) 0 0
\(367\) 4350.11 + 7534.61i 0.618730 + 1.07167i 0.989718 + 0.143033i \(0.0456857\pi\)
−0.370988 + 0.928638i \(0.620981\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 319.063 + 552.633i 0.0446494 + 0.0773350i
\(372\) 0 0
\(373\) −6361.23 + 11018.0i −0.883035 + 1.52946i −0.0350846 + 0.999384i \(0.511170\pi\)
−0.847950 + 0.530076i \(0.822163\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 386.135 0.0527506
\(378\) 0 0
\(379\) 1339.34 0.181523 0.0907613 0.995873i \(-0.471070\pi\)
0.0907613 + 0.995873i \(0.471070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2364.75 + 4095.87i −0.315491 + 0.546447i −0.979542 0.201241i \(-0.935503\pi\)
0.664051 + 0.747688i \(0.268836\pi\)
\(384\) 0 0
\(385\) −148.741 257.627i −0.0196897 0.0341036i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2419.19 4190.16i −0.315316 0.546142i 0.664189 0.747565i \(-0.268777\pi\)
−0.979505 + 0.201422i \(0.935444\pi\)
\(390\) 0 0
\(391\) 4454.90 7716.12i 0.576200 0.998007i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3329.66 0.424135
\(396\) 0 0
\(397\) −7768.23 −0.982056 −0.491028 0.871144i \(-0.663379\pi\)
−0.491028 + 0.871144i \(0.663379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2603.53 + 4509.45i −0.324225 + 0.561575i −0.981355 0.192203i \(-0.938437\pi\)
0.657130 + 0.753777i \(0.271770\pi\)
\(402\) 0 0
\(403\) −694.488 1202.89i −0.0858435 0.148685i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −592.310 1025.91i −0.0721369 0.124945i
\(408\) 0 0
\(409\) 3915.71 6782.22i 0.473398 0.819949i −0.526139 0.850399i \(-0.676361\pi\)
0.999536 + 0.0304502i \(0.00969409\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 519.085 0.0618462
\(414\) 0 0
\(415\) 6737.03 0.796886
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5850.12 + 10132.7i −0.682093 + 1.18142i 0.292248 + 0.956343i \(0.405597\pi\)
−0.974341 + 0.225077i \(0.927737\pi\)
\(420\) 0 0
\(421\) 1618.00 + 2802.45i 0.187307 + 0.324425i 0.944352 0.328938i \(-0.106691\pi\)
−0.757044 + 0.653363i \(0.773357\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1292.64 2238.92i −0.147535 0.255537i
\(426\) 0 0
\(427\) 375.826 650.950i 0.0425937 0.0737744i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7828.48 −0.874907 −0.437453 0.899241i \(-0.644119\pi\)
−0.437453 + 0.899241i \(0.644119\pi\)
\(432\) 0 0
\(433\) −11016.3 −1.22265 −0.611327 0.791378i \(-0.709364\pi\)
−0.611327 + 0.791378i \(0.709364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3179.54 5507.13i 0.348051 0.602842i
\(438\) 0 0
\(439\) 324.458 + 561.977i 0.0352745 + 0.0610973i 0.883124 0.469140i \(-0.155436\pi\)
−0.847849 + 0.530237i \(0.822103\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 457.211 + 791.913i 0.0490356 + 0.0849322i 0.889501 0.456932i \(-0.151052\pi\)
−0.840466 + 0.541865i \(0.817719\pi\)
\(444\) 0 0
\(445\) 31.7166 54.9348i 0.00337868 0.00585204i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9663.37 −1.01569 −0.507843 0.861450i \(-0.669557\pi\)
−0.507843 + 0.861450i \(0.669557\pi\)
\(450\) 0 0
\(451\) −3590.30 −0.374857
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.4980 28.5754i 0.00169987 0.00294426i
\(456\) 0 0
\(457\) −4472.92 7747.32i −0.457843 0.793007i 0.541004 0.841020i \(-0.318044\pi\)
−0.998847 + 0.0480128i \(0.984711\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3194.05 5532.26i −0.322694 0.558922i 0.658349 0.752713i \(-0.271255\pi\)
−0.981043 + 0.193791i \(0.937922\pi\)
\(462\) 0 0
\(463\) 94.8824 164.341i 0.00952389 0.0164959i −0.861224 0.508225i \(-0.830302\pi\)
0.870748 + 0.491729i \(0.163635\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17087.3 −1.69317 −0.846583 0.532257i \(-0.821344\pi\)
