Properties

Label 1650.2.c.a.199.2
Level $1650$
Weight $2$
Character 1650.199
Analytic conductor $13.175$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1650,2,Mod(199,1650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1650.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1650.199
Dual form 1650.2.c.a.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +4.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} -1.00000 q^{11} -1.00000i q^{12} -2.00000i q^{13} -4.00000 q^{14} +1.00000 q^{16} +2.00000i q^{17} -1.00000i q^{18} -4.00000 q^{19} -4.00000 q^{21} -1.00000i q^{22} +4.00000i q^{23} +1.00000 q^{24} +2.00000 q^{26} -1.00000i q^{27} -4.00000i q^{28} -6.00000 q^{29} +1.00000i q^{32} -1.00000i q^{33} -2.00000 q^{34} +1.00000 q^{36} -10.0000i q^{37} -4.00000i q^{38} +2.00000 q^{39} -6.00000 q^{41} -4.00000i q^{42} +12.0000i q^{43} +1.00000 q^{44} -4.00000 q^{46} -4.00000i q^{47} +1.00000i q^{48} -9.00000 q^{49} -2.00000 q^{51} +2.00000i q^{52} +6.00000i q^{53} +1.00000 q^{54} +4.00000 q^{56} -4.00000i q^{57} -6.00000i q^{58} +4.00000 q^{59} +10.0000 q^{61} -4.00000i q^{63} -1.00000 q^{64} +1.00000 q^{66} -12.0000i q^{67} -2.00000i q^{68} -4.00000 q^{69} -4.00000 q^{71} +1.00000i q^{72} -10.0000i q^{73} +10.0000 q^{74} +4.00000 q^{76} -4.00000i q^{77} +2.00000i q^{78} -4.00000 q^{79} +1.00000 q^{81} -6.00000i q^{82} -4.00000i q^{83} +4.00000 q^{84} -12.0000 q^{86} -6.00000i q^{87} +1.00000i q^{88} -10.0000 q^{89} +8.00000 q^{91} -4.00000i q^{92} +4.00000 q^{94} -1.00000 q^{96} +18.0000i q^{97} -9.00000i q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} - 2 q^{11} - 8 q^{14} + 2 q^{16} - 8 q^{19} - 8 q^{21} + 2 q^{24} + 4 q^{26} - 12 q^{29} - 4 q^{34} + 2 q^{36} + 4 q^{39} - 12 q^{41} + 2 q^{44} - 8 q^{46} - 18 q^{49}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) − 1.00000i − 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) − 1.00000i − 0.213201i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) − 1.00000i − 0.192450i
\(28\) − 4.00000i − 0.755929i
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 1.00000i − 0.174078i
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 10.0000i − 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) − 4.00000i − 0.648886i
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) − 4.00000i − 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) − 4.00000i − 0.529813i
\(58\) − 6.00000i − 0.787839i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) − 4.00000i − 0.503953i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 1.00000 0.123091
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 1.00000i 0.117851i
\(73\) − 10.0000i − 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) − 4.00000i − 0.455842i
\(78\) 2.00000i 0.226455i
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 6.00000i − 0.662589i
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) − 6.00000i − 0.643268i
\(88\) 1.00000i 0.106600i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) − 4.00000i − 0.417029i
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 18.0000i 1.82762i 0.406138 + 0.913812i \(0.366875\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) − 9.00000i − 0.909137i
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) − 2.00000i − 0.198030i
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 4.00000i 0.377964i
\(113\) − 18.0000i − 1.69330i −0.532152 0.846649i \(-0.678617\pi\)
0.532152 0.846649i \(-0.321383\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 2.00000i 0.184900i
\(118\) 4.00000i 0.368230i
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.0000i 0.905357i
\(123\) − 6.00000i − 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 4.00000 0.356348
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −12.0000 −1.05654
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 1.00000i 0.0870388i
\(133\) − 16.0000i − 1.38738i
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) − 4.00000i − 0.340503i
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) − 4.00000i − 0.335673i
\(143\) 2.00000i 0.167248i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) − 9.00000i − 0.742307i
\(148\) 10.0000i 0.821995i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 4.00000i 0.324443i
