Properties

Label 167.1.b.a.166.2
Level $167$
Weight $1$
Character 167.166
Self dual yes
Analytic conductor $0.083$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -167
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [167,1,Mod(166,167)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(167, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("167.166");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 167 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 167.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.0833438571097\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.129891985607.1

Embedding invariants

Embedding label 166.2
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 167.166

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30972 q^{2} -1.91899 q^{3} +0.715370 q^{4} +2.51334 q^{6} +0.830830 q^{7} +0.372786 q^{8} +2.68251 q^{9} -0.284630 q^{11} -1.37279 q^{12} -1.08816 q^{14} -1.20362 q^{16} -3.51334 q^{18} +1.68251 q^{19} -1.59435 q^{21} +0.372786 q^{22} -0.715370 q^{24} +1.00000 q^{25} -3.22871 q^{27} +0.594351 q^{28} +0.830830 q^{29} -1.30972 q^{31} +1.20362 q^{32} +0.546200 q^{33} +1.91899 q^{36} -2.20362 q^{38} +2.08816 q^{42} -0.203616 q^{44} +1.68251 q^{47} +2.30972 q^{48} -0.309721 q^{49} -1.30972 q^{50} +4.22871 q^{54} +0.309721 q^{56} -3.22871 q^{57} -1.08816 q^{58} -1.91899 q^{61} +1.71537 q^{62} +2.22871 q^{63} -0.372786 q^{64} -0.715370 q^{66} +1.00000 q^{72} -1.91899 q^{75} +1.20362 q^{76} -0.236479 q^{77} +3.51334 q^{81} -1.14055 q^{84} -1.59435 q^{87} -0.106106 q^{88} -1.91899 q^{89} +2.51334 q^{93} -2.20362 q^{94} -2.30972 q^{96} -0.284630 q^{97} +0.405649 q^{98} -0.763521 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - q^{3} + 4 q^{4} - 2 q^{6} - q^{7} - 2 q^{8} + 4 q^{9} - q^{11} - 3 q^{12} - 2 q^{14} + 3 q^{16} - 3 q^{18} - q^{19} - 2 q^{21} - 2 q^{22} - 4 q^{24} + 5 q^{25} - 2 q^{27} - 3 q^{28} - q^{29}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/167\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(3\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(4\) 0.715370 0.715370
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 2.51334 2.51334
\(7\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(8\) 0.372786 0.372786
\(9\) 2.68251 2.68251
\(10\) 0 0
\(11\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(12\) −1.37279 −1.37279
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.08816 −1.08816
\(15\) 0 0
\(16\) −1.20362 −1.20362
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −3.51334 −3.51334
\(19\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(20\) 0 0
\(21\) −1.59435 −1.59435
\(22\) 0.372786 0.372786
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −0.715370 −0.715370
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) −3.22871 −3.22871
\(28\) 0.594351 0.594351
\(29\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(30\) 0 0
\(31\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(32\) 1.20362 1.20362
\(33\) 0.546200 0.546200
\(34\) 0 0
\(35\) 0 0
\(36\) 1.91899 1.91899
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −2.20362 −2.20362
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 2.08816 2.08816
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −0.203616 −0.203616
\(45\) 0 0
\(46\) 0 0
\(47\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(48\) 2.30972 2.30972
\(49\) −0.309721 −0.309721
\(50\) −1.30972 −1.30972
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 4.22871 4.22871
\(55\) 0 0
\(56\) 0.309721 0.309721
\(57\) −3.22871 −3.22871
\(58\) −1.08816 −1.08816
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(62\) 1.71537 1.71537
\(63\) 2.22871 2.22871
\(64\) −0.372786 −0.372786
\(65\) 0 0
\(66\) −0.715370 −0.715370
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −1.91899 −1.91899
\(76\) 1.20362 1.20362
\(77\) −0.236479 −0.236479
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 3.51334 3.51334
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −1.14055 −1.14055
\(85\) 0 0
\(86\) 0 0
\(87\) −1.59435 −1.59435
\(88\) −0.106106 −0.106106
\(89\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.51334 2.51334
\(94\) −2.20362 −2.20362
\(95\) 0 0
\(96\) −2.30972 −2.30972
\(97\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(98\) 0.405649 0.405649
\(99\) −0.763521 −0.763521
\(100\) 0.715370 0.715370
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(108\) −2.30972 −2.30972
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 4.22871 4.22871
\(115\) 0 0
\(116\) 0.594351 0.594351
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.918986 −0.918986
\(122\) 2.51334 2.51334
\(123\) 0 0
\(124\) −0.936936 −0.936936
\(125\) 0 0
\(126\) −2.91899 −2.91899
\(127\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(128\) −0.715370 −0.715370
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0.390736 0.390736
\(133\) 1.39788 1.39788
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −3.22871 −3.22871
\(142\) 0 0
\(143\) 0 0
\(144\) −3.22871 −3.22871
\(145\) 0 0
\(146\) 0 0
\(147\) 0.594351 0.594351
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 2.51334 2.51334
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.627214 0.627214
\(153\) 0 0
