Properties

Label 1638.2.bj.h.1135.1
Level $1638$
Weight $2$
Character 1638.1135
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 18 x^{13} + 143 x^{12} - 148 x^{11} + 172 x^{10} + 1612 x^{9} + \cdots + 97344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1135.1
Root \(-2.02798 - 2.02798i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1135
Dual form 1638.2.bj.h.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} -2.19147i q^{5} +(0.866025 - 0.500000i) q^{7} -1.00000i q^{8} +(-1.09573 + 1.89787i) q^{10} +(-3.54195 - 2.04495i) q^{11} +(3.53557 + 0.706919i) q^{13} -1.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.85204 + 4.93987i) q^{17} +(6.69612 - 3.86601i) q^{19} +(1.89787 - 1.09573i) q^{20} +(2.04495 + 3.54195i) q^{22} +(-1.23791 + 2.14412i) q^{23} +0.197462 q^{25} +(-2.70844 - 2.38000i) q^{26} +(0.866025 + 0.500000i) q^{28} +(4.90888 - 8.50243i) q^{29} +7.19507i q^{31} +(0.866025 - 0.500000i) q^{32} -5.70407i q^{34} +(-1.09573 - 1.89787i) q^{35} +(-8.79425 - 5.07736i) q^{37} -7.73201 q^{38} -2.19147 q^{40} +(-3.14093 - 1.81341i) q^{41} +(-1.37769 - 2.38624i) q^{43} -4.08989i q^{44} +(2.14412 - 1.23791i) q^{46} -7.70008i q^{47} +(0.500000 - 0.866025i) q^{49} +(-0.171007 - 0.0987308i) q^{50} +(1.15558 + 3.41535i) q^{52} +6.31111 q^{53} +(-4.48144 + 7.76207i) q^{55} +(-0.500000 - 0.866025i) q^{56} +(-8.50243 + 4.90888i) q^{58} +(4.20781 - 2.42938i) q^{59} +(5.63434 + 9.75896i) q^{61} +(3.59754 - 6.23112i) q^{62} -1.00000 q^{64} +(1.54919 - 7.74810i) q^{65} +(-5.49094 - 3.17020i) q^{67} +(-2.85204 + 4.93987i) q^{68} +2.19147i q^{70} +(-7.21341 + 4.16466i) q^{71} -7.37805i q^{73} +(5.07736 + 8.79425i) q^{74} +(6.69612 + 3.86601i) q^{76} -4.08989 q^{77} +3.45834 q^{79} +(1.89787 + 1.09573i) q^{80} +(1.81341 + 3.14093i) q^{82} +0.332783i q^{83} +(10.8256 - 6.25015i) q^{85} +2.75539i q^{86} +(-2.04495 + 3.54195i) q^{88} +(-11.7151 - 6.76374i) q^{89} +(3.41535 - 1.15558i) q^{91} -2.47582 q^{92} +(-3.85004 + 6.66847i) q^{94} +(-8.47223 - 14.6743i) q^{95} +(10.0600 - 5.80816i) q^{97} +(-0.866025 + 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{10} - 12 q^{11} + 10 q^{13} - 16 q^{14} - 8 q^{16} - 6 q^{17} - 4 q^{22} - 12 q^{23} - 20 q^{25} - 2 q^{26} + 16 q^{29} + 2 q^{35} - 6 q^{37} + 4 q^{40} + 12 q^{41} - 6 q^{43} + 6 q^{46}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.19147i 0.980055i −0.871707 0.490027i \(-0.836987\pi\)
0.871707 0.490027i \(-0.163013\pi\)
\(6\) 0 0
\(7\) 0.866025 0.500000i 0.327327 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.09573 + 1.89787i −0.346502 + 0.600159i
\(11\) −3.54195 2.04495i −1.06794 0.616574i −0.140321 0.990106i \(-0.544813\pi\)
−0.927617 + 0.373532i \(0.878147\pi\)
\(12\) 0 0
\(13\) 3.53557 + 0.706919i 0.980591 + 0.196064i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.85204 + 4.93987i 0.691720 + 1.19809i 0.971274 + 0.237965i \(0.0764803\pi\)
−0.279553 + 0.960130i \(0.590186\pi\)
\(18\) 0 0
\(19\) 6.69612 3.86601i 1.53620 0.886923i 0.537139 0.843494i \(-0.319505\pi\)
0.999057 0.0434286i \(-0.0138281\pi\)
\(20\) 1.89787 1.09573i 0.424376 0.245014i
\(21\) 0 0
\(22\) 2.04495 + 3.54195i 0.435984 + 0.755146i
\(23\) −1.23791 + 2.14412i −0.258122 + 0.447080i −0.965739 0.259516i \(-0.916437\pi\)
0.707617 + 0.706596i \(0.249770\pi\)
\(24\) 0 0
\(25\) 0.197462 0.0394923
\(26\) −2.70844 2.38000i −0.531168 0.466755i
\(27\) 0 0
\(28\) 0.866025 + 0.500000i 0.163663 + 0.0944911i
\(29\) 4.90888 8.50243i 0.911556 1.57886i 0.0996903 0.995019i \(-0.468215\pi\)
0.811866 0.583844i \(-0.198452\pi\)
\(30\) 0 0
\(31\) 7.19507i 1.29227i 0.763222 + 0.646137i \(0.223616\pi\)
−0.763222 + 0.646137i \(0.776384\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 5.70407i 0.978240i
\(35\) −1.09573 1.89787i −0.185213 0.320798i
\(36\) 0 0
\(37\) −8.79425 5.07736i −1.44577 0.834713i −0.447540 0.894264i \(-0.647700\pi\)
−0.998225 + 0.0595505i \(0.981033\pi\)
\(38\) −7.73201 −1.25430
\(39\) 0 0
\(40\) −2.19147 −0.346502
\(41\) −3.14093 1.81341i −0.490530 0.283208i 0.234264 0.972173i \(-0.424732\pi\)
−0.724794 + 0.688965i \(0.758065\pi\)
\(42\) 0 0
\(43\) −1.37769 2.38624i −0.210096 0.363897i 0.741648 0.670789i \(-0.234044\pi\)
−0.951744 + 0.306892i \(0.900711\pi\)
\(44\) 4.08989i 0.616574i
\(45\) 0 0
\(46\) 2.14412 1.23791i 0.316133 0.182520i
\(47\) 7.70008i 1.12317i −0.827418 0.561586i \(-0.810191\pi\)
0.827418 0.561586i \(-0.189809\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) −0.171007 0.0987308i −0.0241840 0.0139626i
\(51\) 0 0
\(52\) 1.15558 + 3.41535i 0.160250 + 0.473624i
\(53\) 6.31111 0.866898 0.433449 0.901178i \(-0.357296\pi\)
0.433449 + 0.901178i \(0.357296\pi\)
\(54\) 0 0
\(55\) −4.48144 + 7.76207i −0.604277 + 1.04664i
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 0 0
\(58\) −8.50243 + 4.90888i −1.11642 + 0.644568i
\(59\) 4.20781 2.42938i 0.547810 0.316278i −0.200428 0.979708i \(-0.564233\pi\)
0.748238 + 0.663430i \(0.230900\pi\)
\(60\) 0 0
\(61\) 5.63434 + 9.75896i 0.721403 + 1.24951i 0.960438 + 0.278496i \(0.0898357\pi\)
−0.239035 + 0.971011i \(0.576831\pi\)
\(62\) 3.59754 6.23112i 0.456888 0.791353i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.54919 7.74810i 0.192153 0.961033i
\(66\) 0 0
\(67\) −5.49094 3.17020i −0.670825 0.387301i 0.125564 0.992086i \(-0.459926\pi\)
−0.796389 + 0.604784i \(0.793259\pi\)
\(68\) −2.85204 + 4.93987i −0.345860 + 0.599047i
\(69\) 0 0
\(70\) 2.19147i 0.261931i
\(71\) −7.21341 + 4.16466i −0.856074 + 0.494255i −0.862696 0.505723i \(-0.831226\pi\)
0.00662155 + 0.999978i \(0.497892\pi\)
\(72\) 0 0
\(73\) 7.37805i 0.863536i −0.901985 0.431768i \(-0.857890\pi\)
0.901985 0.431768i \(-0.142110\pi\)
\(74\) 5.07736 + 8.79425i 0.590231 + 1.02231i
\(75\) 0 0
\(76\) 6.69612 + 3.86601i 0.768098 + 0.443461i
\(77\) −4.08989 −0.466086