\(153\) − 2.00000i − 0.161690i
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) − 4.00000i − 0.318223i
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 1.00000i 0.0785674i
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 16.0000i 1.23812i 0.785345 + 0.619059i \(0.212486\pi\)
−0.785345 + 0.619059i \(0.787514\pi\)
\(168\) 4.00000i 0.308607i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) − 12.0000i − 0.914991i
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 4.00000i 0.300658i
\(178\) − 10.0000i − 0.749532i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 8.00000i 0.592999i
\(183\) 10.0000i 0.739221i
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.00000i − 0.146254i
\(188\) 4.00000i 0.291730i
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) 22.0000i 1.58359i 0.610784 + 0.791797i \(0.290854\pi\)
−0.610784 + 0.791797i \(0.709146\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 1.00000i 0.0710669i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) − 18.0000i − 1.26648i
\(203\) − 24.0000i − 1.68447i
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) − 4.00000i − 0.278019i
\(208\) − 2.00000i − 0.138675i
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) − 4.00000i − 0.274075i
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) − 2.00000i − 0.135457i
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 10.0000i 0.671156i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 6.00000i 0.393919i
\(233\) 22.0000i 1.44127i 0.693316 + 0.720634i \(0.256149\pi\)
−0.693316 + 0.720634i \(0.743851\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) − 4.00000i − 0.259828i
\(238\) − 8.00000i − 0.518563i
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 1.00000i 0.0641500i
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 4.00000i 0.251976i
\(253\) − 4.00000i − 0.251478i
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) − 12.0000i − 0.747087i
\(259\) 40.0000 2.48548
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) − 12.0000i − 0.741362i
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 0 0
\(266\) 16.0000 0.981023
\(267\) − 10.0000i − 0.611990i
\(268\) 12.0000i 0.733017i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 8.00000i 0.484182i
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 4.00000i 0.238197i
\(283\) 12.0000i 0.713326i 0.934233 + 0.356663i \(0.116086\pi\)
−0.934233 + 0.356663i \(0.883914\pi\)
\(284\) 4.00000 0.237356
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) − 24.0000i − 1.41668i
\(288\) − 1.00000i − 0.0589256i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −18.0000 −1.05518
\(292\) 10.0000i 0.585206i
\(293\) 10.0000i 0.584206i 0.956387 + 0.292103i \(0.0943550\pi\)
−0.956387 + 0.292103i \(0.905645\pi\)
\(294\) 9.00000 0.524891
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) 1.00000i 0.0580259i
\(298\) − 6.00000i − 0.347571i
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −48.0000 −2.76667
\(302\) 12.0000i 0.690522i
\(303\) − 18.0000i − 1.03407i
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) − 28.0000i − 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 4.00000i 0.227921i
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) − 2.00000i − 0.113228i
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 26.0000i 1.46031i 0.683284 + 0.730153i \(0.260551\pi\)
−0.683284 + 0.730153i \(0.739449\pi\)
\(318\) − 6.00000i − 0.336463i
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) − 16.0000i − 0.891645i
\(323\) − 8.00000i − 0.445132i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) − 2.00000i − 0.110600i
\(328\) 6.00000i 0.331295i
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 10.0000i 0.547997i
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) −4.00000 −0.218218
\(337\) 2.00000i 0.108947i 0.998515 + 0.0544735i \(0.0173480\pi\)
−0.998515 + 0.0544735i \(0.982652\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 4.00000i 0.216295i
\(343\) − 8.00000i − 0.431959i
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 28.0000i 1.50312i 0.659665 + 0.751559i \(0.270698\pi\)
−0.659665 + 0.751559i \(0.729302\pi\)
\(348\) 6.00000i 0.321634i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) − 1.00000i − 0.0533002i