\(154\) 0.309721 0.309721
\(155\) 0 0
\(156\) 0 0
\(157\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −4.60149 −4.60149
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 1.00000
\(168\) −0.594351 −0.594351
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 4.51334 4.51334
\(172\) 0 0
\(173\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(174\) 2.08816 2.08816
\(175\) 0.830830 0.830830
\(176\) 0.342585 0.342585
\(177\) 0 0
\(178\) 2.51334 2.51334
\(179\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(180\) 0 0
\(181\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(182\) 0 0
\(183\) 3.68251 3.68251
\(184\) 0 0
\(185\) 0 0
\(186\) −3.29177 −3.29177
\(187\) 0 0
\(188\) 1.20362 1.20362
\(189\) −2.68251 −2.68251
\(190\) 0 0
\(191\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(192\) 0.715370 0.715370
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0.372786 0.372786
\(195\) 0 0
\(196\) −0.221566 −0.221566
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.00000 1.00000
\(199\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(200\) 0.372786 0.372786
\(201\) 0 0
\(202\) 0 0
\(203\) 0.690279 0.690279
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.478891 −0.478891
\(210\) 0 0
\(211\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.08816 −1.08816
\(215\) 0 0
\(216\) −1.20362 −1.20362
\(217\) −1.08816 −1.08816
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(224\) 1.00000 1.00000
\(225\) 2.68251 2.68251
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) −2.30972 −2.30972
\(229\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(230\) 0 0
\(231\) 0.453800 0.453800
\(232\) 0.309721 0.309721
\(233\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.20362 1.20362
\(243\) −3.51334 −3.51334
\(244\) −1.37279 −1.37279
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −0.488245 −0.488245
\(249\) 0 0
\(250\) 0 0
\(251\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(252\) 1.59435 1.59435
\(253\) 0 0
\(254\) 0.372786 0.372786
\(255\) 0 0
\(256\) 1.30972 1.30972
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.22871 2.22871
\(262\) 0 0
\(263\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(264\) 0.203616 0.203616
\(265\) 0 0
\(266\) −1.83083 −1.83083
\(267\) 3.68251 3.68251
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.372786 0.372786
\(275\) −0.284630 −0.284630
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −3.51334 −3.51334
\(280\) 0 0
\(281\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(282\) 4.22871 4.22871
\(283\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 3.22871 3.22871
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0.546200 0.546200
\(292\) 0 0
\(293\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(294\) −0.778434 −0.778434
\(295\) 0 0
\(296\) 0 0
\(297\) 0.918986 0.918986
\(298\) 0 0
\(299\) 0 0
\(300\) −1.37279 −1.37279
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −2.02509 −2.02509
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −0.169170 −0.169170
\(309\) 0 0
\(310\) 0 0
\(311\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 1.71537 1.71537
\(315\) 0 0
\(316\) 0 0
\(317\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(318\) 0 0
\(319\) −0.236479 −0.236479
\(320\) 0 0
\(321\) −1.59435 −1.59435
\(322\) 0 0
\(323\) 0 0
\(324\) 2.51334 2.51334
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.39788 1.39788
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.30972 −1.30972
\(335\) 0 0
\(336\) 1.91899 1.91899
\(337\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(338\) −1.30972 −1.30972
\(339\) 0 0
\(340\) 0 0
\(341\) 0.372786 0.372786
\(342\) −5.91121 −5.91121
\(343\) −1.08816 −1.08816
\(344\) 0 0
\(345\) 0 0
\(346\) 0.372786 0.372786
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) −1.14055 −1.14055
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.08816 −1.08816
\(351\) 0 0
\(352\) −0.342585 −0.342585
\(353\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.37279 −1.37279
\(357\) 0 0
\(358\) −2.20362 −2.20362
\(359\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(360\) 0 0
\(361\) 1.83083 1.83083
\(362\) −2.20362 −2.20362
\(363\) 1.76352 1.76352
\(364\) 0 0
\(365\) 0 0
\(366\) −4.82306 −4.82306
\(367\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.79797 1.79797
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.627214 0.627214
\(377\) 0 0
\(378\) 3.51334 3.51334
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0.546200 0.546200
\(382\) 1.71537 1.71537
\(383\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(384\) 1.37279 1.37279
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −0.203616 −0.203616
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.115460 −0.115460
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −0.546200 −0.546200
\(397\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(398\) 0.372786 0.372786
\(399\) −2.68251 −2.68251
\(400\) −1.20362 −1.20362
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −0.904073 −0.904073
\(407\) 0 0
\(408\) 0 0
\(409\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0 0
\(411\) 0.546200 0.546200
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0.627214 0.627214