\(78\) 0 0
\(79\) 3.45834 0.389094 0.194547 0.980893i \(-0.437676\pi\)
0.194547 + 0.980893i \(0.437676\pi\)
\(80\) 1.89787 + 1.09573i 0.212188 + 0.122507i
\(81\) 0 0
\(82\) 1.81341 + 3.14093i 0.200258 + 0.346857i
\(83\) 0.332783i 0.0365277i 0.999833 + 0.0182638i \(0.00581389\pi\)
−0.999833 + 0.0182638i \(0.994186\pi\)
\(84\) 0 0
\(85\) 10.8256 6.25015i 1.17420 0.677924i
\(86\) 2.75539i 0.297121i
\(87\) 0 0
\(88\) −2.04495 + 3.54195i −0.217992 + 0.377573i
\(89\) −11.7151 6.76374i −1.24180 0.716956i −0.272342 0.962200i \(-0.587798\pi\)
−0.969461 + 0.245245i \(0.921132\pi\)
\(90\) 0 0
\(91\) 3.41535 1.15558i 0.358026 0.121137i
\(92\) −2.47582 −0.258122
\(93\) 0 0
\(94\) −3.85004 + 6.66847i −0.397101 + 0.687800i
\(95\) −8.47223 14.6743i −0.869233 1.50556i
\(96\) 0 0
\(97\) 10.0600 5.80816i 1.02144 0.589729i 0.106920 0.994268i \(-0.465901\pi\)
0.914521 + 0.404539i \(0.132568\pi\)
\(98\) −0.866025 + 0.500000i −0.0874818 + 0.0505076i
\(99\) 0 0
\(100\) 0.0987308 + 0.171007i 0.00987308 + 0.0171007i
\(101\) 1.12692 1.95189i 0.112133 0.194220i −0.804497 0.593957i \(-0.797565\pi\)
0.916630 + 0.399737i \(0.130898\pi\)
\(102\) 0 0
\(103\) −16.0325 −1.57973 −0.789867 0.613278i \(-0.789850\pi\)
−0.789867 + 0.613278i \(0.789850\pi\)
\(104\) 0.706919 3.53557i 0.0693191 0.346691i
\(105\) 0 0
\(106\) −5.46559 3.15556i −0.530865 0.306495i
\(107\) 4.30793 7.46156i 0.416464 0.721336i −0.579117 0.815244i \(-0.696603\pi\)
0.995581 + 0.0939082i \(0.0299360\pi\)
\(108\) 0 0
\(109\) 10.0318i 0.960870i −0.877030 0.480435i \(-0.840479\pi\)
0.877030 0.480435i \(-0.159521\pi\)
\(110\) 7.76207 4.48144i 0.740085 0.427288i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 9.27760 + 16.0693i 0.872763 + 1.51167i 0.859127 + 0.511763i \(0.171007\pi\)
0.0136363 + 0.999907i \(0.495659\pi\)
\(114\) 0 0
\(115\) 4.69878 + 2.71284i 0.438163 + 0.252974i
\(116\) 9.81776 0.911556
\(117\) 0 0
\(118\) −4.85876 −0.447285
\(119\) 4.93987 + 2.85204i 0.452837 + 0.261446i
\(120\) 0 0
\(121\) 2.86360 + 4.95991i 0.260328 + 0.450901i
\(122\) 11.2687i 1.02022i
\(123\) 0 0
\(124\) −6.23112 + 3.59754i −0.559571 + 0.323068i
\(125\) 11.3901i 1.01876i
\(126\) 0 0
\(127\) −0.132439 + 0.229390i −0.0117520 + 0.0203551i −0.871842 0.489788i \(-0.837074\pi\)
0.860090 + 0.510143i \(0.170408\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −5.21569 + 5.93545i −0.457446 + 0.520574i
\(131\) 5.10237 0.445796 0.222898 0.974842i \(-0.428448\pi\)
0.222898 + 0.974842i \(0.428448\pi\)
\(132\) 0 0
\(133\) 3.86601 6.69612i 0.335225 0.580627i
\(134\) 3.17020 + 5.49094i 0.273863 + 0.474345i
\(135\) 0 0
\(136\) 4.93987 2.85204i 0.423591 0.244560i
\(137\) −18.8812 + 10.9011i −1.61313 + 0.931342i −0.624493 + 0.781030i \(0.714694\pi\)
−0.988639 + 0.150312i \(0.951972\pi\)
\(138\) 0 0
\(139\) −8.22455 14.2453i −0.697597 1.20827i −0.969297 0.245892i \(-0.920919\pi\)
0.271700 0.962382i \(-0.412414\pi\)
\(140\) 1.09573 1.89787i 0.0926065 0.160399i
\(141\) 0 0
\(142\) 8.32933 0.698982
\(143\) −11.0772 9.73392i −0.926322 0.813991i
\(144\) 0 0
\(145\) −18.6328 10.7577i −1.54737 0.893375i
\(146\) −3.68903 + 6.38958i −0.305306 + 0.528806i
\(147\) 0 0
\(148\) 10.1547i 0.834713i
\(149\) 12.8023 7.39139i 1.04880 0.605526i 0.126489 0.991968i \(-0.459629\pi\)
0.922314 + 0.386442i \(0.126296\pi\)
\(150\) 0 0
\(151\) 18.9896i 1.54535i −0.634803 0.772674i \(-0.718919\pi\)
0.634803 0.772674i \(-0.281081\pi\)
\(152\) −3.86601 6.69612i −0.313575 0.543127i
\(153\) 0 0
\(154\) 3.54195 + 2.04495i 0.285418 + 0.164786i
\(155\) 15.7678 1.26650
\(156\) 0 0
\(157\) −13.5474 −1.08120 −0.540601 0.841279i \(-0.681803\pi\)
−0.540601 + 0.841279i \(0.681803\pi\)
\(158\) −2.99501 1.72917i −0.238270 0.137565i
\(159\) 0 0
\(160\) −1.09573 1.89787i −0.0866254 0.150040i
\(161\) 2.47582i 0.195122i
\(162\) 0 0
\(163\) −3.86502 + 2.23147i −0.302732 + 0.174782i −0.643670 0.765304i \(-0.722589\pi\)
0.340938 + 0.940086i \(0.389256\pi\)
\(164\) 3.62683i 0.283208i
\(165\) 0 0
\(166\) 0.166392 0.288199i 0.0129145 0.0223685i
\(167\) 2.86448 + 1.65381i 0.221660 + 0.127976i 0.606719 0.794917i \(-0.292485\pi\)
−0.385059 + 0.922892i \(0.625819\pi\)
\(168\) 0 0
\(169\) 12.0005 + 4.99872i 0.923118 + 0.384517i
\(170\) −12.5003 −0.958729
\(171\) 0 0
\(172\) 1.37769 2.38624i 0.105048 0.181949i
\(173\) −5.06107 8.76603i −0.384786 0.666469i 0.606953 0.794737i \(-0.292391\pi\)
−0.991740 + 0.128268i \(0.959058\pi\)
\(174\) 0 0
\(175\) 0.171007 0.0987308i 0.0129269 0.00746335i
\(176\) 3.54195 2.04495i 0.266984 0.154144i
\(177\) 0 0
\(178\) 6.76374 + 11.7151i 0.506964 + 0.878088i
\(179\) −4.62579 + 8.01210i −0.345748 + 0.598853i −0.985489 0.169737i \(-0.945708\pi\)
0.639742 + 0.768590i \(0.279041\pi\)
\(180\) 0 0
\(181\) 23.2645 1.72923 0.864617 0.502431i \(-0.167561\pi\)
0.864617 + 0.502431i \(0.167561\pi\)
\(182\) −3.53557 0.706919i −0.262074 0.0524003i
\(183\) 0 0
\(184\) 2.14412 + 1.23791i 0.158067 + 0.0912598i
\(185\) −11.1269 + 19.2723i −0.818065 + 1.41693i
\(186\) 0 0
\(187\) 23.3290i 1.70599i
\(188\) 6.66847 3.85004i 0.486348 0.280793i
\(189\) 0 0
\(190\) 16.9445i 1.22928i
\(191\) −4.45096 7.70929i −0.322060 0.557825i 0.658853 0.752272i \(-0.271042\pi\)
−0.980913 + 0.194447i \(0.937709\pi\)
\(192\) 0 0
\(193\) 7.69754 + 4.44417i 0.554081 + 0.319899i 0.750766 0.660568i \(-0.229684\pi\)
−0.196685 + 0.980467i \(0.563018\pi\)
\(194\) −11.6163 −0.834003
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 20.2586 + 11.6963i 1.44336 + 0.833326i 0.998072 0.0620596i \(-0.0197669\pi\)
0.445291 + 0.895386i \(0.353100\pi\)
\(198\) 0 0
\(199\) −1.96804 3.40875i −0.139511 0.241640i 0.787801 0.615930i \(-0.211220\pi\)
−0.927312 + 0.374290i \(0.877886\pi\)
\(200\) 0.197462i 0.0139626i
\(201\) 0 0
\(202\) −1.95189 + 1.12692i −0.137334 + 0.0792900i
\(203\) 9.81776i 0.689072i
