Properties

Label 1638.2.bj.a
Level 16381638
Weight 22
Character orbit 1638.bj
Analytic conductor 13.07913.079
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1638=232713 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1638.bj (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.079495851113.0794958511
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123ζ12)q2+(ζ122+1)q4+(ζ1232ζ122+1)q5+ζ12q7+ζ123q8+(ζ123ζ122+ζ12)q10+ζ12q98+O(q100) q + (\zeta_{12}^{3} - \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} + 1) q^{5} + \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + (\zeta_{12}^{3} - \zeta_{12}^{2} + \zeta_{12}) q^{10}+ \cdots - \zeta_{12} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q42q1018q114q142q16+8q1712q196q20+8q23+4q25+4q2614q292q35+6q3712q384q40+12q4114q43+18q97+O(q100) 4 q + 2 q^{4} - 2 q^{10} - 18 q^{11} - 4 q^{14} - 2 q^{16} + 8 q^{17} - 12 q^{19} - 6 q^{20} + 8 q^{23} + 4 q^{25} + 4 q^{26} - 14 q^{29} - 2 q^{35} + 6 q^{37} - 12 q^{38} - 4 q^{40} + 12 q^{41} - 14 q^{43}+ \cdots - 18 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1638Z)×\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times.

nn 379379 703703 911911
χ(n)\chi(n) 1ζ1221 - \zeta_{12}^{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0.732051i 0 0.866025 + 0.500000i 1.00000i 0 0.366025 + 0.633975i
127.2 0.866025 0.500000i 0 0.500000 0.866025i 2.73205i 0 −0.866025 0.500000i 1.00000i 0 −1.36603 2.36603i
1135.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.732051i 0 0.866025 0.500000i 1.00000i 0 0.366025 0.633975i
1135.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.73205i 0 −0.866025 + 0.500000i 1.00000i 0 −1.36603 + 2.36603i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.bj.a 4
3.b odd 2 1 546.2.s.b 4
13.e even 6 1 inner 1638.2.bj.a 4
39.h odd 6 1 546.2.s.b 4
39.k even 12 1 7098.2.a.bo 2
39.k even 12 1 7098.2.a.by 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.s.b 4 3.b odd 2 1
546.2.s.b 4 39.h odd 6 1
1638.2.bj.a 4 1.a even 1 1 trivial
1638.2.bj.a 4 13.e even 6 1 inner
7098.2.a.bo 2 39.k even 12 1
7098.2.a.by 2 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1638,[χ])S_{2}^{\mathrm{new}}(1638, [\chi]):

T54+8T52+4 T_{5}^{4} + 8T_{5}^{2} + 4 Copy content Toggle raw display
T112+9T11+27 T_{11}^{2} + 9T_{11} + 27 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+8T2+4 T^{4} + 8T^{2} + 4 Copy content Toggle raw display
77 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
1111 (T2+9T+27)2 (T^{2} + 9 T + 27)^{2} Copy content Toggle raw display
1313 T4+23T2+169 T^{4} + 23T^{2} + 169 Copy content Toggle raw display
1717 T48T3++169 T^{4} - 8 T^{3} + \cdots + 169 Copy content Toggle raw display
1919 T4+12T3++9 T^{4} + 12 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
2929 T4+14T3++1369 T^{4} + 14 T^{3} + \cdots + 1369 Copy content Toggle raw display
3131 T4+56T2+484 T^{4} + 56T^{2} + 484 Copy content Toggle raw display
3737 T46T3++484 T^{4} - 6 T^{3} + \cdots + 484 Copy content Toggle raw display
4141 T412T3++169 T^{4} - 12 T^{3} + \cdots + 169 Copy content Toggle raw display
4343 T4+14T3++2116 T^{4} + 14 T^{3} + \cdots + 2116 Copy content Toggle raw display
4747 T4+114T2+1521 T^{4} + 114T^{2} + 1521 Copy content Toggle raw display
5353 (T26T39)2 (T^{2} - 6 T - 39)^{2} Copy content Toggle raw display
5959 T4+24T3++1936 T^{4} + 24 T^{3} + \cdots + 1936 Copy content Toggle raw display
6161 T4+4T3++1 T^{4} + 4 T^{3} + \cdots + 1 Copy content Toggle raw display
6767 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
7171 T46T3++6084 T^{4} - 6 T^{3} + \cdots + 6084 Copy content Toggle raw display
7373 T4+32T2+64 T^{4} + 32T^{2} + 64 Copy content Toggle raw display
7979 (T9)4 (T - 9)^{4} Copy content Toggle raw display
8383 T4+248T2+13924 T^{4} + 248 T^{2} + 13924 Copy content Toggle raw display
8989 T448T3++33489 T^{4} - 48 T^{3} + \cdots + 33489 Copy content Toggle raw display
9797 T4+18T3++2916 T^{4} + 18 T^{3} + \cdots + 2916 Copy content Toggle raw display
show more
show less