\(419\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(420\) 0 0
\(421\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(422\) 1.71537 1.71537
\(423\) 4.51334 4.51334
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.59435 −1.59435
\(428\) 0.594351 0.594351
\(429\) 0 0
\(430\) 0 0
\(431\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(432\) 3.88612 3.88612
\(433\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(434\) 1.42518 1.42518
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −0.830830 −0.830830
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.51334 2.51334
\(447\) 0 0
\(448\) −0.309721 −0.309721
\(449\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(450\) −3.51334 −3.51334
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) −1.20362 −1.20362
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −1.08816 −1.08816
\(459\) 0 0
\(460\) 0 0
\(461\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(462\) −0.594351 −0.594351
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −1.00000 −1.00000
\(465\) 0 0
\(466\) 1.71537 1.71537
\(467\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.51334 2.51334
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.68251 1.68251
\(476\) 0 0
\(477\) 0 0
\(478\) 2.51334 2.51334
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.657415 −0.657415
\(485\) 0 0
\(486\) 4.60149 4.60149
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) −0.715370 −0.715370
\(489\) 0 0
\(490\) 0 0
\(491\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.57640 1.57640
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −1.91899 −1.91899
\(502\) −1.08816 −1.08816
\(503\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(504\) 0.830830 0.830830
\(505\) 0 0
\(506\) 0 0
\(507\) −1.91899 −1.91899
\(508\) −0.203616 −0.203616
\(509\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) −5.43232 −5.43232
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.478891 −0.478891
\(518\) 0 0
\(519\) 0.546200 0.546200
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −2.91899 −2.91899
\(523\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(524\) 0 0
\(525\) −1.59435 −1.59435
\(526\) 2.51334 2.51334
\(527\) 0 0
\(528\) −0.657415 −0.657415
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 1.00000 1.00000
\(533\) 0 0
\(534\) −4.82306 −4.82306
\(535\) 0 0
\(536\) 0 0
\(537\) −3.22871 −3.22871
\(538\) 0 0
\(539\) 0.0881559 0.0881559
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −3.22871 −3.22871
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −0.203616 −0.203616
\(549\) −5.14769 −5.14769
\(550\) 0.372786 0.372786
\(551\) 1.39788 1.39788
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(558\) 4.60149 4.60149
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 2.51334 2.51334
\(563\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(564\) −2.30972 −2.30972
\(565\) 0 0
\(566\) 0.372786 0.372786
\(567\) 2.91899 2.91899
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 2.51334 2.51334
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(578\) −1.30972 −1.30972
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) −0.715370 −0.715370
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.71537 1.71537
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0.425181 0.425181
\(589\) −2.20362 −2.20362
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −1.20362 −1.20362
\(595\) 0 0
\(596\) 0 0
\(597\) 0.546200 0.546200
\(598\) 0 0
\(599\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(600\) −0.715370 −0.715370
\(601\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 2.02509 2.02509
\(609\) −1.32463 −1.32463
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.0881559 −0.0881559
\(617\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.61944 −2.61944
\(623\) −1.59435 −1.59435
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0.918986 0.918986
\(628\) −0.936936 −0.936936
\(629\) 0 0
\(630\) 0 0
\(631\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(632\) 0 0
\(633\) 2.51334 2.51334
\(634\) 2.51334 2.51334
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0.309721 0.309721
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 2.08816 2.08816
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.30972 1.30972
\(649\) 0 0
\(650\) 0 0
\(651\) 2.08816 2.08816
\(652\) 0 0
\(653\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −1.83083 −1.83083
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.715370 0.715370
\(669\) 3.68251 3.68251
\(670\) 0 0
\(671\) 0.546200 0.546200
\(672\) −1.91899 −1.91899
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −2.20362 −2.20362
\(675\) −3.22871 −3.22871
\(676\) 0.715370 0.715370
\(677\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(678\) 0 0
\(679\) −0.236479 −0.236479
\(680\) 0 0
\(681\) 0 0
\(682\) −0.488245 −0.488245
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 3.22871 3.22871
\(685\) 0 0
\(686\) 1.42518 1.42518
\(687\) −1.59435 −1.59435
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −0.203616 −0.203616
\(693\) −0.634356 −0.634356
\(694\) 0 0
\(695\) 0 0
\(696\) −0.594351 −0.594351
\(697\) 0 0
\(698\) 0 0
\(699\) 2.51334 2.51334
\(700\) 0.594351 0.594351
