Properties

Label 1620.4.i.u.541.1
Level $1620$
Weight $4$
Character 1620.541
Analytic conductor $95.583$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(95.5830942093\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 91x^{4} - 294x^{3} + 8292x^{2} - 17280x + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(1.09880 - 1.90317i\) of defining polynomial
Character \(\chi\) \(=\) 1620.541
Dual form 1620.4.i.u.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 + 4.33013i) q^{5} +(-16.8420 + 29.1713i) q^{7} +(-4.74925 + 8.22594i) q^{11} +(-19.8420 - 34.3674i) q^{13} -106.365 q^{17} -96.5507 q^{19} +(20.0276 + 34.6889i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(126.209 - 218.600i) q^{29} +(-24.4363 - 42.3250i) q^{31} -168.420 q^{35} -136.476 q^{37} +(69.5522 + 120.468i) q^{41} +(101.180 - 175.248i) q^{43} +(150.025 - 259.850i) q^{47} +(-395.809 - 685.561i) q^{49} +344.142 q^{53} -47.4925 q^{55} +(-30.4669 - 52.7703i) q^{59} +(61.0612 - 105.761i) q^{61} +(99.2102 - 171.837i) q^{65} +(372.333 + 644.900i) q^{67} -436.971 q^{71} +586.353 q^{73} +(-159.974 - 277.083i) q^{77} +(-236.890 + 410.306i) q^{79} +(-499.432 + 865.041i) q^{83} +(-265.913 - 460.575i) q^{85} -204.463 q^{89} +1336.72 q^{91} +(-241.377 - 418.077i) q^{95} +(816.392 - 1414.03i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{5} - 15 q^{7} + 24 q^{11} - 33 q^{13} - 84 q^{17} + 42 q^{19} - 33 q^{23} - 75 q^{25} + 222 q^{29} - 132 q^{31} - 150 q^{35} + 348 q^{37} - 99 q^{41} + 120 q^{43} + 537 q^{47} - 492 q^{49} - 534 q^{53}+ \cdots + 2556 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −16.8420 + 29.1713i −0.909385 + 1.57510i −0.0944639 + 0.995528i \(0.530114\pi\)
−0.814921 + 0.579572i \(0.803220\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.74925 + 8.22594i −0.130178 + 0.225474i −0.923745 0.383008i \(-0.874888\pi\)
0.793567 + 0.608482i \(0.208221\pi\)
\(12\) 0 0
\(13\) −19.8420 34.3674i −0.423322 0.733216i 0.572940 0.819598i \(-0.305803\pi\)
−0.996262 + 0.0863815i \(0.972470\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −106.365 −1.51749 −0.758745 0.651387i \(-0.774187\pi\)
−0.758745 + 0.651387i \(0.774187\pi\)
\(18\) 0 0
\(19\) −96.5507 −1.16580 −0.582902 0.812543i \(-0.698083\pi\)
−0.582902 + 0.812543i \(0.698083\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 20.0276 + 34.6889i 0.181567 + 0.314484i 0.942414 0.334447i \(-0.108550\pi\)
−0.760847 + 0.648931i \(0.775216\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 126.209 218.600i 0.808151 1.39976i −0.105993 0.994367i \(-0.533802\pi\)
0.914143 0.405391i \(-0.132865\pi\)
\(30\) 0 0
\(31\) −24.4363 42.3250i −0.141577 0.245219i 0.786513 0.617573i \(-0.211884\pi\)
−0.928091 + 0.372354i \(0.878551\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −168.420 −0.813378
\(36\) 0 0
\(37\) −136.476 −0.606391 −0.303195 0.952928i \(-0.598053\pi\)
−0.303195 + 0.952928i \(0.598053\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 69.5522 + 120.468i 0.264933 + 0.458877i 0.967546 0.252695i \(-0.0813170\pi\)
−0.702613 + 0.711572i \(0.747984\pi\)
\(42\) 0 0
\(43\) 101.180 175.248i 0.358831 0.621514i −0.628935 0.777458i \(-0.716509\pi\)
0.987766 + 0.155944i \(0.0498420\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 150.025 259.850i 0.465603 0.806448i −0.533626 0.845721i \(-0.679171\pi\)
0.999229 + 0.0392728i \(0.0125041\pi\)
\(48\) 0 0
\(49\) −395.809 685.561i −1.15396 1.99872i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 344.142 0.891915 0.445958 0.895054i \(-0.352863\pi\)
0.445958 + 0.895054i \(0.352863\pi\)
\(54\) 0 0
\(55\) −47.4925 −0.116434
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −30.4669 52.7703i −0.0672281 0.116443i 0.830452 0.557090i \(-0.188082\pi\)
−0.897680 + 0.440648i \(0.854749\pi\)
\(60\) 0 0
\(61\) 61.0612 105.761i 0.128165 0.221989i −0.794800 0.606871i \(-0.792424\pi\)
0.922966 + 0.384882i \(0.125758\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 99.2102 171.837i 0.189316 0.327904i
\(66\) 0 0
\(67\) 372.333 + 644.900i 0.678922 + 1.17593i 0.975306 + 0.220858i \(0.0708858\pi\)
−0.296384 + 0.955069i \(0.595781\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −436.971 −0.730408 −0.365204 0.930928i \(-0.619001\pi\)
−0.365204 + 0.930928i \(0.619001\pi\)
\(72\) 0 0
\(73\) 586.353 0.940102 0.470051 0.882639i \(-0.344236\pi\)
0.470051 + 0.882639i \(0.344236\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −159.974 277.083i −0.236763 0.410085i
\(78\) 0 0
\(79\) −236.890 + 410.306i −0.337370 + 0.584342i −0.983937 0.178515i \(-0.942871\pi\)
