Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1638,2,Mod(127,1638)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1638.127");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1638.bj (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 546) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
127.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.73205i | 0 | −0.866025 | − | 0.500000i | 1.00000i | 0 | −1.36603 | − | 2.36603i | ||||||||||||||||||||||
127.2 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.732051i | 0 | 0.866025 | + | 0.500000i | − | 1.00000i | 0 | 0.366025 | + | 0.633975i | ||||||||||||||||||||||
1135.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | − | 2.73205i | 0 | −0.866025 | + | 0.500000i | − | 1.00000i | 0 | −1.36603 | + | 2.36603i | |||||||||||||||||||||
1135.2 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | − | 0.732051i | 0 | 0.866025 | − | 0.500000i | 1.00000i | 0 | 0.366025 | − | 0.633975i | ||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1638.2.bj.b | 4 | |
3.b | odd | 2 | 1 | 546.2.s.a | ✓ | 4 | |
13.e | even | 6 | 1 | inner | 1638.2.bj.b | 4 | |
39.h | odd | 6 | 1 | 546.2.s.a | ✓ | 4 | |
39.k | even | 12 | 1 | 7098.2.a.bp | 2 | ||
39.k | even | 12 | 1 | 7098.2.a.bx | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.2.s.a | ✓ | 4 | 3.b | odd | 2 | 1 | |
546.2.s.a | ✓ | 4 | 39.h | odd | 6 | 1 | |
1638.2.bj.b | 4 | 1.a | even | 1 | 1 | trivial | |
1638.2.bj.b | 4 | 13.e | even | 6 | 1 | inner | |
7098.2.a.bp | 2 | 39.k | even | 12 | 1 | ||
7098.2.a.bx | 2 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|