\(204\) 0 0
\(205\) −3.97404 + 6.88324i −0.277559 + 0.480747i
\(206\) 13.8846 + 8.01627i 0.967385 + 0.558520i
\(207\) 0 0
\(208\) −2.38000 + 2.70844i −0.165023 + 0.187796i
\(209\) −31.6231 −2.18741
\(210\) 0 0
\(211\) −6.40104 + 11.0869i −0.440666 + 0.763256i −0.997739 0.0672076i \(-0.978591\pi\)
0.557073 + 0.830464i \(0.311924\pi\)
\(212\) 3.15556 + 5.46559i 0.216725 + 0.375378i
\(213\) 0 0
\(214\) −7.46156 + 4.30793i −0.510062 + 0.294484i
\(215\) −5.22936 + 3.01917i −0.356639 + 0.205906i
\(216\) 0 0
\(217\) 3.59754 + 6.23112i 0.244217 + 0.422996i
\(218\) −5.01589 + 8.68777i −0.339719 + 0.588410i
\(219\) 0 0
\(220\) −8.96287 −0.604277
\(221\) 6.59149 + 19.4814i 0.443392 + 1.31046i
\(222\) 0 0
\(223\) 16.3236 + 9.42444i 1.09311 + 0.631107i 0.934403 0.356218i \(-0.115934\pi\)
0.158707 + 0.987326i \(0.449267\pi\)
\(224\) 0.500000 0.866025i 0.0334077 0.0578638i
\(225\) 0 0
\(226\) 18.5552i 1.23427i
\(227\) 1.14246 0.659599i 0.0758276 0.0437791i −0.461607 0.887085i \(-0.652727\pi\)
0.537434 + 0.843306i \(0.319394\pi\)
\(228\) 0 0
\(229\) 4.34109i 0.286867i 0.989660 + 0.143434i \(0.0458143\pi\)
−0.989660 + 0.143434i \(0.954186\pi\)
\(230\) −2.71284 4.69878i −0.178879 0.309828i
\(231\) 0 0
\(232\) −8.50243 4.90888i −0.558212 0.322284i
\(233\) 5.76422 0.377627 0.188813 0.982013i \(-0.439536\pi\)
0.188813 + 0.982013i \(0.439536\pi\)
\(234\) 0 0
\(235\) −16.8745 −1.10077
\(236\) 4.20781 + 2.42938i 0.273905 + 0.158139i
\(237\) 0 0
\(238\) −2.85204 4.93987i −0.184870 0.320204i
\(239\) 13.0951i 0.847049i 0.905885 + 0.423525i \(0.139207\pi\)
−0.905885 + 0.423525i \(0.860793\pi\)
\(240\) 0 0
\(241\) −0.389769 + 0.225033i −0.0251072 + 0.0144957i −0.512501 0.858687i \(-0.671281\pi\)
0.487394 + 0.873182i \(0.337948\pi\)
\(242\) 5.72721i 0.368159i
\(243\) 0 0
\(244\) −5.63434 + 9.75896i −0.360701 + 0.624753i
\(245\) −1.89787 1.09573i −0.121250 0.0700039i
\(246\) 0 0
\(247\) 26.4076 8.93493i 1.68027 0.568516i
\(248\) 7.19507 0.456888
\(249\) 0 0
\(250\) −5.69504 + 9.86410i −0.360186 + 0.623860i
\(251\) −9.35111 16.1966i −0.590237 1.02232i −0.994200 0.107545i \(-0.965701\pi\)
0.403963 0.914775i \(-0.367632\pi\)
\(252\) 0 0
\(253\) 8.76922 5.06291i 0.551316 0.318303i
\(254\) 0.229390 0.132439i 0.0143932 0.00830994i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −9.88929 + 17.1287i −0.616877 + 1.06846i 0.373175 + 0.927761i \(0.378269\pi\)
−0.990052 + 0.140701i \(0.955064\pi\)
\(258\) 0 0
\(259\) −10.1547 −0.630984
\(260\) 7.48464 2.53241i 0.464178 0.157053i
\(261\) 0 0
\(262\) −4.41878 2.55119i −0.272993 0.157613i
\(263\) 11.7723 20.3903i 0.725914 1.25732i −0.232683 0.972553i \(-0.574750\pi\)
0.958597 0.284767i \(-0.0919162\pi\)
\(264\) 0 0
\(265\) 13.8306i 0.849608i
\(266\) −6.69612 + 3.86601i −0.410565 + 0.237040i
\(267\) 0 0
\(268\) 6.34039i 0.387301i
\(269\) 11.4216 + 19.7827i 0.696384 + 1.20617i 0.969712 + 0.244252i \(0.0785424\pi\)
−0.273327 + 0.961921i \(0.588124\pi\)
\(270\) 0 0
\(271\) −11.2562 6.49877i −0.683766 0.394772i 0.117507 0.993072i \(-0.462510\pi\)
−0.801272 + 0.598300i \(0.795843\pi\)
\(272\) −5.70407 −0.345860
\(273\) 0 0
\(274\) 21.8022 1.31712
\(275\) −0.699399 0.403798i −0.0421753 0.0243499i
\(276\) 0 0
\(277\) −13.4753 23.3399i −0.809652 1.40236i −0.913105 0.407724i \(-0.866323\pi\)
0.103453 0.994634i \(-0.467011\pi\)
\(278\) 16.4491i 0.986551i
\(279\) 0 0
\(280\) −1.89787 + 1.09573i −0.113419 + 0.0654827i
\(281\) 0.0773961i 0.00461706i 0.999997 + 0.00230853i \(0.000734829\pi\)
−0.999997 + 0.00230853i \(0.999265\pi\)
\(282\) 0 0
\(283\) 11.1534 19.3183i 0.663002 1.14835i −0.316821 0.948485i \(-0.602616\pi\)
0.979823 0.199867i \(-0.0640511\pi\)
\(284\) −7.21341 4.16466i −0.428037 0.247127i
\(285\) 0 0
\(286\) 4.72618 + 13.9684i 0.279465 + 0.825970i
\(287\) −3.62683 −0.214085
\(288\) 0 0
\(289\) −7.76822 + 13.4550i −0.456954 + 0.791468i
\(290\) 10.7577 + 18.6328i 0.631712 + 1.09416i
\(291\) 0 0
\(292\) 6.38958 3.68903i 0.373922 0.215884i
\(293\) −5.16126 + 2.97986i −0.301524 + 0.174085i −0.643127 0.765759i \(-0.722363\pi\)
0.341603 + 0.939844i \(0.389030\pi\)
\(294\) 0 0
\(295\) −5.32391 9.22128i −0.309970 0.536884i
\(296\) −5.07736 + 8.79425i −0.295116 + 0.511155i
\(297\) 0 0
\(298\) −14.7828 −0.856344
\(299\) −5.89243 + 6.70559i −0.340768 + 0.387794i
\(300\) 0 0
\(301\) −2.38624 1.37769i −0.137540 0.0794089i
\(302\) −9.49478 + 16.4454i −0.546363 + 0.946329i
\(303\) 0 0
\(304\) 7.73201i 0.443461i
\(305\) 21.3865 12.3475i 1.22459 0.707015i
\(306\) 0 0
\(307\) 31.1089i 1.77548i 0.460349 + 0.887738i \(0.347724\pi\)
−0.460349 + 0.887738i \(0.652276\pi\)
\(308\) −2.04495 3.54195i −0.116522 0.201821i
\(309\) 0 0
\(310\) −13.6553 7.88389i −0.775569 0.447775i
\(311\) −3.48435 −0.197579 −0.0987896 0.995108i \(-0.531497\pi\)
−0.0987896 + 0.995108i \(0.531497\pi\)
\(312\) 0 0
\(313\) 10.2750 0.580779 0.290389 0.956909i \(-0.406215\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(314\) 11.7324 + 6.77371i 0.662098 + 0.382262i
\(315\) 0 0
\(316\) 1.72917 + 2.99501i 0.0972734 + 0.168483i
\(317\) 26.5282i 1.48997i 0.667080 + 0.744986i \(0.267544\pi\)
−0.667080 + 0.744986i \(0.732456\pi\)
\(318\) 0 0
\(319\) −34.7740 + 20.0768i −1.94697 + 1.12408i
\(320\) 2.19147i 0.122507i
\(321\) 0 0
\(322\) 1.23791 2.14412i 0.0689860 0.119487i
\(323\) 38.1951 + 22.0520i 2.12523 + 1.22700i
\(324\) 0 0
\(325\) 0.698140 + 0.139589i 0.0387258 + 0.00774302i
\(326\) 4.46294 0.247180
\(327\) 0 0
\(328\) −1.81341 + 3.14093i −0.100129 + 0.173429i
\(329\) −3.85004 6.66847i −0.212260 0.367645i
\(330\) 0 0
\(331\) −24.8329 + 14.3373i −1.36494 + 0.788048i −0.990277 0.139113i \(-0.955575\pi\)
−0.374663 + 0.927161i \(0.622242\pi\)
\(332\) −0.288199 + 0.166392i −0.0158170 + 0.00913192i
\(333\) 0 0
\(334\) −1.65381 2.86448i −0.0904924 0.156737i