−0.846583 + 0.532257i \(0.821344\pi\)
\(468\) 0 0
\(469\) 599.719 0.0590458
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9273.96 16063.0i 0.901516 1.56147i
\(474\) 0 0
\(475\) −922.580 1597.96i −0.0891176 0.154356i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3874.09 6710.13i −0.369545 0.640070i 0.619950 0.784641i \(-0.287153\pi\)
−0.989494 + 0.144572i \(0.953820\pi\)
\(480\) 0 0
\(481\) 65.6978 113.792i 0.00622778 0.0107868i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3186.89 0.298370
\(486\) 0 0
\(487\) 5330.93 0.496032 0.248016 0.968756i \(-0.420221\pi\)
0.248016 + 0.968756i \(0.420221\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7248.89 + 12555.4i −0.666269 + 1.15401i 0.312671 + 0.949861i \(0.398776\pi\)
−0.978940 + 0.204150i \(0.934557\pi\)
\(492\) 0 0
\(493\) −2872.88 4975.98i −0.262451 0.454578i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48.8758 + 84.6554i 0.00441123 + 0.00764047i
\(498\) 0 0
\(499\) 1531.42 2652.50i 0.137386 0.237960i −0.789120 0.614239i \(-0.789463\pi\)
0.926506 + 0.376279i \(0.122797\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10683.8 0.947055 0.473527 0.880779i \(-0.342980\pi\)
0.473527 + 0.880779i \(0.342980\pi\)
\(504\) 0 0
\(505\) −3684.52 −0.324671
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7187.19 12448.6i 0.625868 1.08403i −0.362505 0.931982i \(-0.618078\pi\)
0.988372 0.152053i \(-0.0485883\pi\)
\(510\) 0 0
\(511\) 95.2682 + 165.009i 0.00824739 + 0.0142849i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3491.60 6047.63i −0.298754 0.517457i
\(516\) 0 0
\(517\) −1802.54 + 3122.09i −0.153338 + 0.265589i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9386.82 0.789336 0.394668 0.918824i \(-0.370860\pi\)
0.394668 + 0.918824i \(0.370860\pi\)
\(522\) 0 0
\(523\) 15352.7 1.28361 0.641805 0.766868i \(-0.278186\pi\)
0.641805 + 0.766868i \(0.278186\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10334.1 + 17899.2i −0.854196 + 1.47951i
\(528\) 0 0
\(529\) 2371.81 + 4108.09i 0.194938 + 0.337642i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −199.114 344.876i −0.0161812 0.0280267i
\(534\) 0 0
\(535\) 453.063 784.728i 0.0366124 0.0634145i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21434.2 1.71287
\(540\) 0 0
\(541\) −23730.6 −1.88588 −0.942938 0.332968i \(-0.891950\pi\)
−0.942938 + 0.332968i \(0.891950\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3739.06 6476.25i 0.293879 0.509013i
\(546\) 0 0
\(547\) 6570.32 + 11380.1i 0.513577 + 0.889541i 0.999876 + 0.0157490i \(0.00501327\pi\)
−0.486299 + 0.873792i \(0.661653\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2050.43 3551.45i −0.158532 0.274586i
\(552\) 0 0
\(553\) 316.179 547.638i 0.0243134 0.0421120i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19848.3 1.50987 0.754935 0.655800i \(-0.227668\pi\)
0.754935 + 0.655800i \(0.227668\pi\)
\(558\) 0 0
\(559\) 2057.30 0.155661
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9300.96 16109.7i 0.696250 1.20594i −0.273508 0.961870i \(-0.588184\pi\)
0.969758 0.244070i \(-0.0784827\pi\)
\(564\) 0 0
\(565\) −5596.24 9692.98i −0.416700 0.721746i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9689.01 + 16781.9i 0.713857 + 1.23644i 0.963399 + 0.268072i \(0.0863867\pi\)
−0.249542 + 0.968364i \(0.580280\pi\)
\(570\) 0 0
\(571\) −2341.16 + 4055.02i −0.171584 + 0.297193i −0.938974 0.343988i \(-0.888222\pi\)
0.767390 + 0.641181i \(0.221555\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2153.98 −0.156221
\(576\) 0 0
\(577\) −20543.6 −1.48222 −0.741111 0.671382i \(-0.765701\pi\)
