Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [165,4,Mod(41,165)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(165, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("165.41");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.p (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | −4.37775 | + | 3.18062i | 5.19597 | + | 0.0430816i | 6.57619 | − | 20.2394i | 2.93893 | − | 4.04508i | −22.8837 | + | 16.3378i | −17.6902 | − | 5.74790i | 22.2078 | + | 68.3486i | 26.9963 | + | 0.447702i | 27.0560i | ||
41.2 | −4.33342 | + | 3.14842i | 1.85440 | + | 4.85399i | 6.39390 | − | 19.6784i | −2.93893 | + | 4.04508i | −23.3183 | − | 15.1960i | 16.5829 | + | 5.38812i | 21.0066 | + | 64.6515i | −20.1224 | + | 18.0025i | − | 26.7820i | |
41.3 | −4.31401 | + | 3.13431i | −4.16964 | − | 3.10066i | 6.31465 | − | 19.4345i | 2.93893 | − | 4.04508i | 27.7063 | + | 0.307340i | 6.06872 | + | 1.97185i | 20.4899 | + | 63.0614i | 7.77178 | + | 25.8573i | 26.6621i | ||
41.4 | −4.12943 | + | 3.00021i | 1.71341 | − | 4.90553i | 5.57881 | − | 17.1698i | −2.93893 | + | 4.04508i | 7.64218 | + | 25.3976i | −24.5008 | − | 7.96079i | 15.8573 | + | 48.8036i | −21.1284 | − | 16.8104i | − | 25.5213i | |
41.5 | −3.95634 | + | 2.87445i | −3.12055 | + | 4.15478i | 4.91804 | − | 15.1362i | 2.93893 | − | 4.04508i | 0.403271 | − | 25.4076i | 12.3288 | + | 4.00588i | 11.9612 | + | 36.8128i | −7.52432 | − | 25.9304i | 24.4515i | ||
41.6 | −3.94368 | + | 2.86525i | −4.41355 | + | 2.74237i | 4.87081 | − | 14.9908i | −2.93893 | + | 4.04508i | 9.54802 | − | 23.4610i | −18.8401 | − | 6.12152i | 11.6927 | + | 35.9864i | 11.9588 | − | 24.2072i | − | 24.3733i | |
41.7 | −3.55039 | + | 2.57951i | −3.58250 | − | 3.76374i | 3.47925 | − | 10.7080i | −2.93893 | + | 4.04508i | 22.4278 | + | 4.12164i | 8.73323 | + | 2.83760i | 4.41974 | + | 13.6026i | −1.33143 | + | 26.9672i | − | 21.9426i | |
41.8 | −3.32358 | + | 2.41473i | 4.15843 | + | 3.11568i | 2.74318 | − | 8.44263i | 2.93893 | − | 4.04508i | −21.3444 | − | 0.313780i | 11.3617 | + | 3.69163i | 1.11348 | + | 3.42695i | 7.58503 | + | 25.9127i | 20.5409i | ||
41.9 | −3.12619 | + | 2.27131i | 5.16730 | − | 0.546811i | 2.14208 | − | 6.59266i | −2.93893 | + | 4.04508i | −14.9120 | + | 13.4460i | 16.5110 | + | 5.36474i | −1.27538 | − | 3.92522i | 26.4020 | − | 5.65107i | − | 19.3209i | |
41.10 | −2.84801 | + | 2.06920i | 4.14644 | − | 3.13162i | 1.35744 | − | 4.17778i | 2.93893 | − | 4.04508i | −5.32916 | + | 17.4987i | −7.01306 | − | 2.27868i | −3.92409 | − | 12.0771i | 7.38594 | − | 25.9701i | 17.6017i | ||
41.11 | −2.81316 | + | 2.04388i | −1.01719 | − | 5.09562i | 1.26428 | − | 3.89106i | 2.93893 | − | 4.04508i | 13.2763 | + | 12.2558i | −23.9271 | − | 7.77440i | −4.20002 | − | 12.9263i | −24.9307 | + | 10.3664i | 17.3863i | ||