\(335\) −6.94739 + 12.0332i −0.379576 + 0.657445i
\(336\) 0 0
\(337\) 4.82923 0.263065 0.131532 0.991312i \(-0.458010\pi\)
0.131532 + 0.991312i \(0.458010\pi\)
\(338\) −7.89340 10.3293i −0.429345 0.561839i
\(339\) 0 0
\(340\) 10.8256 + 6.25015i 0.587099 + 0.338962i
\(341\) 14.7135 25.4846i 0.796783 1.38007i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −2.38624 + 1.37769i −0.128657 + 0.0742803i
\(345\) 0 0
\(346\) 10.1221i 0.544170i
\(347\) 15.2594 + 26.4300i 0.819167 + 1.41884i 0.906297 + 0.422642i \(0.138897\pi\)
−0.0871296 + 0.996197i \(0.527769\pi\)
\(348\) 0 0
\(349\) −4.60570 2.65910i −0.246537 0.142338i 0.371640 0.928377i \(-0.378795\pi\)
−0.618178 + 0.786038i \(0.712129\pi\)
\(350\) −0.197462 −0.0105548
\(351\) 0 0
\(352\) −4.08989 −0.217992
\(353\) 24.4457 + 14.1137i 1.30111 + 0.751199i 0.980595 0.196043i \(-0.0628094\pi\)
0.320519 + 0.947242i \(0.396143\pi\)
\(354\) 0 0
\(355\) 9.12673 + 15.8080i 0.484397 + 0.839000i
\(356\) 13.5275i 0.716956i
\(357\) 0 0
\(358\) 8.01210 4.62579i 0.423453 0.244481i
\(359\) 7.58573i 0.400359i 0.979759 + 0.200180i \(0.0641526\pi\)
−0.979759 + 0.200180i \(0.935847\pi\)
\(360\) 0 0
\(361\) 20.3920 35.3200i 1.07326 1.85895i
\(362\) −20.1476 11.6322i −1.05894 0.611377i
\(363\) 0 0
\(364\) 2.70844 + 2.38000i 0.141961 + 0.124746i
\(365\) −16.1688 −0.846313
\(366\) 0 0
\(367\) 5.92558 10.2634i 0.309313 0.535746i −0.668899 0.743353i \(-0.733234\pi\)
0.978212 + 0.207607i \(0.0665676\pi\)
\(368\) −1.23791 2.14412i −0.0645305 0.111770i
\(369\) 0 0
\(370\) 19.2723 11.1269i 1.00192 0.578459i
\(371\) 5.46559 3.15556i 0.283759 0.163828i
\(372\) 0 0
\(373\) 14.9133 + 25.8306i 0.772182 + 1.33746i 0.936365 + 0.351028i \(0.114168\pi\)
−0.164183 + 0.986430i \(0.552499\pi\)
\(374\) −11.6645 + 20.2035i −0.603158 + 1.04470i
\(375\) 0 0
\(376\) −7.70008 −0.397101
\(377\) 23.3662 26.5908i 1.20342 1.36949i
\(378\) 0 0
\(379\) −1.55298 0.896611i −0.0797711 0.0460558i 0.459584 0.888134i \(-0.347999\pi\)
−0.539355 + 0.842079i \(0.681332\pi\)
\(380\) 8.47223 14.6743i 0.434616 0.752778i
\(381\) 0 0
\(382\) 8.90192i 0.455462i
\(383\) −14.4611 + 8.34912i −0.738927 + 0.426620i −0.821679 0.569950i \(-0.806962\pi\)
0.0827518 + 0.996570i \(0.473629\pi\)
\(384\) 0 0
\(385\) 8.96287i 0.456790i
\(386\) −4.44417 7.69754i −0.226203 0.391794i
\(387\) 0 0
\(388\) 10.0600 + 5.80816i 0.510720 + 0.294864i
\(389\) −15.6288 −0.792413 −0.396207 0.918161i \(-0.629674\pi\)
−0.396207 + 0.918161i \(0.629674\pi\)
\(390\) 0 0
\(391\) −14.1222 −0.714192
\(392\) −0.866025 0.500000i −0.0437409 0.0252538i
\(393\) 0 0
\(394\) −11.6963 20.2586i −0.589251 1.02061i
\(395\) 7.57885i 0.381333i
\(396\) 0 0
\(397\) 4.86182 2.80697i 0.244008 0.140878i −0.373010 0.927827i \(-0.621674\pi\)
0.617017 + 0.786950i \(0.288341\pi\)
\(398\) 3.93608i 0.197298i
\(399\) 0 0
\(400\) −0.0987308 + 0.171007i −0.00493654 + 0.00855034i
\(401\) −21.8559 12.6185i −1.09143 0.630139i −0.157475 0.987523i \(-0.550335\pi\)
−0.933957 + 0.357384i \(0.883669\pi\)
\(402\) 0 0
\(403\) −5.08633 + 25.4387i −0.253368 + 1.26719i
\(404\) 2.25385 0.112133
\(405\) 0 0
\(406\) −4.90888 + 8.50243i −0.243624 + 0.421969i
\(407\) 20.7659 + 35.9675i 1.02933 + 1.78284i
\(408\) 0 0
\(409\) 25.0467 14.4607i 1.23848 0.715037i 0.269697 0.962945i \(-0.413076\pi\)
0.968784 + 0.247908i \(0.0797430\pi\)
\(410\) 6.88324 3.97404i 0.339939 0.196264i
\(411\) 0 0
\(412\) −8.01627 13.8846i −0.394933 0.684045i
\(413\) 2.42938 4.20781i 0.119542 0.207053i
\(414\) 0 0
\(415\) 0.729284 0.0357991
\(416\) 3.41535 1.15558i 0.167452 0.0566568i
\(417\) 0 0
\(418\) 27.3864 + 15.8115i 1.33951 + 0.773368i
\(419\) −16.0468 + 27.7939i −0.783938 + 1.35782i 0.145693 + 0.989330i \(0.453459\pi\)
−0.929631 + 0.368491i \(0.879875\pi\)
\(420\) 0 0
\(421\) 1.02963i 0.0501810i 0.999685 + 0.0250905i \(0.00798740\pi\)
−0.999685 + 0.0250905i \(0.992013\pi\)
\(422\) 11.0869 6.40104i 0.539703 0.311598i
\(423\) 0 0
\(424\) 6.31111i 0.306495i
\(425\) 0.563168 + 0.975435i 0.0273176 + 0.0473155i
\(426\) 0 0
\(427\) 9.75896 + 5.63434i 0.472269 + 0.272665i
\(428\) 8.61586 0.416464
\(429\) 0 0
\(430\) 6.03835 0.291195
\(431\) 30.5908 + 17.6616i 1.47350 + 0.850728i 0.999555 0.0298236i \(-0.00949455\pi\)
0.473950 + 0.880552i \(0.342828\pi\)
\(432\) 0 0
\(433\) 10.0469 + 17.4018i 0.482824 + 0.836276i 0.999806 0.0197204i \(-0.00627760\pi\)
−0.516981 + 0.855997i \(0.672944\pi\)
\(434\) 7.19507i 0.345375i
\(435\) 0 0
\(436\) 8.68777 5.01589i 0.416069 0.240217i
\(437\) 19.1431i 0.915736i
\(438\) 0 0
\(439\) 6.52940 11.3093i 0.311631 0.539761i −0.667084 0.744982i \(-0.732458\pi\)
0.978716 + 0.205221i \(0.0657913\pi\)
\(440\) 7.76207 + 4.48144i 0.370042 + 0.213644i
\(441\) 0 0
\(442\) 4.03232 20.1672i 0.191798 0.959254i
\(443\) −7.46148 −0.354506 −0.177253 0.984165i \(-0.556721\pi\)
−0.177253 + 0.984165i \(0.556721\pi\)
\(444\) 0 0
\(445\) −14.8225 + 25.6734i −0.702656 + 1.21704i
\(446\) −9.42444 16.3236i −0.446260 0.772945i
\(447\) 0 0
\(448\) −0.866025 + 0.500000i −0.0409159 + 0.0236228i
\(449\) 8.28796 4.78506i 0.391133 0.225821i −0.291518 0.956565i \(-0.594160\pi\)
0.682651 + 0.730745i \(0.260827\pi\)
\(450\) 0 0
\(451\) 7.41667 + 12.8460i 0.349237 + 0.604897i
\(452\) −9.27760 + 16.0693i −0.436382 + 0.755835i
\(453\) 0 0
\(454\) −1.31920 −0.0619130
\(455\) −2.53241 7.48464i −0.118721 0.350886i
\(456\) 0 0
\(457\) 22.3679 + 12.9141i 1.04633 + 0.604097i 0.921619 0.388097i \(-0.126867\pi\)
0.124708 + 0.992194i \(0.460201\pi\)
\(458\) 2.17054 3.75949i 0.101423 0.175670i
\(459\) 0 0
\(460\) 5.42568i 0.252974i
\(461\) 1.35535 0.782512i 0.0631250 0.0364452i −0.468105 0.883673i \(-0.655063\pi\)
0.531230 + 0.847227i \(0.321730\pi\)
\(462\) 0 0
\(463\) 20.4863i 0.952080i 0.879424 + 0.476040i \(0.157928\pi\)
−0.879424 + 0.476040i \(0.842072\pi\)