0.646567 + 0.762857i \(0.276204\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −499.432 + 865.041i −0.660479 + 1.14398i 0.320011 + 0.947414i \(0.396313\pi\)
−0.980490 + 0.196569i \(0.937020\pi\)
\(84\) 0 0
\(85\) −265.913 460.575i −0.339321 0.587722i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −204.463 −0.243517 −0.121759 0.992560i \(-0.538853\pi\)
−0.121759 + 0.992560i \(0.538853\pi\)
\(90\) 0 0
\(91\) 1336.72 1.53985
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −241.377 418.077i −0.260682 0.451514i
\(96\) 0 0
\(97\) 816.392 1414.03i 0.854557 1.48014i −0.0224989 0.999747i \(-0.507162\pi\)
0.877056 0.480389i \(-0.159504\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −599.902 + 1039.06i −0.591015 + 1.02367i 0.403081 + 0.915164i \(0.367939\pi\)
−0.994096 + 0.108504i \(0.965394\pi\)
\(102\) 0 0
\(103\) 804.829 + 1394.00i 0.769924 + 1.33355i 0.937604 + 0.347705i \(0.113039\pi\)
−0.167680 + 0.985841i \(0.553628\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 206.586 0.186649 0.0933245 0.995636i \(-0.470251\pi\)
0.0933245 + 0.995636i \(0.470251\pi\)
\(108\) 0 0
\(109\) 1604.44 1.40989 0.704944 0.709263i \(-0.250972\pi\)
0.704944 + 0.709263i \(0.250972\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 947.514 + 1641.14i 0.788802 + 1.36625i 0.926701 + 0.375799i \(0.122632\pi\)
−0.137899 + 0.990446i \(0.544035\pi\)
\(114\) 0 0
\(115\) −100.138 + 173.444i −0.0811994 + 0.140641i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1791.41 3102.81i 1.37998 2.39020i
\(120\) 0 0
\(121\) 620.389 + 1074.55i 0.466108 + 0.807322i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 946.537 0.661351 0.330675 0.943745i \(-0.392723\pi\)
0.330675 + 0.943745i \(0.392723\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 842.052 + 1458.48i 0.561606 + 0.972731i 0.997357 + 0.0726630i \(0.0231498\pi\)
−0.435750 + 0.900068i \(0.643517\pi\)
\(132\) 0 0
\(133\) 1626.11 2816.51i 1.06016 1.83626i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −207.157 + 358.806i −0.129187 + 0.223758i −0.923362 0.383931i \(-0.874570\pi\)
0.794175 + 0.607689i \(0.207903\pi\)
\(138\) 0 0
\(139\) 158.970 + 275.345i 0.0970049 + 0.168017i 0.910444 0.413633i \(-0.135740\pi\)
−0.813439 + 0.581651i \(0.802407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 376.939 0.220428
\(144\) 0 0
\(145\) 1262.09 0.722832
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1518.77 2630.59i −0.835050 1.44635i −0.893990 0.448087i \(-0.852105\pi\)
0.0589400 0.998262i \(-0.481228\pi\)
\(150\) 0 0
\(151\) 1060.40 1836.67i 0.571485 0.989841i −0.424929 0.905227i \(-0.639701\pi\)
0.996414 0.0846140i \(-0.0269657\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 122.182 211.625i 0.0633153 0.109665i
\(156\) 0 0
\(157\) −1254.17 2172.29i −0.637539 1.10425i −0.985971 0.166916i \(-0.946619\pi\)
0.348432 0.937334i \(-0.386714\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1349.22 −0.660458
\(162\) 0 0
\(163\) −1834.04 −0.881308 −0.440654 0.897677i \(-0.645253\pi\)
−0.440654 + 0.897677i \(0.645253\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1594.31 + 2761.43i 0.738753 + 1.27956i 0.953057 + 0.302791i \(0.0979183\pi\)
−0.214304 + 0.976767i \(0.568748\pi\)
\(168\) 0 0
\(169\) 311.087 538.818i 0.141596 0.245252i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −112.474 + 194.811i −0.0494293 + 0.0856141i −0.889681 0.456582i \(-0.849074\pi\)
0.840252 + 0.542196i \(0.182407\pi\)
\(174\) 0 0
\(175\) −421.051 729.282i −0.181877 0.315020i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3815.09 −1.59303 −0.796517 0.604616i \(-0.793326\pi\)
−0.796517 + 0.604616i \(0.793326\pi\)
\(180\) 0 0
\(181\) −3356.82 −1.37851 −0.689256 0.724518i \(-0.742062\pi\)
−0.689256 + 0.724518i \(0.742062\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −341.189 590.957i −0.135593 0.234854i
\(186\) 0 0
\(187\) 505.155 874.954i 0.197543 0.342155i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 415.584 719.812i 0.157438 0.272690i −0.776506 0.630109i \(-0.783010\pi\)
0.933944 + 0.357420i \(0.116343\pi\)
\(192\) 0 0
\(193\) −1519.21 2631.36i −0.566609 0.981395i −0.996898 0.0787038i \(-0.974922\pi\)
0.430290 0.902691i \(-0.358411\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1288.06 −0.465839 −0.232919 0.972496i \(-0.574828\pi\)
−0.232919 + 0.972496i \(0.574828\pi\)
\(198\) 0 0
\(199\) 5069.77 1.80596 0.902981 0.429680i \(-0.141374\pi\)
0.902981 + 0.429680i \(0.141374\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4251.22 + 7363.34i 1.46984 + 2.54584i
\(204\) 0 0
