Properties

Label 1665.4.a.c
Level $1665$
Weight $4$
Character orbit 1665.a
Self dual yes
Analytic conductor $98.238$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1665,4,Mod(1,1665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1665.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.2381801596\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 555)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - 7 q^{4} - 5 q^{5} + 25 q^{7} + 15 q^{8} + 5 q^{10} + 57 q^{11} - 26 q^{13} - 25 q^{14} + 41 q^{16} - 107 q^{17} - 46 q^{19} + 35 q^{20} - 57 q^{22} - 124 q^{23} + 25 q^{25} + 26 q^{26} - 175 q^{28}+ \cdots - 282 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −7.00000 −5.00000 0 25.0000 15.0000 0 5.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1665.4.a.c 1
3.b odd 2 1 555.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
555.4.a.a 1 3.b odd 2 1
1665.4.a.c 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1665))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{7} - 25 \) Copy content Toggle raw display
\( T_{11} - 57 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 25 \) Copy content Toggle raw display
$11$ \( T - 57 \) Copy content Toggle raw display
$13$ \( T + 26 \) Copy content Toggle raw display
$17$ \( T + 107 \) Copy content Toggle raw display
$19$ \( T + 46 \) Copy content Toggle raw display
$23$ \( T + 124 \) Copy content Toggle raw display
$29$ \( T - 157 \) Copy content Toggle raw display
$31$ \( T + 75 \) Copy content Toggle raw display
$37$ \( T + 37 \) Copy content Toggle raw display
$41$ \( T - 443 \) Copy content Toggle raw display
$43$ \( T + 265 \) Copy content Toggle raw display
$47$ \( T + 512 \) Copy content Toggle raw display
$53$ \( T - 459 \) Copy content Toggle raw display
$59$ \( T - 570 \) Copy content Toggle raw display
$61$ \( T + 259 \) Copy content Toggle raw display
$67$ \( T + 428 \) Copy content Toggle raw display
$71$ \( T - 1020 \) Copy content Toggle raw display
$73$ \( T + 232 \) Copy content Toggle raw display
$79$ \( T + 468 \) Copy content Toggle raw display
$83$ \( T - 114 \) Copy content Toggle raw display
$89$ \( T + 134 \) Copy content Toggle raw display
$97$ \( T + 889 \) Copy content Toggle raw display
show more
show less