Properties

Label 16245.2.a.k
Level 1624516245
Weight 22
Character orbit 16245.a
Self dual yes
Analytic conductor 129.717129.717
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16245,2,Mod(1,16245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16245.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 16245=325192 16245 = 3^{2} \cdot 5 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 16245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 129.716978084129.716978084
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q2q4+q52q73q8+q10+2q11+4q132q14q162q17q20+2q22+4q23+q25+4q26+2q28+4q29+5q322q34+3q98+O(q100) q + q^{2} - q^{4} + q^{5} - 2 q^{7} - 3 q^{8} + q^{10} + 2 q^{11} + 4 q^{13} - 2 q^{14} - q^{16} - 2 q^{17} - q^{20} + 2 q^{22} + 4 q^{23} + q^{25} + 4 q^{26} + 2 q^{28} + 4 q^{29} + 5 q^{32} - 2 q^{34}+ \cdots - 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
1919 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.