\(205\) −347.761 + 602.340i −0.118481 + 0.205216i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 458.544 794.221i 0.151761 0.262858i
\(210\) 0 0
\(211\) −1261.82 2185.53i −0.411692 0.713071i 0.583383 0.812197i \(-0.301729\pi\)
−0.995075 + 0.0991259i \(0.968395\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1011.80 0.320948
\(216\) 0 0
\(217\) 1646.23 0.514993
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2110.50 + 3655.50i 0.642388 + 1.11265i
\(222\) 0 0
\(223\) 1202.85 2083.40i 0.361206 0.625627i −0.626953 0.779057i \(-0.715698\pi\)
0.988160 + 0.153429i \(0.0490317\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2694.15 4666.40i 0.787739 1.36440i −0.139610 0.990207i \(-0.544585\pi\)
0.927349 0.374197i \(-0.122082\pi\)
\(228\) 0 0
\(229\) −2357.06 4082.55i −0.680171 1.17809i −0.974929 0.222518i \(-0.928572\pi\)
0.294758 0.955572i \(-0.404761\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5065.99 −1.42439 −0.712197 0.701979i \(-0.752300\pi\)
−0.712197 + 0.701979i \(0.752300\pi\)
\(234\) 0 0
\(235\) 1500.25 0.416448
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3318.96 5748.61i −0.898267 1.55584i −0.829709 0.558196i \(-0.811494\pi\)
−0.0685578 0.997647i \(-0.521840\pi\)
\(240\) 0 0
\(241\) 2529.41 4381.07i 0.676073 1.17099i −0.300081 0.953914i \(-0.597014\pi\)
0.976154 0.217079i \(-0.0696530\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1979.04 3427.80i 0.516067 0.893855i
\(246\) 0 0
\(247\) 1915.76 + 3318.20i 0.493511 + 0.854786i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2428.65 −0.610737 −0.305368 0.952234i \(-0.598780\pi\)
−0.305368 + 0.952234i \(0.598780\pi\)
\(252\) 0 0
\(253\) −380.465 −0.0945439
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1860.48 + 3222.45i 0.451571 + 0.782144i 0.998484 0.0550455i \(-0.0175304\pi\)
−0.546913 + 0.837190i \(0.684197\pi\)
\(258\) 0 0
\(259\) 2298.53 3981.17i 0.551443 0.955127i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −108.507 + 187.939i −0.0254403 + 0.0440639i −0.878465 0.477806i \(-0.841432\pi\)
0.853025 + 0.521870i \(0.174765\pi\)
\(264\) 0 0
\(265\) 860.354 + 1490.18i 0.199438 + 0.345437i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 766.464 0.173725 0.0868627 0.996220i \(-0.472316\pi\)
0.0868627 + 0.996220i \(0.472316\pi\)
\(270\) 0 0
\(271\) 4030.90 0.903541 0.451770 0.892134i \(-0.350793\pi\)
0.451770 + 0.892134i \(0.350793\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −118.731 205.649i −0.0260355 0.0450948i
\(276\) 0 0
\(277\) 591.446 1024.41i 0.128291 0.222206i −0.794724 0.606971i \(-0.792384\pi\)
0.923014 + 0.384765i \(0.125718\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4030.41 6980.87i 0.855637 1.48201i −0.0204158 0.999792i \(-0.506499\pi\)
0.876053 0.482215i \(-0.160168\pi\)
\(282\) 0 0
\(283\) 410.066 + 710.254i 0.0861338 + 0.149188i 0.905874 0.423548i \(-0.139215\pi\)
−0.819740 + 0.572736i \(0.805882\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4685.61 −0.963703
\(288\) 0 0
\(289\) 6400.55 1.30278
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −204.870 354.845i −0.0408486 0.0707519i 0.844878 0.534959i \(-0.179673\pi\)
−0.885727 + 0.464207i \(0.846339\pi\)
\(294\) 0 0
\(295\) 152.335 263.852i 0.0300653 0.0520747i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 794.778 1376.60i 0.153723 0.266256i
\(300\) 0 0
\(301\) 3408.14 + 5903.07i 0.652631 + 1.13039i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 610.612 0.114635
\(306\) 0 0
\(307\) 4200.96 0.780982 0.390491 0.920607i \(-0.372305\pi\)
0.390491 + 0.920607i \(0.372305\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4221.56 7311.96i −0.769719 1.33319i −0.937715 0.347405i \(-0.887063\pi\)
0.167996 0.985788i \(-0.446271\pi\)
\(312\) 0 0
\(313\) −67.0176 + 116.078i −0.0121024 + 0.0209620i −0.872013 0.489482i \(-0.837186\pi\)
0.859911 + 0.510444i \(0.170519\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4790.31 + 8297.05i −0.848740 + 1.47006i 0.0335941 + 0.999436i \(0.489305\pi\)
−0.882334 + 0.470624i \(0.844029\pi\)
\(318\) 0 0
\(319\) 1198.79 + 2076.37i 0.210406 + 0.364434i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10269.6 1.76910
\(324\) 0 0
\(325\) 992.102 0.169329
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5053.44 + 8752.82i 0.846825 + 1.46674i
\(330\) 0 0
\(331\) 4379.82 7586.07i 0.727301 1.25972i −0.230718 0.973021i \(-0.574108\pi\)
0.958020 0.286702i \(-0.0925590\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1861.67 + 3224.50i −0.303623 + 0.525891i
\(336\) 0 0