−0.741111 + 0.671382i \(0.765701\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 639.738 1108.06i 0.0456812 0.0791222i
\(582\) 0 0
\(583\) −21052.3 36463.6i −1.49554 2.59034i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1849.17 3202.86i −0.130023 0.225206i 0.793662 0.608359i \(-0.208172\pi\)
−0.923685 + 0.383152i \(0.874838\pi\)
\(588\) 0 0
\(589\) −7375.64 + 12775.0i −0.515973 + 0.893692i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9685.31 0.670705 0.335353 0.942093i \(-0.391145\pi\)
0.335353 + 0.942093i \(0.391145\pi\)
\(594\) 0 0
\(595\) −490.988 −0.0338295
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7004.86 + 12132.8i −0.477814 + 0.827599i −0.999677 0.0254309i \(-0.991904\pi\)
0.521862 + 0.853030i \(0.325238\pi\)
\(600\) 0 0
\(601\) 1621.78 + 2809.01i 0.110073 + 0.190652i 0.915800 0.401636i \(-0.131558\pi\)
−0.805726 + 0.592288i \(0.798225\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6486.67 + 11235.2i 0.435902 + 0.755004i
\(606\) 0 0
\(607\) 5863.32 10155.6i 0.392068 0.679081i −0.600655 0.799509i \(-0.705093\pi\)
0.992722 + 0.120428i \(0.0384266\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −399.868 −0.0264762
\(612\) 0 0
\(613\) 20343.9 1.34043 0.670215 0.742167i \(-0.266202\pi\)
0.670215 + 0.742167i \(0.266202\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10946.7 + 18960.3i −0.714260 + 1.23714i 0.248984 + 0.968508i \(0.419903\pi\)
−0.963244 + 0.268627i \(0.913430\pi\)
\(618\) 0 0
\(619\) −14883.5 25779.0i −0.966426 1.67390i −0.705733 0.708478i \(-0.749382\pi\)
−0.260693 0.965422i \(-0.583951\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.02352 10.4330i −0.000387363 0.000670933i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1955.19 −0.123941
\(630\) 0 0
\(631\) −6594.67 −0.416054 −0.208027 0.978123i \(-0.566704\pi\)
−0.208027 + 0.978123i \(0.566704\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2909.22 5038.91i 0.181809 0.314902i
\(636\) 0 0
\(637\) 1188.72 + 2058.92i 0.0739385 + 0.128065i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8080.71 13996.2i −0.497923 0.862429i 0.502074 0.864825i \(-0.332571\pi\)
−0.999997 + 0.00239620i \(0.999237\pi\)
\(642\) 0 0
\(643\) 7938.09 13749.2i 0.486855 0.843258i −0.513031 0.858370i \(-0.671477\pi\)
0.999886 + 0.0151126i \(0.00481067\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −624.258 −0.0379322 −0.0189661 0.999820i \(-0.506037\pi\)
−0.0189661 + 0.999820i \(0.506037\pi\)
\(648\) 0 0
\(649\) −34250.1 −2.07155
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5073.19 + 8787.03i −0.304027 + 0.526589i −0.977044 0.213037i \(-0.931664\pi\)
0.673018 + 0.739626i \(0.264998\pi\)
\(654\) 0 0
\(655\) 247.487 + 428.659i 0.0147635 + 0.0255712i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12025.2 20828.2i −0.710826 1.23119i −0.964548 0.263909i \(-0.914988\pi\)
0.253722 0.967277i \(-0.418345\pi\)
\(660\) 0 0
\(661\) 493.002 853.904i 0.0290099 0.0502466i −0.851156 0.524913i \(-0.824098\pi\)
0.880166 + 0.474666i \(0.157431\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −350.427 −0.0204345
\(666\) 0 0
\(667\) −4787.20 −0.277903
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24797.6 + 42950.8i −1.42668 + 2.47108i
\(672\) 0 0
\(673\) −15027.8 26028.8i −0.860739 1.49084i −0.871217 0.490899i \(-0.836669\pi\)
0.0104776 0.999945i \(-0.496665\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11185.3 19373.5i −0.634986 1.09983i −0.986518 0.163652i \(-0.947672\pi\)
0.351532 0.936176i \(-0.385661\pi\)
\(678\) 0 0
\(679\) 302.622 524.158i 0.0171040 0.0296249i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27040.9 1.51492 0.757460 0.652881i \(-0.226440\pi\)