\(464\) 4.90888 + 8.50243i 0.227889 + 0.394716i
\(465\) 0 0
\(466\) −4.99196 2.88211i −0.231248 0.133511i
\(467\) 3.80822 0.176224 0.0881118 0.996111i \(-0.471917\pi\)
0.0881118 + 0.996111i \(0.471917\pi\)
\(468\) 0 0
\(469\) −6.34039 −0.292772
\(470\) 14.6137 + 8.43725i 0.674082 + 0.389181i
\(471\) 0 0
\(472\) −2.42938 4.20781i −0.111821 0.193680i
\(473\) 11.2692i 0.518160i
\(474\) 0 0
\(475\) 1.32223 0.763388i 0.0606679 0.0350266i
\(476\) 5.70407i 0.261446i
\(477\) 0 0
\(478\) 6.54753 11.3407i 0.299477 0.518710i
\(479\) 20.8886 + 12.0600i 0.954425 + 0.551037i 0.894453 0.447163i \(-0.147566\pi\)
0.0599720 + 0.998200i \(0.480899\pi\)
\(480\) 0 0
\(481\) −27.5034 24.1682i −1.25405 1.10197i
\(482\) 0.450067 0.0205000
\(483\) 0 0
\(484\) −2.86360 + 4.95991i −0.130164 + 0.225450i
\(485\) −12.7284 22.0462i −0.577967 1.00107i
\(486\) 0 0
\(487\) −6.65422 + 3.84182i −0.301532 + 0.174089i −0.643131 0.765756i \(-0.722365\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(488\) 9.75896 5.63434i 0.441767 0.255054i
\(489\) 0 0
\(490\) 1.09573 + 1.89787i 0.0495002 + 0.0857369i
\(491\) −16.2767 + 28.1921i −0.734557 + 1.27229i 0.220360 + 0.975419i \(0.429277\pi\)
−0.954917 + 0.296872i \(0.904056\pi\)
\(492\) 0 0
\(493\) 56.0012 2.52217
\(494\) −27.3371 5.46590i −1.22995 0.245923i
\(495\) 0 0
\(496\) −6.23112 3.59754i −0.279785 0.161534i
\(497\) −4.16466 + 7.21341i −0.186811 + 0.323566i
\(498\) 0 0
\(499\) 5.87524i 0.263012i 0.991315 + 0.131506i \(0.0419813\pi\)
−0.991315 + 0.131506i \(0.958019\pi\)
\(500\) 9.86410 5.69504i 0.441136 0.254690i
\(501\) 0 0
\(502\) 18.7022i 0.834721i
\(503\) 11.0238 + 19.0939i 0.491529 + 0.851353i 0.999952 0.00975426i \(-0.00310493\pi\)
−0.508424 + 0.861107i \(0.669772\pi\)
\(504\) 0 0
\(505\) −4.27750 2.46962i −0.190346 0.109897i
\(506\) −10.1258 −0.450148
\(507\) 0 0
\(508\) −0.264877 −0.0117520
\(509\) 5.86940 + 3.38870i 0.260156 + 0.150201i 0.624406 0.781100i \(-0.285341\pi\)
−0.364249 + 0.931301i \(0.618674\pi\)
\(510\) 0 0
\(511\) −3.68903 6.38958i −0.163193 0.282658i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 17.1287 9.88929i 0.755517 0.436198i
\(515\) 35.1348i 1.54823i
\(516\) 0 0
\(517\) −15.7463 + 27.2733i −0.692519 + 1.19948i
\(518\) 8.79425 + 5.07736i 0.386397 + 0.223086i
\(519\) 0 0
\(520\) −7.74810 1.54919i −0.339777 0.0679365i
\(521\) 2.61232 0.114448 0.0572240 0.998361i \(-0.481775\pi\)
0.0572240 + 0.998361i \(0.481775\pi\)
\(522\) 0 0
\(523\) −4.02060 + 6.96388i −0.175809 + 0.304509i −0.940441 0.339957i \(-0.889587\pi\)
0.764632 + 0.644467i \(0.222921\pi\)
\(524\) 2.55119 + 4.41878i 0.111449 + 0.193035i
\(525\) 0 0
\(526\) −20.3903 + 11.7723i −0.889059 + 0.513299i
\(527\) −35.5427 + 20.5206i −1.54827 + 0.893892i
\(528\) 0 0
\(529\) 8.43516 + 14.6101i 0.366746 + 0.635223i
\(530\) −6.91531 + 11.9777i −0.300382 + 0.520276i
\(531\) 0 0
\(532\) 7.73201 0.335225
\(533\) −9.82303 8.63184i −0.425483 0.373886i
\(534\) 0 0
\(535\) −16.3518 9.44070i −0.706949 0.408157i
\(536\) −3.17020 + 5.49094i −0.136932 + 0.237172i
\(537\) 0 0
\(538\) 22.8431i 0.984836i
\(539\) −3.54195 + 2.04495i −0.152563 + 0.0880820i
\(540\) 0 0
\(541\) 21.6552i 0.931029i −0.885040 0.465514i \(-0.845869\pi\)
0.885040 0.465514i \(-0.154131\pi\)
\(542\) 6.49877 + 11.2562i 0.279146 + 0.483495i
\(543\) 0 0
\(544\) 4.93987 + 2.85204i 0.211795 + 0.122280i
\(545\) −21.9843 −0.941705
\(546\) 0 0
\(547\) −32.9495 −1.40882 −0.704409 0.709795i \(-0.748788\pi\)
−0.704409 + 0.709795i \(0.748788\pi\)
\(548\) −18.8812 10.9011i −0.806566 0.465671i
\(549\) 0 0
\(550\) 0.403798 + 0.699399i 0.0172180 + 0.0298225i
\(551\) 75.9111i 3.23392i
\(552\) 0 0
\(553\) 2.99501 1.72917i 0.127361 0.0735318i
\(554\) 26.9506i 1.14502i
\(555\) 0 0
\(556\) 8.22455 14.2453i 0.348799 0.604137i
\(557\) 0.280535 + 0.161967i 0.0118866 + 0.00686276i 0.505932 0.862574i \(-0.331149\pi\)
−0.494045 + 0.869436i \(0.664482\pi\)
\(558\) 0 0
\(559\) −3.18406 9.41062i −0.134671 0.398027i
\(560\) 2.19147 0.0926065
\(561\) 0 0
\(562\) 0.0386980 0.0670270i 0.00163238 0.00282736i
\(563\) −18.3668 31.8123i −0.774070 1.34073i −0.935316 0.353815i \(-0.884884\pi\)
0.161245 0.986914i \(-0.448449\pi\)
\(564\) 0 0
\(565\) 35.2153 20.3316i 1.48152 0.855356i
\(566\) −19.3183 + 11.1534i −0.812008 + 0.468813i
\(567\) 0 0
\(568\) 4.16466 + 7.21341i 0.174745 + 0.302668i
\(569\) 1.32995 2.30354i 0.0557544 0.0965695i −0.836801 0.547507i \(-0.815577\pi\)
0.892556 + 0.450937i \(0.148910\pi\)
\(570\) 0 0
\(571\) 4.29994 0.179947 0.0899735 0.995944i \(-0.471322\pi\)
0.0899735 + 0.995944i \(0.471322\pi\)
\(572\) 2.89122 14.4601i 0.120888 0.604607i
\(573\) 0 0
\(574\) 3.14093 + 1.81341i 0.131100 + 0.0756905i
\(575\) −0.244439 + 0.423381i −0.0101938 + 0.0176562i
\(576\) 0 0
\(577\) 2.08429i 0.0867702i −0.999058 0.0433851i \(-0.986186\pi\)
0.999058 0.0433851i \(-0.0138142\pi\)
\(578\) 13.4550 7.76822i 0.559652 0.323115i
\(579\) 0 0
\(580\) 21.5153i 0.893375i
\(581\) 0.166392 + 0.288199i 0.00690308 + 0.0119565i
\(582\) 0 0
\(583\) −22.3536 12.9059i −0.925793 0.534507i
\(584\) −7.37805 −0.305306
\(585\) 0 0
\(586\) 5.95971 0.246193
\(587\) −12.9028 7.44945i −0.532556 0.307472i 0.209500 0.977809i \(-0.432816\pi\)
−0.742057 + 0.670337i \(0.766150\pi\)
\(588\) 0 0
\(589\) 27.8162 + 48.1791i 1.14615 + 1.98518i
\(590\) 10.6478i 0.438364i
\(591\) 0 0
\(592\) 8.79425 5.07736i 0.361441 0.208678i
\(593\) 1.36361i 0.0559968i −0.999608 0.0279984i \(-0.991087\pi\)
0.999608 0.0279984i \(-0.00891334\pi\)
\(594\) 0 0
\(595\) 6.25015 10.8256i 0.256231 0.443805i
\(596\) 12.8023 + 7.39139i 0.524401 + 0.302763i
\(597\) 0 0
\(598\) 8.45579 2.86100i 0.345783 0.116995i
\(599\) −18.0030 −0.735581 −0.367790 0.929909i \(-0.619886\pi\)
−0.367790 + 0.929909i \(0.619886\pi\)
\(600\) 0 0
\(601\) 6.76892 11.7241i 0.276110 0.478237i −0.694305 0.719681i \(-0.744288\pi\)