\(337\) −2779.33 4813.94i −0.449257 0.778136i 0.549081 0.835769i \(-0.314978\pi\)
−0.998338 + 0.0576333i \(0.981645\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 464.217 0.0737207
\(342\) 0 0
\(343\) 15111.3 2.37881
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5343.54 9255.28i −0.826675 1.43184i −0.900632 0.434582i \(-0.856896\pi\)
0.0739571 0.997261i \(-0.476437\pi\)
\(348\) 0 0
\(349\) −1969.73 + 3411.67i −0.302113 + 0.523274i −0.976614 0.214999i \(-0.931025\pi\)
0.674502 + 0.738273i \(0.264358\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2648.95 4588.11i 0.399403 0.691786i −0.594249 0.804281i \(-0.702551\pi\)
0.993652 + 0.112495i \(0.0358841\pi\)
\(354\) 0 0
\(355\) −1092.43 1892.14i −0.163324 0.282886i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1103.06 0.162165 0.0810827 0.996707i \(-0.474162\pi\)
0.0810827 + 0.996707i \(0.474162\pi\)
\(360\) 0 0
\(361\) 2463.05 0.359097
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1465.88 + 2538.98i 0.210213 + 0.364100i
\(366\) 0 0
\(367\) 3657.86 6335.60i 0.520269 0.901133i −0.479453 0.877567i \(-0.659165\pi\)
0.999722 0.0235652i \(-0.00750172\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5796.05 + 10039.1i −0.811094 + 1.40486i
\(372\) 0 0
\(373\) 942.902 + 1633.15i 0.130889 + 0.226706i 0.924020 0.382345i \(-0.124884\pi\)
−0.793131 + 0.609052i \(0.791550\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10017.0 −1.36843
\(378\) 0 0
\(379\) −5371.24 −0.727973 −0.363987 0.931404i \(-0.618585\pi\)
−0.363987 + 0.931404i \(0.618585\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.1306 + 62.5800i 0.00482033 + 0.00834906i 0.868426 0.495820i \(-0.165132\pi\)
−0.863605 + 0.504169i \(0.831799\pi\)
\(384\) 0 0
\(385\) 799.871 1385.42i 0.105884 0.183396i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 896.639 1553.02i 0.116867 0.202420i −0.801657 0.597784i \(-0.796048\pi\)
0.918525 + 0.395364i \(0.129381\pi\)
\(390\) 0 0
\(391\) −2130.24 3689.69i −0.275527 0.477226i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2368.90 −0.301753
\(396\) 0 0
\(397\) 596.085 0.0753568 0.0376784 0.999290i \(-0.488004\pi\)
0.0376784 + 0.999290i \(0.488004\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 477.398 + 826.878i 0.0594517 + 0.102973i 0.894219 0.447629i \(-0.147731\pi\)
−0.834768 + 0.550602i \(0.814398\pi\)
\(402\) 0 0
\(403\) −969.733 + 1679.63i −0.119866 + 0.207613i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 648.157 1122.64i 0.0789385 0.136725i
\(408\) 0 0
\(409\) 583.519 + 1010.68i 0.0705456 + 0.122189i 0.899141 0.437660i \(-0.144193\pi\)
−0.828595 + 0.559849i \(0.810859\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2052.50 0.244545
\(414\) 0 0
\(415\) −4994.32 −0.590750
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7428.50 + 12866.5i 0.866124 + 1.50017i 0.865926 + 0.500172i \(0.166730\pi\)
0.000198097 1.00000i \(0.499937\pi\)
\(420\) 0 0
\(421\) −1080.53 + 1871.54i −0.125088 + 0.216659i −0.921767 0.387744i \(-0.873255\pi\)
0.796679 + 0.604402i \(0.206588\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1329.56 2302.87i 0.151749 0.262837i
\(426\) 0 0
\(427\) 2056.79 + 3562.47i 0.233103 + 0.403747i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6031.12 −0.674035 −0.337017 0.941498i \(-0.609418\pi\)
−0.337017 + 0.941498i \(0.609418\pi\)
\(432\) 0 0
\(433\) 7477.24 0.829869 0.414934 0.909851i \(-0.363804\pi\)
0.414934 + 0.909851i \(0.363804\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1933.68 3349.24i −0.211672 0.366626i
\(438\) 0 0
\(439\) 3258.47 5643.83i 0.354256 0.613589i −0.632735 0.774369i \(-0.718068\pi\)
0.986990 + 0.160780i \(0.0514009\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3956.36 6852.61i 0.424317 0.734938i −0.572040 0.820226i \(-0.693848\pi\)
0.996356 + 0.0852879i \(0.0271810\pi\)
\(444\) 0 0
\(445\) −511.158 885.351i −0.0544521 0.0943139i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8686.04 −0.912961 −0.456480 0.889733i \(-0.650890\pi\)
−0.456480 + 0.889733i \(0.650890\pi\)
\(450\) 0 0
\(451\) −1321.28 −0.137953
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3341.80 + 5788.18i 0.344321 + 0.596382i
\(456\) 0 0
\(457\) 3393.69 5878.05i 0.347375 0.601671i −0.638407 0.769699i \(-0.720406\pi\)
0.985782 + 0.168028i \(0.0537398\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7565.43 13103.7i 0.764332 1.32386i −0.176267 0.984342i \(-0.556402\pi\)
0.940599 0.339520i \(-0.110265\pi\)
\(462\) 0 0
\(463\) −6158.34 10666.6i −0.618147 1.07066i −0.989824 0.142300i \(-0.954550\pi\)