\(701\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.106106 0.106106
\(705\) 0 0
\(706\) −1.08816 −1.08816
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.715370 −0.715370
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.20362 1.20362
\(717\) 3.68251 3.68251
\(718\) 1.71537 1.71537
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.39788 −2.39788
\(723\) 0 0
\(724\) 1.20362 1.20362
\(725\) 0.830830 0.830830
\(726\) −2.30972 −2.30972
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 3.22871 3.22871
\(730\) 0 0
\(731\) 0 0
\(732\) 2.63436 2.63436
\(733\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(734\) −2.20362 −2.20362
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(744\) 0.936936 0.936936
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.690279 0.690279
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −2.02509 −2.02509
\(753\) −1.59435 −1.59435
\(754\) 0 0
\(755\) 0 0
\(756\) −1.91899 −1.91899
\(757\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(762\) −0.715370 −0.715370
\(763\) 0 0
\(764\) −0.936936 −0.936936
\(765\) 0 0
\(766\) −1.08816 −1.08816
\(767\) 0 0
\(768\) −2.51334 −2.51334
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1.30972 −1.30972
\(776\) −0.106106 −0.106106
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.68251 −2.68251
\(784\) 0.372786 0.372786
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 3.68251 3.68251
\(790\) 0 0
\(791\) 0 0
\(792\) −0.284630 −0.284630
\(793\) 0 0
\(794\) 2.51334 2.51334
\(795\) 0 0
\(796\) −0.203616 −0.203616
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 3.51334 3.51334
\(799\) 0 0
\(800\) 1.20362 1.20362
\(801\) −5.14769 −5.14769
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0.493805 0.493805
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.372786 0.372786
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −0.715370 −0.715370
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0.546200 0.546200
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −0.342585 −0.342585
\(837\) 4.22871 4.22871
\(838\) 1.71537 1.71537
\(839\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(840\) 0 0
\(841\) −0.309721 −0.309721
\(842\) −1.08816 −1.08816
\(843\) 3.68251 3.68251
\(844\) −0.936936 −0.936936
\(845\) 0 0
\(846\) −5.91121 −5.91121
\(847\) −0.763521 −0.763521
\(848\) 0 0
\(849\) 0.546200 0.546200
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(854\) 2.08816 2.08816
\(855\) 0 0
\(856\) 0.309721 0.309721
\(857\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(858\) 0 0
\(859\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.51334 2.51334
\(863\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(864\) −3.88612 −3.88612
\(865\) 0 0
\(866\) −2.20362 −2.20362
\(867\) −1.91899 −1.91899
\(868\) −0.778434 −0.778434
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.763521 −0.763521
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(878\) 0 0
\(879\) 2.51334 2.51334
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.08816 1.08816
\(883\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −0.236479 −0.236479
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) −1.37279 −1.37279
\(893\) 2.83083 2.83083
\(894\) 0 0
\(895\) 0 0
\(896\) −0.594351 −0.594351
\(897\) 0 0
\(898\) −2.20362 −2.20362
\(899\) −1.08816 −1.08816
\(900\) 1.91899 1.91899
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(912\) 3.88612 3.88612
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.594351 0.594351
\(917\) 0 0
\(918\) 0 0
\(919\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.20362 −2.20362
\(923\) 0 0
\(924\) 0.324635 0.324635
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 1.00000 1.00000
\(929\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(930\) 0 0
\(931\) −0.521109 −0.521109
\(932\) −0.936936 −0.936936
\(933\) −3.83797 −3.83797
\(934\) −1.08816 −1.08816
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) −3.29177 −3.29177
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −2.20362 −2.20362
\(951\) 3.68251 3.68251
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.37279 −1.37279
\(957\) 0.453800 0.453800
\(958\) 0 0
\(959\) −0.236479 −0.236479
\(960\) 0 0
\(961\) 0.715370 0.715370
\(962\) 0 0
\(963\) 2.22871 2.22871
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(968\) −0.342585 −0.342585
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −2.51334 −2.51334
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 2.30972 2.30972
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0.546200 0.546200
\(980\) 0 0
\(981\) 0 0
\(982\) −2.61944 −2.61944
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.68251 −2.68251
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.57640 −1.57640
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 167.1.b.a.166.2 5
3.2 odd 2 1503.1.d.a.667.4 5
4.3 odd 2 2672.1.g.a.2337.5 5
167.166 odd 2 CM 167.1.b.a.166.2 5
501.500 even 2 1503.1.d.a.667.4 5
668.667 even 2 2672.1.g.a.2337.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
167.1.b.a.166.2 5 1.1 even 1 trivial
167.1.b.a.166.2 5 167.166 odd 2 CM
1503.1.d.a.667.4 5 3.2 odd 2
1503.1.d.a.667.4 5 501.500 even 2
2672.1.g.a.2337.5 5 4.3 odd 2
2672.1.g.a.2337.5 5 668.667 even 2