0.970415 + 0.241445i \(0.0776213\pi\)
\(602\) 1.37769 + 2.38624i 0.0561506 + 0.0972557i
\(603\) 0 0
\(604\) 16.4454 9.49478i 0.669155 0.386337i
\(605\) 10.8695 6.27550i 0.441907 0.255135i
\(606\) 0 0
\(607\) 1.10556 + 1.91489i 0.0448733 + 0.0777228i 0.887590 0.460635i \(-0.152378\pi\)
−0.842716 + 0.538358i \(0.819045\pi\)
\(608\) 3.86601 6.69612i 0.156787 0.271563i
\(609\) 0 0
\(610\) −24.6950 −0.999870
\(611\) 5.44333 27.2242i 0.220214 1.10137i
\(612\) 0 0
\(613\) 22.5849 + 13.0394i 0.912195 + 0.526656i 0.881137 0.472862i \(-0.156779\pi\)
0.0310579 + 0.999518i \(0.490112\pi\)
\(614\) 15.5544 26.9411i 0.627726 1.08725i
\(615\) 0 0
\(616\) 4.08989i 0.164786i
\(617\) 24.5921 14.1983i 0.990042 0.571601i 0.0847549 0.996402i \(-0.472989\pi\)
0.905287 + 0.424801i \(0.139656\pi\)
\(618\) 0 0
\(619\) 14.7197i 0.591633i 0.955245 + 0.295817i \(0.0955918\pi\)
−0.955245 + 0.295817i \(0.904408\pi\)
\(620\) 7.88389 + 13.6553i 0.316625 + 0.548410i
\(621\) 0 0
\(622\) 3.01753 + 1.74217i 0.120992 + 0.0698548i
\(623\) −13.5275 −0.541967
\(624\) 0 0
\(625\) −23.9737 −0.958948
\(626\) −8.89843 5.13751i −0.355653 0.205336i
\(627\) 0 0
\(628\) −6.77371 11.7324i −0.270300 0.468174i
\(629\) 57.9233i 2.30955i
\(630\) 0 0
\(631\) −24.3684 + 14.0691i −0.970090 + 0.560082i −0.899264 0.437407i \(-0.855897\pi\)
−0.0708262 + 0.997489i \(0.522564\pi\)
\(632\) 3.45834i 0.137565i
\(633\) 0 0
\(634\) 13.2641 22.9741i 0.526785 0.912418i
\(635\) 0.502702 + 0.290235i 0.0199491 + 0.0115176i
\(636\) 0 0
\(637\) 2.38000 2.70844i 0.0942988 0.107312i
\(638\) 40.1536 1.58970
\(639\) 0 0
\(640\) 1.09573 1.89787i 0.0433127 0.0750198i
\(641\) −3.89572 6.74758i −0.153872 0.266513i 0.778776 0.627302i \(-0.215841\pi\)
−0.932648 + 0.360789i \(0.882508\pi\)
\(642\) 0 0
\(643\) −29.3656 + 16.9542i −1.15807 + 0.668610i −0.950840 0.309683i \(-0.899777\pi\)
−0.207227 + 0.978293i \(0.566444\pi\)
\(644\) −2.14412 + 1.23791i −0.0844902 + 0.0487804i
\(645\) 0 0
\(646\) −22.0520 38.1951i −0.867624 1.50277i
\(647\) −2.20290 + 3.81554i −0.0866050 + 0.150004i −0.906074 0.423119i \(-0.860935\pi\)
0.819469 + 0.573123i \(0.194268\pi\)
\(648\) 0 0
\(649\) −19.8718 −0.780036
\(650\) −0.534812 0.469958i −0.0209771 0.0184333i
\(651\) 0 0
\(652\) −3.86502 2.23147i −0.151366 0.0873912i
\(653\) 13.8081 23.9163i 0.540352 0.935916i −0.458532 0.888678i \(-0.651625\pi\)
0.998884 0.0472385i \(-0.0150421\pi\)
\(654\) 0 0
\(655\) 11.1817i 0.436905i
\(656\) 3.14093 1.81341i 0.122633 0.0708019i
\(657\) 0 0
\(658\) 7.70008i 0.300181i
\(659\) 3.72022 + 6.44362i 0.144919 + 0.251008i 0.929343 0.369218i \(-0.120374\pi\)
−0.784423 + 0.620226i \(0.787041\pi\)
\(660\) 0 0
\(661\) 1.02781 + 0.593407i 0.0399772 + 0.0230809i 0.519855 0.854254i \(-0.325986\pi\)
−0.479878 + 0.877335i \(0.659319\pi\)
\(662\) 28.6746 1.11447
\(663\) 0 0
\(664\) 0.332783 0.0129145
\(665\) −14.6743 8.47223i −0.569047 0.328539i
\(666\) 0 0
\(667\) 12.1535 + 21.0505i 0.470585 + 0.815077i
\(668\) 3.30762i 0.127976i
\(669\) 0 0
\(670\) 12.0332 6.94739i 0.464884 0.268401i
\(671\) 46.0876i 1.77919i
\(672\) 0 0
\(673\) −1.14981 + 1.99153i −0.0443219 + 0.0767678i −0.887335 0.461125i \(-0.847446\pi\)
0.843013 + 0.537893i \(0.180779\pi\)
\(674\) −4.18223 2.41461i −0.161094 0.0930074i
\(675\) 0 0
\(676\) 1.67124 + 12.8921i 0.0642786 + 0.495851i
\(677\) −6.12752 −0.235500 −0.117750 0.993043i \(-0.537568\pi\)
−0.117750 + 0.993043i \(0.537568\pi\)
\(678\) 0 0
\(679\) 5.80816 10.0600i 0.222897 0.386068i
\(680\) −6.25015 10.8256i −0.239682 0.415142i
\(681\) 0 0
\(682\) −25.4846 + 14.7135i −0.975855 + 0.563410i
\(683\) 8.69462 5.01984i 0.332691 0.192079i −0.324344 0.945939i \(-0.605144\pi\)
0.657035 + 0.753860i \(0.271810\pi\)
\(684\) 0 0
\(685\) 23.8894 + 41.3776i 0.912766 + 1.58096i
\(686\) −0.500000 + 0.866025i −0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 2.75539 0.105048
\(689\) 22.3134 + 4.46144i 0.850073 + 0.169967i
\(690\) 0 0
\(691\) −19.2007 11.0855i −0.730428 0.421713i 0.0881509 0.996107i \(-0.471904\pi\)
−0.818579 + 0.574394i \(0.805238\pi\)
\(692\) 5.06107 8.76603i 0.192393 0.333235i
\(693\) 0 0
\(694\) 30.5188i 1.15848i
\(695\) −31.2182 + 18.0238i −1.18417 + 0.683684i
\(696\) 0 0
\(697\) 20.6877i 0.783602i
\(698\) 2.65910 + 4.60570i 0.100648 + 0.174328i
\(699\) 0 0
\(700\) 0.171007 + 0.0987308i 0.00646345 + 0.00373167i
\(701\) −21.3510 −0.806416 −0.403208 0.915108i \(-0.632105\pi\)
−0.403208 + 0.915108i \(0.632105\pi\)
\(702\) 0 0
\(703\) −78.5165 −2.96130
\(704\) 3.54195 + 2.04495i 0.133492 + 0.0770718i
\(705\) 0 0
\(706\) −14.1137 24.4457i −0.531178 0.920027i
\(707\) 2.25385i 0.0847646i
\(708\) 0 0
\(709\) 21.5442 12.4385i 0.809109 0.467139i −0.0375376 0.999295i \(-0.511951\pi\)
0.846646 + 0.532156i \(0.178618\pi\)
\(710\) 18.2535i 0.685040i
\(711\) 0 0
\(712\) −6.76374 + 11.7151i −0.253482 + 0.439044i
\(713\) −15.4271 8.90685i −0.577750 0.333564i
\(714\) 0 0
\(715\) −21.3316 + 24.2754i −0.797756 + 0.907847i
\(716\) −9.25158 −0.345748
\(717\) 0 0
\(718\) 3.79286 6.56943i 0.141548 0.245169i
\(719\) −11.5010 19.9203i −0.428914 0.742901i 0.567863 0.823123i \(-0.307770\pi\)
−0.996777 + 0.0802222i \(0.974437\pi\)
\(720\) 0 0
\(721\) −13.8846 + 8.01627i −0.517089 + 0.298542i
\(722\) −35.3200 + 20.3920i −1.31447 + 0.758912i
\(723\) 0 0
\(724\) 11.6322 + 20.1476i 0.432309 + 0.748781i
\(725\) 0.969316 1.67890i 0.0359995 0.0623529i
\(726\) 0 0
\(727\) −3.42508 −0.127029 −0.0635146 0.997981i \(-0.520231\pi\)
−0.0635146 + 0.997981i \(0.520231\pi\)
\(728\) −1.15558 3.41535i −0.0428285 0.126581i
\(729\) 0 0
\(730\) 14.0026 + 8.08439i 0.518258 + 0.299217i
\(731\) 7.85846 13.6113i 0.290656 0.503431i
\(732\) 0 0
\(733\) 21.6929i 0.801247i 0.916243 + 0.400624i \(0.131206\pi\)
−0.916243 + 0.400624i \(0.868794\pi\)