0.371676 0.928362i \(-0.378783\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16423.4 1.62737 0.813687 0.581303i \(-0.197457\pi\)
0.813687 + 0.581303i \(0.197457\pi\)
\(468\) 0 0
\(469\) −25083.4 −2.46960
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 961.054 + 1664.60i 0.0934235 + 0.161814i
\(474\) 0 0
\(475\) 1206.88 2090.39i 0.116580 0.201923i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5880.92 + 10186.1i −0.560973 + 0.971635i 0.436438 + 0.899734i \(0.356240\pi\)
−0.997412 + 0.0719004i \(0.977094\pi\)
\(480\) 0 0
\(481\) 2707.96 + 4690.32i 0.256699 + 0.444615i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8163.92 0.764339
\(486\) 0 0
\(487\) −18620.0 −1.73255 −0.866277 0.499564i \(-0.833494\pi\)
−0.866277 + 0.499564i \(0.833494\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5011.10 8679.47i −0.460586 0.797758i 0.538405 0.842687i \(-0.319027\pi\)
−0.998990 + 0.0449288i \(0.985694\pi\)
\(492\) 0 0
\(493\) −13424.2 + 23251.4i −1.22636 + 2.12412i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7359.49 12747.0i 0.664221 1.15047i
\(498\) 0 0
\(499\) 1921.82 + 3328.69i 0.172410 + 0.298623i 0.939262 0.343201i \(-0.111511\pi\)
−0.766852 + 0.641824i \(0.778178\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6782.43 0.601220 0.300610 0.953747i \(-0.402810\pi\)
0.300610 + 0.953747i \(0.402810\pi\)
\(504\) 0 0
\(505\) −5999.02 −0.528620
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8509.53 + 14738.9i 0.741018 + 1.28348i 0.952032 + 0.305999i \(0.0989903\pi\)
−0.211014 + 0.977483i \(0.567676\pi\)
\(510\) 0 0
\(511\) −9875.38 + 17104.7i −0.854914 + 1.48076i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4024.14 + 6970.02i −0.344320 + 0.596380i
\(516\) 0 0
\(517\) 1425.01 + 2468.19i 0.121222 + 0.209963i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19278.7 −1.62114 −0.810572 0.585639i \(-0.800844\pi\)
−0.810572 + 0.585639i \(0.800844\pi\)
\(522\) 0 0
\(523\) 8074.65 0.675105 0.337552 0.941307i \(-0.390401\pi\)
0.337552 + 0.941307i \(0.390401\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2599.17 + 4501.90i 0.214842 + 0.372118i
\(528\) 0 0
\(529\) 5281.29 9147.46i 0.434067 0.751825i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2760.12 4780.66i 0.224304 0.388506i
\(534\) 0 0
\(535\) 516.465 + 894.544i 0.0417360 + 0.0722888i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7519.18 0.600879
\(540\) 0 0
\(541\) −18260.8 −1.45119 −0.725594 0.688123i \(-0.758435\pi\)
−0.725594 + 0.688123i \(0.758435\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4011.11 + 6947.44i 0.315260 + 0.546047i
\(546\) 0 0
\(547\) −5353.71 + 9272.90i −0.418479 + 0.724827i −0.995787 0.0916997i \(-0.970770\pi\)
0.577308 + 0.816527i \(0.304103\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12185.5 + 21106.0i −0.942145 + 1.63184i
\(552\) 0 0
\(553\) −7979.42 13820.8i −0.613598 1.06278i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17348.5 −1.31971 −0.659857 0.751392i \(-0.729383\pi\)
−0.659857 + 0.751392i \(0.729383\pi\)
\(558\) 0 0
\(559\) −8030.44 −0.607605
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7473.57 12944.6i −0.559455 0.969005i −0.997542 0.0700724i \(-0.977677\pi\)
0.438086 0.898933i \(-0.355656\pi\)
\(564\) 0 0
\(565\) −4737.57 + 8205.71i −0.352763 + 0.611003i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13361.5 + 23142.8i −0.984435 + 1.70509i −0.340013 + 0.940421i \(0.610432\pi\)
−0.644422 + 0.764670i \(0.722902\pi\)
\(570\) 0 0
\(571\) −4209.97 7291.88i −0.308549 0.534423i 0.669496 0.742816i \(-0.266510\pi\)
−0.978045 + 0.208393i \(0.933177\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1001.38 −0.0726269
\(576\) 0 0
\(577\) 2921.42 0.210780 0.105390 0.994431i \(-0.466391\pi\)
0.105390 + 0.994431i \(0.466391\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16822.9 29138.1i −1.20126 2.08064i
\(582\) 0 0
\(583\) −1634.42 + 2830.89i −0.116107 + 0.201104i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.3681 + 56.0632i −0.00227594 + 0.00394204i −0.867161 0.498028i \(-0.834058\pi\)
0.864885 + 0.501970i \(0.167391\pi\)
\(588\) 0 0
\(589\) 2359.35 + 4086.51i 0.165051 + 0.285877i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20682.2 1.43223 0.716117 0.697980i \(-0.245918\pi\)
0.716117 + 0.697980i \(0.245918\pi\)
\(594\) 0 0
\(595\) 17914.1 1.23429
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10319.9 17874.6i −0.703939 1.21926i −0.967073 0.254499i \(-0.918089\pi\)
0.263134 0.964759i \(-0.415244\pi\)
\(600\) 0 0
\(601\) 9874.60 17103.3i 0.670205 1.16083i −0.307640 0.951503i \(-0.599539\pi\)