41.12 | −2.44441 | + | 1.77597i | 5.06426 | + | 1.16331i | 0.348949 | − | 1.07396i | −2.93893 | + | 4.04508i | −14.4451 | + | 6.15036i | −25.0543 | − | 8.14063i | −6.41512 | − | 19.7437i | 24.2934 | + | 11.7826i | − | 15.1073i | |
41.13 | −2.41966 | + | 1.75799i | −5.15998 | + | 0.612021i | 0.292106 | − | 0.899011i | −2.93893 | + | 4.04508i | 11.4095 | − | 10.5521i | 29.5600 | + | 9.60462i | −6.52018 | − | 20.0670i | 26.2509 | − | 6.31604i | − | 14.9543i | |
41.14 | −2.41426 | + | 1.75406i | −1.09514 | + | 5.07944i | 0.279774 | − | 0.861056i | 2.93893 | − | 4.04508i | −6.26568 | − | 14.1840i | 9.59193 | + | 3.11661i | −6.54242 | − | 20.1355i | −24.6013 | − | 11.1254i | 14.9209i | ||
41.15 | −2.06223 | + | 1.49830i | −1.66099 | + | 4.92353i | −0.464244 | + | 1.42880i | −2.93893 | + | 4.04508i | −3.95157 | − | 12.6421i | −1.91226 | − | 0.621330i | −7.48499 | − | 23.0364i | −21.4822 | − | 16.3558i | − | 12.7453i | |
41.16 | −1.85179 | + | 1.34540i | −0.851496 | − | 5.12591i | −0.853127 | + | 2.62565i | 2.93893 | − | 4.04508i | 8.47320 | + | 8.34649i | 28.0892 | + | 9.12673i | −7.61131 | − | 23.4252i | −25.5499 | + | 8.72938i | 11.4447i | ||
41.17 | −1.78814 | + | 1.29916i | 2.75584 | − | 4.40515i | −0.962500 | + | 2.96227i | −2.93893 | + | 4.04508i | 0.795157 | + | 11.4573i | −4.06416 | − | 1.32053i | −7.59147 | − | 23.3641i | −11.8106 | − | 24.2798i | − | 11.0513i | |
41.18 | −1.35979 | + | 0.987942i | −5.19037 | + | 0.245075i | −1.59915 | + | 4.92167i | 2.93893 | − | 4.04508i | 6.81567 | − | 5.46103i | 18.3598 | + | 5.96546i | −6.84296 | − | 21.0605i | 26.8799 | − | 2.54406i | 8.40394i | ||
41.19 | −1.01327 | + | 0.736186i | 3.14372 | + | 4.13727i | −1.98738 | + | 6.11654i | −2.93893 | + | 4.04508i | −6.23125 | − | 1.87782i | 29.0946 | + | 9.45342i | −5.58543 | − | 17.1902i | −7.23403 | + | 26.0129i | − | 6.26237i | |
41.20 | −0.923458 | + | 0.670932i | 2.66996 | + | 4.45772i | −2.06951 | + | 6.36930i | 2.93893 | − | 4.04508i | −5.45643 | − | 2.32516i | −17.6104 | − | 5.72198i | −5.18409 | − | 15.9550i | −12.7426 | + | 23.8039i | 5.70729i | ||
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.p.a | ✓ | 192 |
3.b | odd | 2 | 1 | inner | 165.4.p.a | ✓ | 192 |
11.d | odd | 10 | 1 | inner | 165.4.p.a | ✓ | 192 |
33.f | even | 10 | 1 | inner | 165.4.p.a | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.p.a | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
165.4.p.a | ✓ | 192 | 3.b | odd | 2 | 1 | inner |
165.4.p.a | ✓ | 192 | 11.d | odd | 10 | 1 | inner |
165.4.p.a | ✓ | 192 | 33.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(165, [\chi])\).