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) − 8.00000i − 0.423405i
\(358\) − 4.00000i − 0.211407i
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 14.0000i 0.735824i
\(363\) 1.00000i 0.0524864i
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) −10.0000 −0.522708
\(367\) 16.0000i 0.835193i 0.908633 + 0.417597i \(0.137127\pi\)
−0.908633 + 0.417597i \(0.862873\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 6.00000i 0.310668i 0.987862 + 0.155334i \(0.0496454\pi\)
−0.987862 + 0.155334i \(0.950355\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 12.0000i 0.618031i
\(378\) 4.00000i 0.205738i
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 12.0000i 0.613973i
\(383\) − 20.0000i − 1.02195i −0.859595 0.510976i \(-0.829284\pi\)
0.859595 0.510976i \(-0.170716\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) − 12.0000i − 0.609994i
\(388\) − 18.0000i − 0.913812i
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 9.00000i 0.454569i
\(393\) − 12.0000i − 0.605320i
\(394\) 18.0000 0.906827
\(395\) 0 0
\(396\) −1.00000 −0.0502519
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 0 0
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 12.0000i 0.598506i
\(403\) 0 0
\(404\) 18.0000 0.895533
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 10.0000i 0.495682i
\(408\) 2.00000i 0.0990148i
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) − 16.0000i − 0.788263i
\(413\) 16.0000i 0.787309i
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 4.00000i 0.195881i
\(418\) 4.00000i 0.195646i
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 4.00000i 0.194487i
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) 40.0000i 1.93574i
\(428\) 12.0000i 0.580042i
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) − 34.0000i − 1.63394i −0.576683 0.816968i \(-0.695653\pi\)
0.576683 0.816968i \(-0.304347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) − 16.0000i − 0.765384i
\(438\) 10.0000i 0.477818i
\(439\) −12.0000 −0.572729 −0.286364 0.958121i \(-0.592447\pi\)
−0.286364 + 0.958121i \(0.592447\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 4.00000i 0.190261i
\(443\) − 12.0000i − 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) −10.0000 −0.474579
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.00000i − 0.283790i
\(448\) − 4.00000i − 0.188982i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 18.0000i 0.846649i
\(453\) 12.0000i 0.563809i
\(454\) −28.0000 −1.31411
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) 34.0000i 1.59045i 0.606313 + 0.795226i \(0.292648\pi\)
−0.606313 + 0.795226i \(0.707352\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 4.00000i 0.186097i
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) − 20.0000i − 0.925490i −0.886492 0.462745i \(-0.846865\pi\)
0.886492 0.462745i \(-0.153135\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) 48.0000 2.21643
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) − 4.00000i − 0.184115i
\(473\) − 12.0000i − 0.551761i
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) − 6.00000i − 0.274721i
\(478\) − 24.0000i − 1.09773i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) − 6.00000i − 0.273293i
\(483\) − 16.0000i − 0.728025i
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) − 32.0000i − 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 6.00000i 0.270501i
\(493\) − 12.0000i − 0.540453i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) − 16.0000i − 0.717698i
\(498\) 4.00000i 0.179244i
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 12.0000i 0.535586i
\(503\) − 16.0000i − 0.713405i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(504\) −4.00000 −0.178174
\(505\) 0 0
\(506\) 4.00000 0.177822
\(507\) 9.00000i 0.399704i
\(508\) − 4.00000i − 0.177471i
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 40.0000 1.76950
\(512\) 1.00000i 0.0441942i
\(513\) 4.00000i 0.176604i
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 12.0000 0.528271
\(517\) 4.00000i 0.175920i
\(518\) 40.0000i 1.75750i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 6.00000i 0.262613i
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) − 1.00000i − 0.0435194i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 16.0000i 0.693688i