\(734\) −10.2634 + 5.92558i −0.378829 + 0.218717i
\(735\) 0 0
\(736\) 2.47582i 0.0912598i
\(737\) 12.9658 + 22.4573i 0.477600 + 0.827227i
\(738\) 0 0
\(739\) −44.6284 25.7662i −1.64168 0.947826i −0.980236 0.197833i \(-0.936610\pi\)
−0.661447 0.749992i \(-0.730057\pi\)
\(740\) −22.2538 −0.818065
\(741\) 0 0
\(742\) −6.31111 −0.231688
\(743\) 41.6540 + 24.0489i 1.52814 + 0.882270i 0.999440 + 0.0334593i \(0.0106524\pi\)
0.528697 + 0.848811i \(0.322681\pi\)
\(744\) 0 0
\(745\) −16.1980 28.0558i −0.593449 1.02788i
\(746\) 29.8266i 1.09203i
\(747\) 0 0
\(748\) 20.2035 11.6645i 0.738714 0.426497i
\(749\) 8.61586i 0.314817i
\(750\) 0 0
\(751\) −14.7133 + 25.4842i −0.536896 + 0.929931i 0.462173 + 0.886790i \(0.347070\pi\)
−0.999069 + 0.0431415i \(0.986263\pi\)
\(752\) 6.66847 + 3.85004i 0.243174 + 0.140397i
\(753\) 0 0
\(754\) −33.5311 + 11.3452i −1.22113 + 0.413167i
\(755\) −41.6150 −1.51453
\(756\) 0 0
\(757\) 10.0541 17.4142i 0.365423 0.632931i −0.623421 0.781886i \(-0.714258\pi\)
0.988844 + 0.148955i \(0.0475911\pi\)
\(758\) 0.896611 + 1.55298i 0.0325664 + 0.0564067i
\(759\) 0 0
\(760\) −14.6743 + 8.47223i −0.532294 + 0.307320i
\(761\) −28.0939 + 16.2200i −1.01840 + 0.587976i −0.913642 0.406521i \(-0.866742\pi\)
−0.104763 + 0.994497i \(0.533409\pi\)
\(762\) 0 0
\(763\) −5.01589 8.68777i −0.181587 0.314518i
\(764\) 4.45096 7.70929i 0.161030 0.278912i
\(765\) 0 0
\(766\) 16.6982 0.603332
\(767\) 16.5944 5.61466i 0.599188 0.202734i
\(768\) 0 0
\(769\) −37.1542 21.4510i −1.33982 0.773543i −0.353036 0.935610i \(-0.614851\pi\)
−0.986780 + 0.162067i \(0.948184\pi\)
\(770\) 4.48144 7.76207i 0.161500 0.279726i
\(771\) 0 0
\(772\) 8.88835i 0.319899i
\(773\) −12.8157 + 7.39912i −0.460947 + 0.266128i −0.712442 0.701731i \(-0.752411\pi\)
0.251495 + 0.967858i \(0.419078\pi\)
\(774\) 0 0
\(775\) 1.42075i 0.0510349i
\(776\) −5.80816 10.0600i −0.208501 0.361134i
\(777\) 0 0
\(778\) 13.5350 + 7.81441i 0.485252 + 0.280160i
\(779\) −28.0427 −1.00473
\(780\) 0 0
\(781\) 34.0660 1.21898
\(782\) 12.2302 + 7.06112i 0.437352 + 0.252505i
\(783\) 0 0
\(784\) 0.500000 + 0.866025i 0.0178571 + 0.0309295i
\(785\) 29.6887i 1.05964i
\(786\) 0 0
\(787\) 24.2123 13.9790i 0.863076 0.498297i −0.00196533 0.999998i \(-0.500626\pi\)
0.865041 + 0.501701i \(0.167292\pi\)
\(788\) 23.3926i 0.833326i
\(789\) 0 0
\(790\) −3.78942 + 6.56347i −0.134822 + 0.233518i
\(791\) 16.0693 + 9.27760i 0.571358 + 0.329873i
\(792\) 0 0
\(793\) 13.0218 + 38.4865i 0.462418 + 1.36670i
\(794\) −5.61394 −0.199231
\(795\) 0 0
\(796\) 1.96804 3.40875i 0.0697554 0.120820i
\(797\) 8.78182 + 15.2106i 0.311068 + 0.538786i 0.978594 0.205801i \(-0.0659800\pi\)
−0.667526 + 0.744587i \(0.732647\pi\)
\(798\) 0 0
\(799\) 38.0374 21.9609i 1.34567 0.776921i
\(800\) 0.171007 0.0987308i 0.00604600 0.00349066i
\(801\) 0 0
\(802\) 12.6185 + 21.8559i 0.445575 + 0.771759i
\(803\) −15.0877 + 26.1327i −0.532434 + 0.922203i
\(804\) 0 0
\(805\) 5.42568 0.191230
\(806\) 17.1242 19.4874i 0.603176 0.686414i
\(807\) 0 0
\(808\) −1.95189 1.12692i −0.0686672 0.0396450i
\(809\) 5.97749 10.3533i 0.210157 0.364003i −0.741606 0.670835i \(-0.765936\pi\)
0.951764 + 0.306832i \(0.0992690\pi\)
\(810\) 0 0
\(811\) 5.88549i 0.206667i −0.994647 0.103334i \(-0.967049\pi\)
0.994647 0.103334i \(-0.0329510\pi\)
\(812\) 8.50243 4.90888i 0.298377 0.172268i
\(813\) 0 0
\(814\) 41.5317i 1.45569i
\(815\) 4.89020 + 8.47008i 0.171296 + 0.296694i
\(816\) 0 0
\(817\) −18.4504 10.6523i −0.645498 0.372678i
\(818\) −28.9215 −1.01122
\(819\) 0 0
\(820\) −7.94809 −0.277559
\(821\) 26.2172 + 15.1365i 0.914987 + 0.528268i 0.882032 0.471189i \(-0.156175\pi\)
0.0329546 + 0.999457i \(0.489508\pi\)
\(822\) 0 0
\(823\) 18.2981 + 31.6932i 0.637831 + 1.10476i 0.985908 + 0.167290i \(0.0535016\pi\)
−0.348076 + 0.937466i \(0.613165\pi\)
\(824\) 16.0325i 0.558520i
\(825\) 0 0
\(826\) −4.20781 + 2.42938i −0.146408 + 0.0845289i
\(827\) 43.4520i 1.51098i −0.655163 0.755488i \(-0.727400\pi\)
0.655163 0.755488i \(-0.272600\pi\)
\(828\) 0 0
\(829\) −0.418633 + 0.725093i −0.0145397 + 0.0251835i −0.873204 0.487355i \(-0.837962\pi\)
0.858664 + 0.512539i \(0.171295\pi\)
\(830\) −0.631578 0.364642i −0.0219224 0.0126569i
\(831\) 0 0
\(832\) −3.53557 0.706919i −0.122574 0.0245080i
\(833\) 5.70407 0.197634
\(834\) 0 0
\(835\) 3.62427 6.27742i 0.125423 0.217239i
\(836\) −15.8115 27.3864i −0.546854 0.947178i
\(837\) 0 0
\(838\) 27.7939 16.0468i 0.960124 0.554328i
\(839\) 33.2964 19.2237i 1.14952 0.663675i 0.200749 0.979643i \(-0.435663\pi\)
0.948770 + 0.315968i \(0.102329\pi\)
\(840\) 0 0
\(841\) −33.6942 58.3601i −1.16187 2.01242i
\(842\) 0.514814 0.891684i 0.0177417 0.0307295i
\(843\) 0 0
\(844\) −12.8021 −0.440666
\(845\) 10.9545 26.2988i 0.376848 0.904706i
\(846\) 0 0
\(847\) 4.95991 + 2.86360i 0.170424 + 0.0983946i
\(848\) −3.15556 + 5.46559i −0.108362 + 0.187689i
\(849\) 0 0
\(850\) 1.12634i 0.0386330i
\(851\) 21.7730 12.5706i 0.746367 0.430915i
\(852\) 0 0
\(853\) 32.9422i 1.12792i 0.825803 + 0.563959i \(0.190722\pi\)
−0.825803 + 0.563959i \(0.809278\pi\)
\(854\) −5.63434 9.75896i −0.192803 0.333945i
\(855\) 0 0
\(856\) −7.46156 4.30793i −0.255031 0.147242i
\(857\) 22.1242 0.755750 0.377875 0.925857i \(-0.376655\pi\)
0.377875 + 0.925857i \(0.376655\pi\)
\(858\) 0 0
\(859\) 18.4476 0.629425 0.314712 0.949187i \(-0.398092\pi\)
0.314712 + 0.949187i \(0.398092\pi\)
\(860\) −5.22936 3.01917i −0.178320 0.102953i
\(861\) 0 0
\(862\) −17.6616 30.5908i −0.601556 1.04193i
\(863\) 45.1859i 1.53814i −0.639162 0.769072i \(-0.720719\pi\)
0.639162 0.769072i \(-0.279281\pi\)
\(864\) 0 0
\(865\) −19.2105 + 11.0912i −0.653176 + 0.377112i
\(866\) 20.0939i 0.682817i
\(867\) 0 0
\(868\) −3.59754 + 6.23112i −0.122108 + 0.211498i
\(869\) −12.2493 7.07212i −0.415528 0.239905i
\(870\) 0 0
\(871\) −17.1725 15.0901i −0.581869 0.511309i
