Properties

Label 1638.2.j.c
Level $1638$
Weight $2$
Character orbit 1638.j
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} + (\zeta_{6} + 2) q^{7} + q^{8} + ( - \zeta_{6} + 1) q^{11} - q^{13} + ( - 3 \zeta_{6} + 1) q^{14} - \zeta_{6} q^{16} + (\zeta_{6} - 1) q^{17} - 5 \zeta_{6} q^{19} + \cdots + ( - 8 \zeta_{6} + 5) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 5 q^{7} + 2 q^{8} + q^{11} - 2 q^{13} - q^{14} - q^{16} - q^{17} - 5 q^{19} - 2 q^{22} + 2 q^{23} + 5 q^{25} + q^{26} - 4 q^{28} + 10 q^{29} + 8 q^{31} - q^{32} + 2 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
235.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 2.50000 + 0.866025i 1.00000 0 0
1171.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 2.50000 0.866025i 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.j.c 2
3.b odd 2 1 182.2.f.a 2
7.c even 3 1 inner 1638.2.j.c 2
12.b even 2 1 1456.2.r.f 2
21.c even 2 1 1274.2.f.q 2
21.g even 6 1 1274.2.a.f 1
21.g even 6 1 1274.2.f.q 2
21.h odd 6 1 182.2.f.a 2
21.h odd 6 1 1274.2.a.e 1
84.n even 6 1 1456.2.r.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.f.a 2 3.b odd 2 1
182.2.f.a 2 21.h odd 6 1
1274.2.a.e 1 21.h odd 6 1
1274.2.a.f 1 21.g even 6 1
1274.2.f.q 2 21.c even 2 1
1274.2.f.q 2 21.g even 6 1
1456.2.r.f 2 12.b even 2 1
1456.2.r.f 2 84.n even 6 1
1638.2.j.c 2 1.a even 1 1 trivial
1638.2.j.c 2 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} + 1 \) Copy content Toggle raw display
\( T_{17}^{2} + T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$29$ \( (T - 5)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$53$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$71$ \( (T - 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$83$ \( (T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less