\(533\) 12.0000i 0.519778i
\(534\) 10.0000 0.432742
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) − 4.00000i − 0.172613i
\(538\) − 18.0000i − 0.776035i
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) − 20.0000i − 0.859074i
\(543\) 14.0000i 0.600798i
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 4.00000i 0.171028i 0.996337 + 0.0855138i \(0.0272532\pi\)
−0.996337 + 0.0855138i \(0.972747\pi\)
\(548\) − 2.00000i − 0.0854358i
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 4.00000i 0.170251i
\(553\) − 16.0000i − 0.680389i
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 30.0000i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) − 22.0000i − 0.928014i
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) −4.00000 −0.168430
\(565\) 0 0
\(566\) −12.0000 −0.504398
\(567\) 4.00000i 0.167984i
\(568\) 4.00000i 0.167836i
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) − 2.00000i − 0.0836242i
\(573\) 12.0000i 0.501307i
\(574\) 24.0000 1.00174
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 14.0000i − 0.582828i −0.956597 0.291414i \(-0.905874\pi\)
0.956597 0.291414i \(-0.0941257\pi\)
\(578\) 13.0000i 0.540729i
\(579\) −22.0000 −0.914289
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) − 18.0000i − 0.746124i
\(583\) − 6.00000i − 0.248495i
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −10.0000 −0.413096
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 9.00000i 0.371154i
\(589\) 0 0
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) − 10.0000i − 0.410997i
\(593\) − 2.00000i − 0.0821302i −0.999156 0.0410651i \(-0.986925\pi\)
0.999156 0.0410651i \(-0.0130751\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 8.00000i 0.327144i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) − 48.0000i − 1.95633i
\(603\) 12.0000i 0.488678i
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) 18.0000 0.731200
\(607\) 20.0000i 0.811775i 0.913923 + 0.405887i \(0.133038\pi\)
−0.913923 + 0.405887i \(0.866962\pi\)
\(608\) − 4.00000i − 0.162221i
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 2.00000i 0.0808452i
\(613\) 14.0000i 0.565455i 0.959200 + 0.282727i \(0.0912392\pi\)
−0.959200 + 0.282727i \(0.908761\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) − 16.0000i − 0.643614i
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 12.0000i 0.481156i
\(623\) − 40.0000i − 1.60257i
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 4.00000i 0.159745i
\(628\) 10.0000i 0.399043i
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 12.0000i 0.476957i
\(634\) −26.0000 −1.03259
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) 18.0000i 0.713186i
\(638\) 6.00000i 0.237542i
\(639\) 4.00000 0.158238
\(640\) 0 0
\(641\) 26.0000 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(642\) 12.0000i 0.473602i
\(643\) − 20.0000i − 0.788723i −0.918955 0.394362i \(-0.870966\pi\)
0.918955 0.394362i \(-0.129034\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) − 36.0000i − 1.41531i −0.706560 0.707653i \(-0.749754\pi\)
0.706560 0.707653i \(-0.250246\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) − 20.0000i − 0.783260i
\(653\) − 26.0000i − 1.01746i −0.860927 0.508729i \(-0.830115\pi\)
0.860927 0.508729i \(-0.169885\pi\)
\(654\) 2.00000 0.0782062
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 10.0000i 0.390137i
\(658\) 16.0000i 0.623745i
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) − 28.0000i − 1.08825i
\(663\) 4.00000i 0.155347i
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) −10.0000 −0.387492
\(667\) − 24.0000i − 0.929284i
\(668\) − 16.0000i − 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) − 4.00000i − 0.154303i
\(673\) − 26.0000i − 1.00223i −0.865382 0.501113i \(-0.832924\pi\)
0.865382 0.501113i \(-0.167076\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) 18.0000i 0.691286i
\(679\) −72.0000 −2.76311
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) 8.00000 0.305441
\(687\) 2.00000i 0.0763048i
\(688\) 12.0000i 0.457496i
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 4.00000i 0.151947i
\(694\) −28.0000 −1.06287
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) − 12.0000i − 0.454532i
\(698\) − 2.00000i − 0.0757011i
