Properties

Label 1665.2.a.t
Level 16651665
Weight 22
Character orbit 1665.a
Self dual yes
Analytic conductor 13.29513.295
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1665,2,Mod(1,1665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1665.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1665=32537 1665 = 3^{2} \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.295091936513.2950919365
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.95034688.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x58x4+12x3+16x212x+1 x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 16x^{2} - 12x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+β1+1)q4q5+(β31)q7+(β3β22β11)q8+β1q10+(β4+β11)q11+(β4β21)q13++(β5+2β4+3β3+1)q98+O(q100) q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 1) q^{4} - q^{5} + (\beta_{3} - 1) q^{7} + ( - \beta_{3} - \beta_{2} - 2 \beta_1 - 1) q^{8} + \beta_1 q^{10} + (\beta_{4} + \beta_1 - 1) q^{11} + ( - \beta_{4} - \beta_{2} - 1) q^{13}+ \cdots + ( - \beta_{5} + 2 \beta_{4} + 3 \beta_{3} + \cdots - 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q2+8q46q54q712q8+2q104q116q13+6q14+16q168q17+16q198q2010q2210q23+6q2512q2612q28++6q98+O(q100) 6 q - 2 q^{2} + 8 q^{4} - 6 q^{5} - 4 q^{7} - 12 q^{8} + 2 q^{10} - 4 q^{11} - 6 q^{13} + 6 q^{14} + 16 q^{16} - 8 q^{17} + 16 q^{19} - 8 q^{20} - 10 q^{22} - 10 q^{23} + 6 q^{25} - 12 q^{26} - 12 q^{28}+ \cdots + 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x58x4+12x3+16x212x+1 x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 16x^{2} - 12x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν25ν+2 \nu^{3} - \nu^{2} - 5\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν5ν49ν3+5ν2+19ν3 \nu^{5} - \nu^{4} - 9\nu^{3} + 5\nu^{2} + 19\nu - 3 Copy content Toggle raw display
β5\beta_{5}== ν52ν48ν3+11ν2+17ν7 \nu^{5} - 2\nu^{4} - 8\nu^{3} + 11\nu^{2} + 17\nu - 7 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+6β1+1 \beta_{3} + \beta_{2} + 6\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β5+β4+β3+7β2+10β1+15 -\beta_{5} + \beta_{4} + \beta_{3} + 7\beta_{2} + 10\beta _1 + 15 Copy content Toggle raw display
ν5\nu^{5}== β5+2β4+10β3+11β2+40β1+12 -\beta_{5} + 2\beta_{4} + 10\beta_{3} + 11\beta_{2} + 40\beta _1 + 12 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.76746
2.28339
0.505405
0.0966244
−1.51760
−2.13528
−2.76746 0 5.65882 −1.00000 0 0.699359 −10.1256 0 2.76746
1.2 −2.28339 0 3.21388 −1.00000 0 −3.72551 −2.77177 0 2.28339
1.3 −0.505405 0 −1.74457 −1.00000 0 −1.65336 1.89252 0 0.505405
1.4 −0.0966244 0 −1.99066 −1.00000 0 0.508444 0.385595 0 0.0966244
1.5 1.51760 0 0.303121 −1.00000 0 2.78967 −2.57519 0 −1.51760
1.6 2.13528 0 2.55940 −1.00000 0 −2.61861 1.19448 0 −2.13528
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1665.2.a.t 6
3.b odd 2 1 1665.2.a.u yes 6
5.b even 2 1 8325.2.a.ck 6
15.d odd 2 1 8325.2.a.cj 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1665.2.a.t 6 1.a even 1 1 trivial
1665.2.a.u yes 6 3.b odd 2 1
8325.2.a.cj 6 15.d odd 2 1
8325.2.a.ck 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1665))S_{2}^{\mathrm{new}}(\Gamma_0(1665)):

T26+2T258T2412T23+16T22+12T2+1 T_{2}^{6} + 2T_{2}^{5} - 8T_{2}^{4} - 12T_{2}^{3} + 16T_{2}^{2} + 12T_{2} + 1 Copy content Toggle raw display
T76+4T758T7436T73+3T72+40T716 T_{7}^{6} + 4T_{7}^{5} - 8T_{7}^{4} - 36T_{7}^{3} + 3T_{7}^{2} + 40T_{7} - 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+2T5++1 T^{6} + 2 T^{5} + \cdots + 1 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
77 T6+4T5+16 T^{6} + 4 T^{5} + \cdots - 16 Copy content Toggle raw display
1111 T6+4T5++1008 T^{6} + 4 T^{5} + \cdots + 1008 Copy content Toggle raw display
1313 T6+6T5+644 T^{6} + 6 T^{5} + \cdots - 644 Copy content Toggle raw display
1717 T6+8T5+28 T^{6} + 8 T^{5} + \cdots - 28 Copy content Toggle raw display
1919 T616T5+716 T^{6} - 16 T^{5} + \cdots - 716 Copy content Toggle raw display
2323 T6+10T5+32 T^{6} + 10 T^{5} + \cdots - 32 Copy content Toggle raw display
2929 T6+6T5++1036 T^{6} + 6 T^{5} + \cdots + 1036 Copy content Toggle raw display
3131 T614T5++84 T^{6} - 14 T^{5} + \cdots + 84 Copy content Toggle raw display
3737 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
4141 T6+20T5++128 T^{6} + 20 T^{5} + \cdots + 128 Copy content Toggle raw display
4343 T6+14T5+86212 T^{6} + 14 T^{5} + \cdots - 86212 Copy content Toggle raw display
4747 T6+8T5++592 T^{6} + 8 T^{5} + \cdots + 592 Copy content Toggle raw display
5353 T6+12T5++435456 T^{6} + 12 T^{5} + \cdots + 435456 Copy content Toggle raw display
5959 T6+12T5+336 T^{6} + 12 T^{5} + \cdots - 336 Copy content Toggle raw display
6161 T6+10T5++1876 T^{6} + 10 T^{5} + \cdots + 1876 Copy content Toggle raw display
6767 T6+4T5+21904 T^{6} + 4 T^{5} + \cdots - 21904 Copy content Toggle raw display
7171 T6+16T5++5808 T^{6} + 16 T^{5} + \cdots + 5808 Copy content Toggle raw display
7373 T6+12T5++6476 T^{6} + 12 T^{5} + \cdots + 6476 Copy content Toggle raw display
7979 T6+6T5+5628 T^{6} + 6 T^{5} + \cdots - 5628 Copy content Toggle raw display
8383 T66T5+61056 T^{6} - 6 T^{5} + \cdots - 61056 Copy content Toggle raw display
8989 T6+6T5++12748 T^{6} + 6 T^{5} + \cdots + 12748 Copy content Toggle raw display
9797 T6+22T5+61348 T^{6} + 22 T^{5} + \cdots - 61348 Copy content Toggle raw display
show more
show less