0.977846 0.209327i \(-0.0671273\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3101.95 + 5372.73i −0.208450 + 0.361045i
\(606\) 0 0
\(607\) 7590.19 + 13146.6i 0.507539 + 0.879084i 0.999962 + 0.00872760i \(0.00277812\pi\)
−0.492423 + 0.870356i \(0.663889\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11907.2 −0.788401
\(612\) 0 0
\(613\) −15998.0 −1.05408 −0.527042 0.849839i \(-0.676699\pi\)
−0.527042 + 0.849839i \(0.676699\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 913.698 + 1582.57i 0.0596176 + 0.103261i 0.894294 0.447480i \(-0.147679\pi\)
−0.834676 + 0.550741i \(0.814345\pi\)
\(618\) 0 0
\(619\) 6048.28 10475.9i 0.392732 0.680232i −0.600077 0.799942i \(-0.704863\pi\)
0.992809 + 0.119711i \(0.0381967\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3443.58 5964.45i 0.221451 0.383564i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14516.3 0.920192
\(630\) 0 0
\(631\) 20914.5 1.31948 0.659741 0.751493i \(-0.270666\pi\)
0.659741 + 0.751493i \(0.270666\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2366.34 + 4098.62i 0.147883 + 0.256140i
\(636\) 0 0
\(637\) −15707.3 + 27205.9i −0.976995 + 1.69221i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7245.19 12549.0i 0.446440 0.773257i −0.551711 0.834035i \(-0.686025\pi\)
0.998151 + 0.0607786i \(0.0193583\pi\)
\(642\) 0 0
\(643\) −5758.42 9973.88i −0.353173 0.611713i 0.633631 0.773636i \(-0.281564\pi\)
−0.986803 + 0.161923i \(0.948231\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18928.4 1.15016 0.575078 0.818099i \(-0.304972\pi\)
0.575078 + 0.818099i \(0.304972\pi\)
\(648\) 0 0
\(649\) 578.781 0.0350064
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2572.08 4454.97i −0.154140 0.266978i 0.778606 0.627513i \(-0.215927\pi\)
−0.932745 + 0.360536i \(0.882594\pi\)
\(654\) 0 0
\(655\) −4210.26 + 7292.38i −0.251158 + 0.435018i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1494.22 + 2588.07i −0.0883257 + 0.152985i −0.906804 0.421554i \(-0.861485\pi\)
0.818478 + 0.574538i \(0.194818\pi\)
\(660\) 0 0
\(661\) 6725.48 + 11648.9i 0.395750 + 0.685459i 0.993197 0.116449i \(-0.0371513\pi\)
−0.597446 + 0.801909i \(0.703818\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16261.1 0.948239
\(666\) 0 0
\(667\) 10110.6 0.586935
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 579.990 + 1004.57i 0.0333685 + 0.0577960i
\(672\) 0 0
\(673\) −5042.84 + 8734.46i −0.288837 + 0.500280i −0.973532 0.228549i \(-0.926602\pi\)
0.684695 + 0.728829i \(0.259935\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10258.9 + 17769.0i −0.582396 + 1.00874i 0.412798 + 0.910822i \(0.364551\pi\)
−0.995195 + 0.0979175i \(0.968782\pi\)
\(678\) 0 0
\(679\) 27499.4 + 47630.4i 1.55424 + 2.69203i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15006.6 0.840719 0.420359 0.907358i \(-0.361904\pi\)
0.420359 + 0.907358i \(0.361904\pi\)
\(684\) 0 0
\(685\) −2071.57 −0.115548
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6828.48 11827.3i −0.377568 0.653967i
\(690\) 0 0
\(691\) −12859.3 + 22272.9i −0.707944 + 1.22619i 0.257675 + 0.966232i \(0.417044\pi\)
−0.965619 + 0.259963i \(0.916290\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −794.852 + 1376.72i −0.0433819 + 0.0751397i
\(696\) 0 0
\(697\) −7397.94 12813.6i −0.402033 0.696341i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14908.1 0.803239 0.401619 0.915807i \(-0.368448\pi\)
0.401619 + 0.915807i \(0.368448\pi\)
\(702\) 0 0
\(703\) 13176.8 0.706932
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20207.2 34999.8i −1.07492 1.86182i
\(708\) 0 0
\(709\) −11696.0 + 20258.0i −0.619537 + 1.07307i 0.370033 + 0.929019i \(0.379346\pi\)
−0.989570 + 0.144052i \(0.953987\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 978.803 1695.34i 0.0514116 0.0890475i
\(714\) 0 0
\(715\) 942.348 + 1632.20i 0.0492893 + 0.0853715i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22561.1 1.17022 0.585110 0.810954i \(-0.301051\pi\)
0.585110 + 0.810954i \(0.301051\pi\)
\(720\) 0 0
\(721\) −54219.8 −2.80063
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3155.22 + 5465.00i 0.161630 + 0.279952i
\(726\) 0 0
\(727\) 10432.3 18069.3i 0.532206 0.921809i −0.467087 0.884212i \(-0.654696\pi\)
0.999293 0.0375970i \(-0.0119703\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10762.0 + 18640.3i −0.544523 + 0.943142i
\(732\) 0 0
\(733\) −12277.9 21266.0i −0.618683 1.07159i −0.989726 0.142975i \(-0.954333\pi\)
0.371043 0.928616i \(-0.379000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7073.22 −0.353521
\(738\) 0 0