\(699\) −22.0000 −0.832116
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) − 2.00000i − 0.0754851i
\(703\) 40.0000i 1.50863i
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −30.0000 −1.12906
\(707\) − 72.0000i − 2.70784i
\(708\) − 4.00000i − 0.150329i
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 10.0000i 0.374766i
\(713\) 0 0
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) − 24.0000i − 0.896296i
\(718\) 16.0000i 0.597115i
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −64.0000 −2.38348
\(722\) − 3.00000i − 0.111648i
\(723\) − 6.00000i − 0.223142i
\(724\) −14.0000 −0.520306
\(725\) 0 0
\(726\) −1.00000 −0.0371135
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) − 8.00000i − 0.296500i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) − 10.0000i − 0.369611i
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 12.0000i 0.442026i
\(738\) 6.00000i 0.220863i
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) − 24.0000i − 0.881068i
\(743\) − 16.0000i − 0.586983i −0.955962 0.293492i \(-0.905183\pi\)
0.955962 0.293492i \(-0.0948173\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.00000 −0.219676
\(747\) 4.00000i 0.146352i
\(748\) 2.00000i 0.0731272i
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) − 4.00000i − 0.145865i
\(753\) 12.0000i 0.437304i
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) −4.00000 −0.145479
\(757\) 22.0000i 0.799604i 0.916602 + 0.399802i \(0.130921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) − 20.0000i − 0.726433i
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) − 4.00000i − 0.144905i
\(763\) − 8.00000i − 0.289619i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 20.0000 0.722629
\(767\) − 8.00000i − 0.288863i
\(768\) 1.00000i 0.0360844i
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) − 22.0000i − 0.791797i
\(773\) − 10.0000i − 0.359675i −0.983696 0.179838i \(-0.942443\pi\)
0.983696 0.179838i \(-0.0575572\pi\)
\(774\) 12.0000 0.431331
\(775\) 0 0
\(776\) 18.0000 0.646162
\(777\) 40.0000i 1.43499i
\(778\) − 26.0000i − 0.932145i
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) − 8.00000i − 0.286079i
\(783\) 6.00000i 0.214423i
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 12.0000 0.428026
\(787\) − 36.0000i − 1.28326i −0.767014 0.641631i \(-0.778258\pi\)
0.767014 0.641631i \(-0.221742\pi\)
\(788\) 18.0000i 0.641223i
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 72.0000 2.56003
\(792\) − 1.00000i − 0.0355335i
\(793\) − 20.0000i − 0.710221i
\(794\) −22.0000 −0.780751
\(795\) 0 0
\(796\) 0 0
\(797\) − 30.0000i − 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 16.0000i 0.566394i
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) − 22.0000i − 0.776847i
\(803\) 10.0000i 0.352892i
\(804\) −12.0000 −0.423207
\(805\) 0 0
\(806\) 0 0
\(807\) − 18.0000i − 0.633630i
\(808\) 18.0000i 0.633238i
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) 24.0000i 0.842235i
\(813\) − 20.0000i − 0.701431i
\(814\) −10.0000 −0.350500
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) − 48.0000i − 1.67931i
\(818\) − 2.00000i − 0.0699284i
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) − 2.00000i − 0.0697580i
\(823\) 40.0000i 1.39431i 0.716919 + 0.697156i \(0.245552\pi\)
−0.716919 + 0.697156i \(0.754448\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 4.00000i 0.139010i
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) −18.0000 −0.624413
\(832\) 2.00000i 0.0693375i
\(833\) − 18.0000i − 0.623663i
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) 28.0000i 0.967244i
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 22.0000i 0.758170i
\(843\) − 22.0000i − 0.757720i
\(844\) −12.0000 −0.413057
\(845\) 0 0
\(846\) −4.00000 −0.137523
\(847\) 4.00000i 0.137442i
\(848\) 6.00000i 0.206041i
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 40.0000 1.37118
\(852\) 4.00000i 0.137038i
\(853\) − 18.0000i − 0.616308i −0.951336 0.308154i \(-0.900289\pi\)
0.951336 0.308154i \(-0.0997113\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) − 38.0000i − 1.29806i −0.760765 0.649028i \(-0.775176\pi\)
0.760765 0.649028i \(-0.224824\pi\)
\(858\) − 2.00000i − 0.0682789i
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) 0 0