0.757460 + 0.652881i \(0.226440\pi\)
\(684\) 0 0
\(685\) 874.537 0.0487801
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2335.08 4044.47i 0.129114 0.223632i
\(690\) 0 0
\(691\) 11300.7 + 19573.5i 0.622143 + 1.07758i 0.989086 + 0.147340i \(0.0470710\pi\)
−0.366943 + 0.930243i \(0.619596\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2453.78 + 4250.08i 0.133924 + 0.231964i
\(696\) 0 0
\(697\) −2962.86 + 5131.82i −0.161013 + 0.278883i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20238.5 −1.09044 −0.545219 0.838294i \(-0.683554\pi\)
−0.545219 + 0.838294i \(0.683554\pi\)
\(702\) 0 0
\(703\) −1395.46 −0.0748658
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −349.876 + 606.003i −0.0186117 + 0.0322363i
\(708\) 0 0
\(709\) −3979.88 6893.36i −0.210815 0.365142i 0.741155 0.671334i \(-0.234278\pi\)
−0.951970 + 0.306192i \(0.900945\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8610.07 + 14913.1i 0.452244 + 0.783309i
\(714\) 0 0
\(715\) −1088.57 + 1885.46i −0.0569373 + 0.0986182i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22376.4 −1.16064 −0.580320 0.814389i \(-0.697072\pi\)
−0.580320 + 0.814389i \(0.697072\pi\)
\(720\) 0 0
\(721\) −1326.23 −0.0685039
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −694.530 + 1202.96i −0.0355782 + 0.0616232i
\(726\) 0 0
\(727\) −6639.11 11499.3i −0.338694 0.586636i 0.645493 0.763766i \(-0.276652\pi\)
−0.984187 + 0.177130i \(0.943319\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15306.5 26511.6i −0.774461 1.34141i
\(732\) 0 0
\(733\) 5863.33 10155.6i 0.295453 0.511740i −0.679637 0.733548i \(-0.737863\pi\)
0.975090 + 0.221809i \(0.0711961\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39570.5 −1.97774
\(738\) 0 0
\(739\) −10822.8 −0.538733 −0.269366 0.963038i \(-0.586814\pi\)
−0.269366 + 0.963038i \(0.586814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7554.29 13084.4i 0.373002 0.646058i −0.617024 0.786944i \(-0.711662\pi\)
0.990026 + 0.140886i \(0.0449953\pi\)
\(744\) 0 0
\(745\) −5767.34 9989.32i −0.283623 0.491249i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −86.0442 149.033i −0.00419758 0.00727042i
\(750\) 0 0
\(751\) 1964.75 3403.05i 0.0954659 0.165352i −0.814337 0.580392i \(-0.802899\pi\)
0.909803 + 0.415040i \(0.136233\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9909.01 0.477650
\(756\) 0 0
\(757\) −32082.2 −1.54035 −0.770176 0.637831i \(-0.779832\pi\)
−0.770176 + 0.637831i \(0.779832\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14674.1 + 25416.2i −0.698994 + 1.21069i 0.269822 + 0.962910i \(0.413035\pi\)
−0.968816 + 0.247782i \(0.920298\pi\)
\(762\) 0 0
\(763\) −710.111 1229.95i −0.0336930 0.0583579i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1899.48 3289.99i −0.0894212 0.154882i
\(768\) 0 0
\(769\) −7775.42 + 13467.4i −0.364615 + 0.631532i −0.988714 0.149813i \(-0.952133\pi\)
0.624099 + 0.781345i \(0.285466\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29954.5 1.39378 0.696888 0.717180i \(-0.254567\pi\)
0.696888 + 0.717180i \(0.254567\pi\)
\(774\) 0 0
\(775\) 4996.62 0.231592
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2114.65 + 3662.67i −0.0972594 + 0.168458i
\(780\) 0 0
\(781\) −3224.91 5585.71i −0.147755 0.255918i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1082.87 1875.58i −0.0492346 0.0852768i
\(786\) 0 0
\(787\) 7801.11 13511.9i 0.353341 0.612005i −0.633491 0.773750i \(-0.718379\pi\)
0.986833 + 0.161745i \(0.0517121\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2125.64 −0.0955488
\(792\) 0 0
\(793\) −5501.01 −0.246339
