Properties

Label 165.2.a.c
Level $165$
Weight $2$
Character orbit 165.a
Self dual yes
Analytic conductor $1.318$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,2,Mod(1,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.31753163335\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + q^{5} - \beta_1 q^{6} + ( - \beta_{2} + \beta_1) q^{7} + ( - \beta_{2} - 2 \beta_1 - 2) q^{8} + q^{9} - \beta_1 q^{10} + q^{11} + (\beta_{2} + \beta_1 + 1) q^{12}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} - 9 q^{8} + 3 q^{9} - q^{10} + 3 q^{11} + 5 q^{12} - 2 q^{13} - 12 q^{14} + 3 q^{15} + 13 q^{16} - 2 q^{17} - q^{18} + 8 q^{19} + 5 q^{20} - q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
−1.48119
0.311108
−2.70928 1.00000 5.34017 1.00000 −2.70928 1.07838 −9.04945 1.00000 −2.70928
1.2 −0.193937 1.00000 −1.96239 1.00000 −0.193937 3.35026 0.768452 1.00000 −0.193937
1.3 1.90321 1.00000 1.62222 1.00000 1.90321 −4.42864 −0.719004 1.00000 1.90321
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.2.a.c 3
3.b odd 2 1 495.2.a.e 3
4.b odd 2 1 2640.2.a.be 3
5.b even 2 1 825.2.a.k 3
5.c odd 4 2 825.2.c.g 6
7.b odd 2 1 8085.2.a.bk 3
11.b odd 2 1 1815.2.a.m 3
12.b even 2 1 7920.2.a.cj 3
15.d odd 2 1 2475.2.a.bb 3
15.e even 4 2 2475.2.c.r 6
33.d even 2 1 5445.2.a.z 3
55.d odd 2 1 9075.2.a.cf 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.a.c 3 1.a even 1 1 trivial
495.2.a.e 3 3.b odd 2 1
825.2.a.k 3 5.b even 2 1
825.2.c.g 6 5.c odd 4 2
1815.2.a.m 3 11.b odd 2 1
2475.2.a.bb 3 15.d odd 2 1
2475.2.c.r 6 15.e even 4 2
2640.2.a.be 3 4.b odd 2 1
5445.2.a.z 3 33.d even 2 1
7920.2.a.cj 3 12.b even 2 1
8085.2.a.bk 3 7.b odd 2 1
9075.2.a.cf 3 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(165))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots - 184 \) Copy content Toggle raw display
$19$ \( T^{3} - 8 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$23$ \( T^{3} - 64T - 128 \) Copy content Toggle raw display
$29$ \( T^{3} + 10 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$31$ \( T^{3} - 8 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( (T + 2)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + 14 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} + \cdots + 400 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$59$ \( T^{3} - 12 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$67$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$73$ \( T^{3} + 14 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$79$ \( T^{3} - 12 T^{2} + \cdots + 800 \) Copy content Toggle raw display
$83$ \( T^{3} - 120T + 16 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$97$ \( T^{3} - 22 T^{2} + \cdots - 8 \) Copy content Toggle raw display
show more
show less