Properties

Label 168.4.a.f
Level $168$
Weight $4$
Character orbit 168.a
Self dual yes
Analytic conductor $9.912$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [168,4,Mod(1,168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("168.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 2 q^{5} - 7 q^{7} + 9 q^{9} + 52 q^{11} + 86 q^{13} - 6 q^{15} - 30 q^{17} - 4 q^{19} - 21 q^{21} + 120 q^{23} - 121 q^{25} + 27 q^{27} + 246 q^{29} + 80 q^{31} + 156 q^{33} + 14 q^{35} - 290 q^{37}+ \cdots + 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −2.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.4.a.f 1
3.b odd 2 1 504.4.a.c 1
4.b odd 2 1 336.4.a.c 1
7.b odd 2 1 1176.4.a.e 1
8.b even 2 1 1344.4.a.g 1
8.d odd 2 1 1344.4.a.v 1
12.b even 2 1 1008.4.a.l 1
28.d even 2 1 2352.4.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.f 1 1.a even 1 1 trivial
336.4.a.c 1 4.b odd 2 1
504.4.a.c 1 3.b odd 2 1
1008.4.a.l 1 12.b even 2 1
1176.4.a.e 1 7.b odd 2 1
1344.4.a.g 1 8.b even 2 1
1344.4.a.v 1 8.d odd 2 1
2352.4.a.bb 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(168))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{11} - 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 52 \) Copy content Toggle raw display
$13$ \( T - 86 \) Copy content Toggle raw display
$17$ \( T + 30 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 120 \) Copy content Toggle raw display
$29$ \( T - 246 \) Copy content Toggle raw display
$31$ \( T - 80 \) Copy content Toggle raw display
$37$ \( T + 290 \) Copy content Toggle raw display
$41$ \( T + 374 \) Copy content Toggle raw display
$43$ \( T - 164 \) Copy content Toggle raw display
$47$ \( T - 464 \) Copy content Toggle raw display
$53$ \( T + 162 \) Copy content Toggle raw display
$59$ \( T - 180 \) Copy content Toggle raw display
$61$ \( T + 666 \) Copy content Toggle raw display
$67$ \( T + 628 \) Copy content Toggle raw display
$71$ \( T - 296 \) Copy content Toggle raw display
$73$ \( T + 518 \) Copy content Toggle raw display
$79$ \( T + 1184 \) Copy content Toggle raw display
$83$ \( T - 220 \) Copy content Toggle raw display
$89$ \( T + 774 \) Copy content Toggle raw display
$97$ \( T + 1086 \) Copy content Toggle raw display
show more
show less