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 34.0000 1.15537
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 4.00000 0.135691
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 2.00000i 0.0677285i
\(873\) − 18.0000i − 0.609208i
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) − 12.0000i − 0.404980i
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 9.00000i 0.303046i
\(883\) − 20.0000i − 0.673054i −0.941674 0.336527i \(-0.890748\pi\)
0.941674 0.336527i \(-0.109252\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) − 10.0000i − 0.335578i
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 16.0000i 0.535420i
\(894\) 6.00000 0.200670
\(895\) 0 0
\(896\) 4.00000 0.133631
\(897\) 8.00000i 0.267112i
\(898\) 6.00000i 0.200223i
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 6.00000i 0.199778i
\(903\) − 48.0000i − 1.59734i
\(904\) −18.0000 −0.598671
\(905\) 0 0
\(906\) −12.0000 −0.398673
\(907\) − 52.0000i − 1.72663i −0.504664 0.863316i \(-0.668384\pi\)
0.504664 0.863316i \(-0.331616\pi\)
\(908\) − 28.0000i − 0.929213i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) − 4.00000i − 0.132453i
\(913\) 4.00000i 0.132381i
\(914\) −34.0000 −1.12462
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) − 48.0000i − 1.58510i
\(918\) 2.00000i 0.0660098i
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 30.0000i 0.987997i
\(923\) 8.00000i 0.263323i
\(924\) −4.00000 −0.131590
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) − 16.0000i − 0.525509i
\(928\) − 6.00000i − 0.196960i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) − 22.0000i − 0.720634i
\(933\) 12.0000i 0.392862i
\(934\) 20.0000 0.654420
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) − 22.0000i − 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) 48.0000i 1.56726i
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) 22.0000 0.717180 0.358590 0.933495i \(-0.383258\pi\)
0.358590 + 0.933495i \(0.383258\pi\)
\(942\) 10.0000i 0.325818i
\(943\) − 24.0000i − 0.781548i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) − 52.0000i − 1.68977i −0.534946 0.844886i \(-0.679668\pi\)
0.534946 0.844886i \(-0.320332\pi\)
\(948\) 4.00000i 0.129914i
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) −26.0000 −0.843108
\(952\) 8.00000i 0.259281i
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 6.00000i 0.193952i
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) − 20.0000i − 0.644826i
\(963\) 12.0000i 0.386695i
\(964\) 6.00000 0.193247
\(965\) 0 0
\(966\) 16.0000 0.514792
\(967\) 12.0000i 0.385894i 0.981209 + 0.192947i \(0.0618045\pi\)
−0.981209 + 0.192947i \(0.938195\pi\)
\(968\) − 1.00000i − 0.0321412i
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 16.0000i 0.512936i
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) − 38.0000i − 1.21573i −0.794041 0.607864i \(-0.792027\pi\)
0.794041 0.607864i \(-0.207973\pi\)
\(978\) − 20.0000i − 0.639529i
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 36.0000i 1.14881i
\(983\) − 28.0000i − 0.893061i −0.894768 0.446531i \(-0.852659\pi\)
0.894768 0.446531i \(-0.147341\pi\)
\(984\) −6.00000 −0.191273
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) 16.0000i 0.509286i
\(988\) − 8.00000i − 0.254514i
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) − 28.0000i − 0.888553i
\(994\) 16.0000 0.507489
\(995\) 0 0
\(996\) −4.00000 −0.126745
\(997\) − 38.0000i − 1.20347i −0.798695 0.601736i \(-0.794476\pi\)
0.798695 0.601736i \(-0.205524\pi\)
\(998\) − 12.0000i − 0.379853i
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.c.a.199.2 2
3.2 odd 2 4950.2.c.y.199.1 2
5.2 odd 4 1650.2.a.e.1.1 1
5.3 odd 4 330.2.a.c.1.1 1
5.4 even 2 inner 1650.2.c.a.199.1 2
15.2 even 4 4950.2.a.x.1.1 1
15.8 even 4 990.2.a.g.1.1 1
15.14 odd 2 4950.2.c.y.199.2 2
20.3 even 4 2640.2.a.j.1.1 1
55.43 even 4 3630.2.a.a.1.1 1
60.23 odd 4 7920.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.a.c.1.1 1 5.3 odd 4
990.2.a.g.1.1 1 15.8 even 4
1650.2.a.e.1.1 1 5.2 odd 4
1650.2.c.a.199.1 2 5.4 even 2 inner
1650.2.c.a.199.2 2 1.1 even 1 trivial
2640.2.a.j.1.1 1 20.3 even 4
3630.2.a.a.1.1 1 55.43 even 4
4950.2.a.x.1.1 1 15.2 even 4
4950.2.c.y.199.1 2 3.2 odd 2
4950.2.c.y.199.2 2 15.14 odd 2
7920.2.a.t.1.1 1 60.23 odd 4