\(739\) 14842.0 0.738801 0.369400 0.929270i \(-0.379563\pi\)
0.369400 + 0.929270i \(0.379563\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7759.05 + 13439.1i 0.383111 + 0.663568i 0.991505 0.130067i \(-0.0415192\pi\)
−0.608394 + 0.793635i \(0.708186\pi\)
\(744\) 0 0
\(745\) 7593.85 13152.9i 0.373446 0.646827i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3479.33 + 6026.38i −0.169736 + 0.293991i
\(750\) 0 0
\(751\) 19646.8 + 34029.3i 0.954624 + 1.65346i 0.735227 + 0.677821i \(0.237076\pi\)
0.219397 + 0.975636i \(0.429591\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10604.0 0.511152
\(756\) 0 0
\(757\) −30307.7 −1.45516 −0.727578 0.686025i \(-0.759354\pi\)
−0.727578 + 0.686025i \(0.759354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13679.1 23693.0i −0.651601 1.12861i −0.982734 0.185022i \(-0.940764\pi\)
0.331133 0.943584i \(-0.392569\pi\)
\(762\) 0 0
\(763\) −27022.1 + 46803.6i −1.28213 + 2.22071i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1209.05 + 2094.14i −0.0569183 + 0.0985855i
\(768\) 0 0
\(769\) −8641.10 14966.8i −0.405209 0.701843i 0.589136 0.808034i \(-0.299468\pi\)
−0.994346 + 0.106190i \(0.966135\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30621.8 1.42482 0.712411 0.701762i \(-0.247603\pi\)
0.712411 + 0.701762i \(0.247603\pi\)
\(774\) 0 0
\(775\) 1221.82 0.0566309
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6715.32 11631.3i −0.308859 0.534960i
\(780\) 0 0
\(781\) 2075.29 3594.50i 0.0950827 0.164688i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6270.85 10861.4i 0.285116 0.493836i
\(786\) 0 0
\(787\) 16393.3 + 28394.0i 0.742512 + 1.28607i 0.951348 + 0.308118i \(0.0996991\pi\)
−0.208836 + 0.977951i \(0.566968\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −63832.3 −2.86930
\(792\) 0 0
\(793\) −4846.32 −0.217021
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6846.03 11857.7i −0.304265 0.527002i 0.672833 0.739795i \(-0.265077\pi\)
−0.977097 + 0.212793i \(0.931744\pi\)
\(798\) 0 0
\(799\) −15957.4 + 27639.0i −0.706548 + 1.22378i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2784.74 + 4823.31i −0.122380 + 0.211969i
\(804\) 0 0
\(805\) −3373.06 5842.31i −0.147683 0.255794i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39429.7 −1.71357 −0.856783 0.515677i \(-0.827541\pi\)
−0.856783 + 0.515677i \(0.827541\pi\)
\(810\) 0 0
\(811\) −10397.9 −0.450209 −0.225105 0.974335i \(-0.572272\pi\)
−0.225105 + 0.974335i \(0.572272\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4585.10 7941.63i −0.197066 0.341329i
\(816\) 0 0
\(817\) −9768.97 + 16920.3i −0.418327 + 0.724563i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1456.54 2522.80i 0.0619166 0.107243i −0.833405 0.552662i \(-0.813612\pi\)
0.895322 + 0.445419i \(0.146945\pi\)
\(822\) 0 0
\(823\) 8467.29 + 14665.8i 0.358628 + 0.621163i 0.987732 0.156159i \(-0.0499112\pi\)
−0.629104 + 0.777321i \(0.716578\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1191.52 0.0501006 0.0250503 0.999686i \(-0.492025\pi\)
0.0250503 + 0.999686i \(0.492025\pi\)
\(828\) 0 0
\(829\) −5792.37 −0.242675 −0.121337 0.992611i \(-0.538718\pi\)
−0.121337 + 0.992611i \(0.538718\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 42100.3 + 72919.8i 1.75113 + 3.03304i
\(834\) 0 0
\(835\) −7971.57 + 13807.2i −0.330380 + 0.572235i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1310.10 + 2269.16i −0.0539091 + 0.0933734i −0.891721 0.452586i \(-0.850501\pi\)
0.837811 + 0.545960i \(0.183835\pi\)
\(840\) 0 0
\(841\) −19662.8 34056.9i −0.806215 1.39641i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3110.87 0.126647
\(846\) 0 0
\(847\) −41794.5 −1.69548
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2733.28 4734.18i −0.110101 0.190700i
\(852\) 0 0
\(853\) −742.553 + 1286.14i −0.0298060 + 0.0516256i −0.880544 0.473965i \(-0.842822\pi\)
0.850738 + 0.525591i \(0.176156\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6999.92 + 12124.2i −0.279011 + 0.483262i −0.971139 0.238513i \(-0.923340\pi\)
0.692128 + 0.721775i \(0.256673\pi\)
\(858\) 0 0
\(859\) −23003.1 39842.6i −0.913686 1.58255i −0.808814 0.588064i \(-0.799890\pi\)
−0.104872 0.994486i \(-0.533443\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 37731.8 1.48830 0.744152 0.668010i \(-0.232854\pi\)
0.744152 + 0.668010i \(0.232854\pi\)
\(864\) 0 0
\(865\) −1124.74 −0.0442109
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2250.10 3897.29i −0.0878360 0.152136i
\(870\) 0 0
\(871\) 14775.7 25592.3i 0.574806 0.995593i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2105.26 3646.41i 0.0813378 0.140881i