\(872\) −10.0318 −0.339719
\(873\) 0 0
\(874\) 9.57153 16.5784i 0.323762 0.560772i
\(875\) −5.69504 9.86410i −0.192527 0.333467i
\(876\) 0 0
\(877\) 15.2612 8.81106i 0.515334 0.297528i −0.219689 0.975570i \(-0.570504\pi\)
0.735024 + 0.678041i \(0.237171\pi\)
\(878\) −11.3093 + 6.52940i −0.381669 + 0.220357i
\(879\) 0 0
\(880\) −4.48144 7.76207i −0.151069 0.261659i
\(881\) −1.23560 + 2.14012i −0.0416283 + 0.0721023i −0.886089 0.463515i \(-0.846588\pi\)
0.844461 + 0.535618i \(0.179921\pi\)
\(882\) 0 0
\(883\) −3.93880 −0.132551 −0.0662756 0.997801i \(-0.521112\pi\)
−0.0662756 + 0.997801i \(0.521112\pi\)
\(884\) −13.5757 + 15.4491i −0.456599 + 0.519610i
\(885\) 0 0
\(886\) 6.46183 + 3.73074i 0.217089 + 0.125337i
\(887\) −3.57140 + 6.18584i −0.119916 + 0.207700i −0.919734 0.392542i \(-0.871596\pi\)
0.799818 + 0.600242i \(0.204929\pi\)
\(888\) 0 0
\(889\) 0.264877i 0.00888370i
\(890\) 25.6734 14.8225i 0.860574 0.496853i
\(891\) 0 0
\(892\) 18.8489i 0.631107i
\(893\) −29.7686 51.5607i −0.996167 1.72541i
\(894\) 0 0
\(895\) 17.5583 + 10.1373i 0.586908 + 0.338852i
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −9.57011 −0.319359
\(899\) 61.1756 + 35.3198i 2.04032 + 1.17798i
\(900\) 0 0
\(901\) 17.9995 + 31.1761i 0.599651 + 1.03863i
\(902\) 14.8333i 0.493896i
\(903\) 0 0
\(904\) 16.0693 9.27760i 0.534456 0.308568i
\(905\) 50.9834i 1.69474i
\(906\) 0 0
\(907\) 3.67909 6.37237i 0.122162 0.211591i −0.798458 0.602051i \(-0.794351\pi\)
0.920620 + 0.390459i \(0.127684\pi\)
\(908\) 1.14246 + 0.659599i 0.0379138 + 0.0218895i
\(909\) 0 0
\(910\) −1.54919 + 7.74810i −0.0513552 + 0.256847i
\(911\) 23.9499 0.793497 0.396748 0.917927i \(-0.370139\pi\)
0.396748 + 0.917927i \(0.370139\pi\)
\(912\) 0 0
\(913\) 0.680523 1.17870i 0.0225220 0.0390093i
\(914\) −12.9141 22.3679i −0.427161 0.739864i
\(915\) 0 0
\(916\) −3.75949 + 2.17054i −0.124217 + 0.0717168i
\(917\) 4.41878 2.55119i 0.145921 0.0842476i
\(918\) 0 0
\(919\) 18.9710 + 32.8588i 0.625797 + 1.08391i 0.988386 + 0.151963i \(0.0485595\pi\)
−0.362589 + 0.931949i \(0.618107\pi\)
\(920\) 2.71284 4.69878i 0.0894397 0.154914i
\(921\) 0 0
\(922\) −1.56502 −0.0515413
\(923\) −28.4476 + 9.62517i −0.936364 + 0.316816i
\(924\) 0 0
\(925\) −1.73653 1.00258i −0.0570966 0.0329648i
\(926\) 10.2432 17.7417i 0.336611 0.583027i
\(927\) 0 0
\(928\) 9.81776i 0.322284i
\(929\) −5.58551 + 3.22479i −0.183254 + 0.105802i −0.588821 0.808264i \(-0.700408\pi\)
0.405566 + 0.914066i \(0.367074\pi\)
\(930\) 0 0
\(931\) 7.73201i 0.253406i
\(932\) 2.88211 + 4.99196i 0.0944067 + 0.163517i
\(933\) 0 0
\(934\) −3.29802 1.90411i −0.107914 0.0623044i
\(935\) −51.1249 −1.67196
\(936\) 0 0
\(937\) −29.8183 −0.974120 −0.487060 0.873368i \(-0.661931\pi\)
−0.487060 + 0.873368i \(0.661931\pi\)
\(938\) 5.49094 + 3.17020i 0.179286 + 0.103511i
\(939\) 0 0
\(940\) −8.43725 14.6137i −0.275193 0.476648i
\(941\) 21.5581i 0.702774i 0.936230 + 0.351387i \(0.114290\pi\)
−0.936230 + 0.351387i \(0.885710\pi\)
\(942\) 0 0
\(943\) 7.77636 4.48968i 0.253233 0.146204i
\(944\) 4.85876i 0.158139i
\(945\) 0 0
\(946\) 5.63462 9.75944i 0.183197 0.317307i
\(947\) 26.4885 + 15.2932i 0.860762 + 0.496961i 0.864267 0.503033i \(-0.167783\pi\)
−0.00350556 + 0.999994i \(0.501116\pi\)
\(948\) 0 0
\(949\) 5.21568 26.0856i 0.169308 0.846776i
\(950\) −1.52678 −0.0495351
\(951\) 0 0
\(952\) 2.85204 4.93987i 0.0924350 0.160102i
\(953\) 2.64767 + 4.58590i 0.0857664 + 0.148552i 0.905718 0.423882i \(-0.139333\pi\)
−0.819951 + 0.572434i \(0.805999\pi\)
\(954\) 0 0
\(955\) −16.8947 + 9.75414i −0.546699 + 0.315637i
\(956\) −11.3407 + 6.54753i −0.366783 + 0.211762i
\(957\) 0 0
\(958\) −12.0600 20.8886i −0.389642 0.674880i
\(959\) −10.9011 + 18.8812i −0.352014 + 0.609706i
\(960\) 0 0
\(961\) −20.7691 −0.669971
\(962\) 11.7346 + 34.6820i 0.378337 + 1.11819i
\(963\) 0 0
\(964\) −0.389769 0.225033i −0.0125536 0.00724784i
\(965\) 9.73927 16.8689i 0.313518 0.543030i
\(966\) 0 0
\(967\) 46.8612i 1.50695i 0.657474 + 0.753477i \(0.271625\pi\)
−0.657474 + 0.753477i \(0.728375\pi\)
\(968\) 4.95991 2.86360i 0.159417 0.0920397i
\(969\) 0 0
\(970\) 25.4568i 0.817368i
\(971\) −23.5583 40.8042i −0.756023 1.30947i −0.944864 0.327463i \(-0.893806\pi\)
0.188841 0.982008i \(-0.439527\pi\)
\(972\) 0 0
\(973\) −14.2453 8.22455i −0.456685 0.263667i
\(974\) 7.68364 0.246200
\(975\) 0 0
\(976\) −11.2687 −0.360701
\(977\) 4.49153 + 2.59319i 0.143697 + 0.0829635i 0.570125 0.821558i \(-0.306895\pi\)
−0.426428 + 0.904522i \(0.640228\pi\)
\(978\) 0 0
\(979\) 27.6630 + 47.9137i 0.884113 + 1.53133i
\(980\) 2.19147i 0.0700039i
\(981\) 0 0
\(982\) 28.1921 16.2767i 0.899645 0.519411i
\(983\) 12.1664i 0.388046i 0.980997 + 0.194023i \(0.0621537\pi\)
−0.980997 + 0.194023i \(0.937846\pi\)
\(984\) 0 0
\(985\) 25.6321 44.3960i 0.816706 1.41458i
\(986\) −48.4985 28.0006i −1.54451 0.891721i
\(987\) 0 0
\(988\) 20.9417 + 18.4022i 0.666243 + 0.585450i
\(989\) 6.82184 0.216922
\(990\) 0 0
\(991\) 22.1272 38.3254i 0.702894 1.21745i −0.264553 0.964371i \(-0.585224\pi\)
0.967446 0.253076i \(-0.0814424\pi\)
\(992\) 3.59754 + 6.23112i 0.114222 + 0.197838i
\(993\) 0 0
\(994\) 7.21341 4.16466i 0.228795 0.132095i
\(995\) −7.47016 + 4.31290i −0.236820 + 0.136728i
\(996\) 0 0
\(997\) −18.4175 31.9001i −0.583289 1.01029i −0.995086 0.0990113i \(-0.968432\pi\)
0.411797 0.911276i \(-0.364901\pi\)
\(998\) 2.93762 5.08811i 0.0929888 0.161061i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.bj.h.1135.1 yes 16
3.2 odd 2 1638.2.bj.i.1135.8 yes 16
13.10 even 6 inner 1638.2.bj.h.127.4 16
39.23 odd 6 1638.2.bj.i.127.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.bj.h.127.4 16 13.10 even 6 inner
1638.2.bj.h.1135.1 yes 16 1.1 even 1 trivial
1638.2.bj.i.127.5 yes 16 39.23 odd 6
1638.2.bj.i.1135.8 yes 16 3.2 odd 2