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15314.5 + 26525.4i −0.680635 + 1.17889i 0.294152 + 0.955759i \(0.404963\pi\)
−0.974787 + 0.223136i \(0.928371\pi\)
\(798\) 0 0
\(799\) 2975.06 + 5152.95i 0.131727 + 0.228158i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6285.95 10887.6i −0.276247 0.478474i
\(804\) 0 0
\(805\) −204.538 + 354.271i −0.00895531 + 0.0155111i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19959.7 0.867425 0.433713 0.901051i \(-0.357203\pi\)
0.433713 + 0.901051i \(0.357203\pi\)
\(810\) 0 0
\(811\) 3768.40 0.163165 0.0815823 0.996667i \(-0.474003\pi\)
0.0815823 + 0.996667i \(0.474003\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8619.30 14929.1i 0.370455 0.641647i
\(816\) 0 0
\(817\) −10924.5 18921.8i −0.467810 0.810270i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14643.8 + 25363.8i 0.622500 + 1.07820i 0.989019 + 0.147791i \(0.0472162\pi\)
−0.366519 + 0.930411i \(0.619451\pi\)
\(822\) 0 0
\(823\) 530.591 919.010i 0.0224729 0.0389243i −0.854570 0.519336i \(-0.826179\pi\)
0.877043 + 0.480412i \(0.159513\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43016.7 1.80875 0.904375 0.426739i \(-0.140338\pi\)
0.904375 + 0.426739i \(0.140338\pi\)
\(828\) 0 0
\(829\) −27947.5 −1.17088 −0.585439 0.810716i \(-0.699078\pi\)
−0.585439 + 0.810716i \(0.699078\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17688.4 30637.2i 0.735734 1.27433i
\(834\) 0 0
\(835\) −2637.22 4567.81i −0.109299 0.189312i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6547.78 + 11341.1i 0.269433 + 0.466672i 0.968716 0.248174i \(-0.0798303\pi\)
−0.699282 + 0.714846i \(0.746497\pi\)
\(840\) 0 0
\(841\) 10650.9 18447.9i 0.436710 0.756403i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10743.5 0.437382
\(846\) 0 0
\(847\) 2463.86 0.0999517
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −814.504 + 1410.76i −0.0328094 + 0.0568276i
\(852\) 0 0
\(853\) −16112.7 27908.1i −0.646764 1.12023i −0.983891 0.178769i \(-0.942789\pi\)
0.337127 0.941459i \(-0.390545\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2625.97 4548.32i −0.104669 0.181293i 0.808934 0.587900i \(-0.200045\pi\)
−0.913603 + 0.406607i \(0.866712\pi\)
\(858\) 0 0
\(859\) 17564.8 30423.1i 0.697675 1.20841i −0.271595 0.962412i \(-0.587551\pi\)
0.969270 0.245998i \(-0.0791156\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47402.3 1.86975 0.934874 0.354979i \(-0.115512\pi\)
0.934874 + 0.354979i \(0.115512\pi\)
\(864\) 0 0
\(865\) 3160.72 0.124240
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20862.0 + 36134.1i −0.814379 + 1.41055i
\(870\) 0 0
\(871\) −2194.54 3801.05i −0.0853721 0.147869i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 59.3490 + 102.796i 0.00229299 + 0.00397157i
\(876\) 0 0
\(877\) −11863.6 + 20548.4i −0.456792 + 0.791187i −0.998789 0.0491932i \(-0.984335\pi\)
0.541997 + 0.840380i \(0.317668\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −43690.9 −1.67081 −0.835406 0.549634i \(-0.814767\pi\)
−0.835406 + 0.549634i \(0.814767\pi\)
\(882\) 0 0
\(883\) 7852.57 0.299275 0.149638 0.988741i \(-0.452189\pi\)
0.149638 + 0.988741i \(0.452189\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8007.15 13868.8i 0.303105 0.524993i −0.673733 0.738975i \(-0.735310\pi\)
0.976838 + 0.213982i \(0.0686435\pi\)
\(888\) 0 0
\(889\) −552.509 956.974i −0.0208443 0.0361034i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2123.35 + 3677.75i 0.0795692 + 0.137818i
\(894\) 0 0
\(895\) −3323.33 + 5756.18i −0.124119 + 0.214981i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11105.0 0.411981
\(900\) 0 0
\(901\) −69492.8 −2.56952
