Properties

Label 1665.2.a.t
Level $1665$
Weight $2$
Character orbit 1665.a
Self dual yes
Analytic conductor $13.295$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1665,2,Mod(1,1665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1665.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.2950919365\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.95034688.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 16x^{2} - 12x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 1) q^{4} - q^{5} + (\beta_{3} - 1) q^{7} + ( - \beta_{3} - \beta_{2} - 2 \beta_1 - 1) q^{8} + \beta_1 q^{10} + (\beta_{4} + \beta_1 - 1) q^{11} + ( - \beta_{4} - \beta_{2} - 1) q^{13}+ \cdots + ( - \beta_{5} + 2 \beta_{4} + 3 \beta_{3} + \cdots - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 8 q^{4} - 6 q^{5} - 4 q^{7} - 12 q^{8} + 2 q^{10} - 4 q^{11} - 6 q^{13} + 6 q^{14} + 16 q^{16} - 8 q^{17} + 16 q^{19} - 8 q^{20} - 10 q^{22} - 10 q^{23} + 6 q^{25} - 12 q^{26} - 12 q^{28}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 16x^{2} - 12x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 9\nu^{3} + 5\nu^{2} + 19\nu - 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 11\nu^{2} + 17\nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} + 7\beta_{2} + 10\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} + 2\beta_{4} + 10\beta_{3} + 11\beta_{2} + 40\beta _1 + 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.76746
2.28339
0.505405
0.0966244
−1.51760
−2.13528
−2.76746 0 5.65882 −1.00000 0 0.699359 −10.1256 0 2.76746
1.2 −2.28339 0 3.21388 −1.00000 0 −3.72551 −2.77177 0 2.28339
1.3 −0.505405 0 −1.74457 −1.00000 0 −1.65336 1.89252 0 0.505405
1.4 −0.0966244 0 −1.99066 −1.00000 0 0.508444 0.385595 0 0.0966244
1.5 1.51760 0 0.303121 −1.00000 0 2.78967 −2.57519 0 −1.51760
1.6 2.13528 0 2.55940 −1.00000 0 −2.61861 1.19448 0 −2.13528
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1665.2.a.t 6
3.b odd 2 1 1665.2.a.u yes 6
5.b even 2 1 8325.2.a.ck 6
15.d odd 2 1 8325.2.a.cj 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1665.2.a.t 6 1.a even 1 1 trivial
1665.2.a.u yes 6 3.b odd 2 1
8325.2.a.cj 6 15.d odd 2 1
8325.2.a.ck 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1665))\):

\( T_{2}^{6} + 2T_{2}^{5} - 8T_{2}^{4} - 12T_{2}^{3} + 16T_{2}^{2} + 12T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} + 4T_{7}^{5} - 8T_{7}^{4} - 36T_{7}^{3} + 3T_{7}^{2} + 40T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 4 T^{5} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{6} + 4 T^{5} + \cdots + 1008 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots - 644 \) Copy content Toggle raw display
$17$ \( T^{6} + 8 T^{5} + \cdots - 28 \) Copy content Toggle raw display
$19$ \( T^{6} - 16 T^{5} + \cdots - 716 \) Copy content Toggle raw display
$23$ \( T^{6} + 10 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots + 1036 \) Copy content Toggle raw display
$31$ \( T^{6} - 14 T^{5} + \cdots + 84 \) Copy content Toggle raw display
$37$ \( (T + 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + 20 T^{5} + \cdots + 128 \) Copy content Toggle raw display
$43$ \( T^{6} + 14 T^{5} + \cdots - 86212 \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + \cdots + 592 \) Copy content Toggle raw display
$53$ \( T^{6} + 12 T^{5} + \cdots + 435456 \) Copy content Toggle raw display
$59$ \( T^{6} + 12 T^{5} + \cdots - 336 \) Copy content Toggle raw display
$61$ \( T^{6} + 10 T^{5} + \cdots + 1876 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots - 21904 \) Copy content Toggle raw display
$71$ \( T^{6} + 16 T^{5} + \cdots + 5808 \) Copy content Toggle raw display
$73$ \( T^{6} + 12 T^{5} + \cdots + 6476 \) Copy content Toggle raw display
$79$ \( T^{6} + 6 T^{5} + \cdots - 5628 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots - 61056 \) Copy content Toggle raw display
$89$ \( T^{6} + 6 T^{5} + \cdots + 12748 \) Copy content Toggle raw display
$97$ \( T^{6} + 22 T^{5} + \cdots - 61348 \) Copy content Toggle raw display
show more
show less