\(876\) 0 0
\(877\) −20221.9 35025.3i −0.778614 1.34860i −0.932741 0.360547i \(-0.882590\pi\)
0.154127 0.988051i \(-0.450743\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35957.5 1.37507 0.687535 0.726151i \(-0.258693\pi\)
0.687535 + 0.726151i \(0.258693\pi\)
\(882\) 0 0
\(883\) 4208.35 0.160387 0.0801937 0.996779i \(-0.474446\pi\)
0.0801937 + 0.996779i \(0.474446\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3307.76 + 5729.21i 0.125213 + 0.216875i 0.921816 0.387627i \(-0.126705\pi\)
−0.796603 + 0.604502i \(0.793372\pi\)
\(888\) 0 0
\(889\) −15941.6 + 27611.7i −0.601422 + 1.04169i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14485.0 + 25088.7i −0.542801 + 0.940160i
\(894\) 0 0
\(895\) −9537.72 16519.8i −0.356213 0.616979i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12336.3 −0.457663
\(900\) 0 0
\(901\) −36604.7 −1.35347
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8392.05 14535.5i −0.308244 0.533895i
\(906\) 0 0
\(907\) 18176.4 31482.4i 0.665421 1.15254i −0.313750 0.949506i \(-0.601585\pi\)
0.979171 0.203037i \(-0.0650813\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1122.98 1945.06i 0.0408409 0.0707384i −0.844882 0.534952i \(-0.820330\pi\)
0.885723 + 0.464214i \(0.153663\pi\)
\(912\) 0 0
\(913\) −4743.85 8216.60i −0.171959 0.297842i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −56727.5 −2.04286
\(918\) 0 0
\(919\) −13665.8 −0.490527 −0.245263 0.969456i \(-0.578874\pi\)
−0.245263 + 0.969456i \(0.578874\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8670.40 + 15017.6i 0.309198 + 0.535547i
\(924\) 0 0
\(925\) 1705.95 2954.78i 0.0606391 0.105030i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21754.8 37680.3i 0.768300 1.33073i −0.170185 0.985412i \(-0.554436\pi\)
0.938484 0.345322i \(-0.112230\pi\)
\(930\) 0 0
\(931\) 38215.6 + 66191.4i 1.34529 + 2.33011i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5051.55 0.176688
\(936\) 0 0
\(937\) −6545.89 −0.228223 −0.114111 0.993468i \(-0.536402\pi\)
−0.114111 + 0.993468i \(0.536402\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −118.739 205.662i −0.00411349 0.00712477i 0.863961 0.503558i \(-0.167976\pi\)
−0.868075 + 0.496433i \(0.834643\pi\)
\(942\) 0 0
\(943\) −2785.93 + 4825.38i −0.0962062 + 0.166634i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17431.3 + 30191.9i −0.598143 + 1.03601i 0.394953 + 0.918701i \(0.370761\pi\)
−0.993095 + 0.117312i \(0.962572\pi\)
\(948\) 0 0
\(949\) −11634.4 20151.4i −0.397966 0.689298i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30830.7 1.04796 0.523979 0.851731i \(-0.324447\pi\)
0.523979 + 0.851731i \(0.324447\pi\)
\(954\) 0 0
\(955\) 4155.84 0.140816
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6977.88 12086.1i −0.234961 0.406964i
\(960\) 0 0
\(961\) 13701.2 23731.2i 0.459912 0.796591i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7596.07 13156.8i 0.253395 0.438893i
\(966\) 0 0
\(967\) 8446.37 + 14629.5i 0.280886 + 0.486509i 0.971603 0.236616i \(-0.0760384\pi\)
−0.690717 + 0.723125i \(0.742705\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3347.26 −0.110627 −0.0553135 0.998469i \(-0.517616\pi\)
−0.0553135 + 0.998469i \(0.517616\pi\)
\(972\) 0 0
\(973\) −10709.5 −0.352859
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10665.8 18473.7i −0.349261 0.604938i 0.636857 0.770982i \(-0.280234\pi\)
−0.986118 + 0.166044i \(0.946901\pi\)
\(978\) 0 0
\(979\) 971.047 1681.90i 0.0317005 0.0549069i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3765.57 + 6522.15i −0.122180 + 0.211622i −0.920627 0.390443i \(-0.872322\pi\)
0.798447 + 0.602065i \(0.205655\pi\)
\(984\) 0 0
\(985\) −3220.14 5577.45i −0.104165 0.180419i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8105.55 0.260608
\(990\) 0 0
\(991\) −26751.6 −0.857510 −0.428755 0.903421i \(-0.641048\pi\)
−0.428755 + 0.903421i \(0.641048\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12674.4 + 21952.8i 0.403825 + 0.699446i
\(996\) 0 0
\(997\) −1419.27 + 2458.25i −0.0450840 + 0.0780878i −0.887687 0.460448i \(-0.847689\pi\)
0.842603 + 0.538535i \(0.181022\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.4.i.u.541.1 6
3.2 odd 2 1620.4.i.s.541.1 6
9.2 odd 6 1620.4.a.f.1.3 yes 3
9.4 even 3 inner 1620.4.i.u.1081.1 6
9.5 odd 6 1620.4.i.s.1081.1 6
9.7 even 3 1620.4.a.d.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1620.4.a.d.1.3 3 9.7 even 3
1620.4.a.f.1.3 yes 3 9.2 odd 6
1620.4.i.s.541.1 6 3.2 odd 2
1620.4.i.s.1081.1 6 9.5 odd 6
1620.4.i.u.541.1 6 1.1 even 1 trivial
1620.4.i.u.1081.1 6 9.4 even 3 inner