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3671.30 6358.88i 0.134849 0.233565i
\(906\) 0 0
\(907\) −12936.7 22407.0i −0.473600 0.820299i 0.525943 0.850520i \(-0.323712\pi\)
−0.999543 + 0.0302205i \(0.990379\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11646.5 20172.4i −0.423564 0.733634i 0.572721 0.819750i \(-0.305888\pi\)
−0.996285 + 0.0861158i \(0.972554\pi\)
\(912\) 0 0
\(913\) −42211.0 + 73111.5i −1.53010 + 2.65021i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 94.0038 0.00338525
\(918\) 0 0
\(919\) 42422.5 1.52273 0.761365 0.648323i \(-0.224529\pi\)
0.761365 + 0.648323i \(0.224529\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 357.700 619.555i 0.0127561 0.0220942i
\(924\) 0 0
\(925\) 236.337 + 409.348i 0.00840078 + 0.0145506i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17298.0 29961.0i −0.610903 1.05811i −0.991089 0.133205i \(-0.957473\pi\)
0.380186 0.924910i \(-0.375860\pi\)
\(930\) 0 0
\(931\) 12624.5 21866.3i 0.444417 0.769752i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32396.2 1.13312
\(936\) 0 0
\(937\) 17173.8 0.598767 0.299383 0.954133i \(-0.403219\pi\)
0.299383 + 0.954133i \(0.403219\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16746.7 29006.2i 0.580158 1.00486i −0.415303 0.909683i \(-0.636324\pi\)
0.995460 0.0951790i \(-0.0303423\pi\)
\(942\) 0 0
\(943\) 2468.56 + 4275.68i 0.0852466 + 0.147651i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10738.5 18599.6i −0.368484 0.638233i 0.620845 0.783934i \(-0.286790\pi\)
−0.989329 + 0.145700i \(0.953456\pi\)
\(948\) 0 0
\(949\) 697.225 1207.63i 0.0238492 0.0413080i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19415.1 0.659934 0.329967 0.943992i \(-0.392962\pi\)
0.329967 + 0.943992i \(0.392962\pi\)
\(954\) 0 0
\(955\) 2411.95 0.0817266
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 83.0447 143.838i 0.00279630 0.00484334i
\(960\) 0 0
\(961\) −5077.43 8794.37i −0.170435 0.295202i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −858.383 1486.76i −0.0286345 0.0495965i
\(966\) 0 0
\(967\) 27465.9 47572.4i 0.913386 1.58203i 0.104139 0.994563i \(-0.466791\pi\)
0.809247 0.587469i \(-0.199875\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.202715 6.69972e−6 3.34986e−6 1.00000i \(-0.499999\pi\)
3.34986e−6 1.00000i \(0.499999\pi\)
\(972\) 0 0
\(973\) 932.030 0.0307086
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11436.7 19809.0i 0.374508 0.648666i −0.615746 0.787945i \(-0.711145\pi\)
0.990253 + 0.139279i \(0.0444784\pi\)
\(978\) 0 0
\(979\) 397.442 + 688.390i 0.0129748 + 0.0224730i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13129.7 22741.4i −0.426016 0.737881i 0.570499 0.821299i \(-0.306750\pi\)
−0.996515 + 0.0834171i \(0.973417\pi\)
\(984\) 0 0
\(985\) −11268.9 + 19518.2i −0.364524 + 0.631373i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25505.8 −0.820058
\(990\) 0 0
\(991\) −40250.1 −1.29020 −0.645099 0.764099i \(-0.723184\pi\)
−0.645099 + 0.764099i \(0.723184\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4375.06 + 7577.83i −0.139396 + 0.241441i
\(996\) 0 0
\(997\) 29543.6 + 51171.0i 0.938469 + 1.62548i 0.768327 + 0.640057i \(0.221089\pi\)
0.170142 + 0.985420i \(0.445577\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.4.i.u.1081.2 6
3.2 odd 2 1620.4.i.s.1081.2 6
9.2 odd 6 1620.4.i.s.541.2 6
9.4 even 3 1620.4.a.d.1.2 3
9.5 odd 6 1620.4.a.f.1.2 yes 3
9.7 even 3 inner 1620.4.i.u.541.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1620.4.a.d.1.2 3 9.4 even 3
1620.4.a.f.1.2 yes 3 9.5 odd 6
1620.4.i.s.541.2 6 9.2 odd 6
1620.4.i.s.1081.2 6 3.2 odd 2
1620.4.i.u.541.2 6 9.7 even 3 inner
1620.4.i.u.1081.2 6 1.1 even 1 trivial