Properties

Label 168.6.a.h.1.2
Level $168$
Weight $6$
Character 168.1
Self dual yes
Analytic conductor $26.944$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [168,6,Mod(1,168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("168.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9444817286\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{249}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 62 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.38987\) of defining polynomial
Character \(\chi\) \(=\) 168.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -0.440532 q^{5} +49.0000 q^{7} +81.0000 q^{9} -203.392 q^{11} -402.951 q^{13} +3.96479 q^{15} +1761.53 q^{17} +1775.40 q^{19} -441.000 q^{21} -2710.72 q^{23} -3124.81 q^{25} -729.000 q^{27} +781.595 q^{29} -9655.74 q^{31} +1830.53 q^{33} -21.5861 q^{35} +3788.80 q^{37} +3626.56 q^{39} -18034.1 q^{41} -13199.7 q^{43} -35.6831 q^{45} -26648.6 q^{47} +2401.00 q^{49} -15853.8 q^{51} +22760.3 q^{53} +89.6008 q^{55} -15978.6 q^{57} +1579.56 q^{59} -35327.9 q^{61} +3969.00 q^{63} +177.513 q^{65} -48572.1 q^{67} +24396.5 q^{69} +12764.0 q^{71} +10152.3 q^{73} +28123.3 q^{75} -9966.21 q^{77} -8703.14 q^{79} +6561.00 q^{81} -26277.1 q^{83} -776.012 q^{85} -7034.35 q^{87} +33598.5 q^{89} -19744.6 q^{91} +86901.6 q^{93} -782.121 q^{95} +23000.5 q^{97} -16474.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{3} - 64 q^{5} + 98 q^{7} + 162 q^{9} + 540 q^{11} + 204 q^{13} + 576 q^{15} + 304 q^{17} - 1120 q^{19} - 882 q^{21} - 940 q^{23} - 2210 q^{25} - 1458 q^{27} + 932 q^{29} - 16408 q^{31} - 4860 q^{33}+ \cdots + 43740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −0.440532 −0.00788048 −0.00394024 0.999992i \(-0.501254\pi\)
−0.00394024 + 0.999992i \(0.501254\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −203.392 −0.506818 −0.253409 0.967359i \(-0.581552\pi\)
−0.253409 + 0.967359i \(0.581552\pi\)
\(12\) 0 0
\(13\) −402.951 −0.661294 −0.330647 0.943755i \(-0.607267\pi\)
−0.330647 + 0.943755i \(0.607267\pi\)
\(14\) 0 0
\(15\) 3.96479 0.00454980
\(16\) 0 0
\(17\) 1761.53 1.47832 0.739160 0.673530i \(-0.235223\pi\)
0.739160 + 0.673530i \(0.235223\pi\)
\(18\) 0 0
\(19\) 1775.40 1.12827 0.564134 0.825683i \(-0.309210\pi\)
0.564134 + 0.825683i \(0.309210\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 0 0
\(23\) −2710.72 −1.06848 −0.534239 0.845334i \(-0.679402\pi\)
−0.534239 + 0.845334i \(0.679402\pi\)
\(24\) 0 0
\(25\) −3124.81 −0.999938
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 781.595 0.172578 0.0862892 0.996270i \(-0.472499\pi\)
0.0862892 + 0.996270i \(0.472499\pi\)
\(30\) 0 0
\(31\) −9655.74 −1.80460 −0.902300 0.431108i \(-0.858123\pi\)
−0.902300 + 0.431108i \(0.858123\pi\)
\(32\) 0 0
\(33\) 1830.53 0.292612
\(34\) 0 0
\(35\) −21.5861 −0.00297854
\(36\) 0 0
\(37\) 3788.80 0.454985 0.227493 0.973780i \(-0.426947\pi\)
0.227493 + 0.973780i \(0.426947\pi\)
\(38\) 0 0
\(39\) 3626.56 0.381798
\(40\) 0 0
\(41\) −18034.1 −1.67546 −0.837730 0.546084i \(-0.816118\pi\)
−0.837730 + 0.546084i \(0.816118\pi\)
\(42\) 0 0
\(43\) −13199.7 −1.08866 −0.544329 0.838872i \(-0.683216\pi\)
−0.544329 + 0.838872i \(0.683216\pi\)
\(44\) 0 0
\(45\) −35.6831 −0.00262683
\(46\) 0 0
\(47\) −26648.6 −1.75966 −0.879831 0.475286i \(-0.842345\pi\)
−0.879831 + 0.475286i \(0.842345\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −15853.8 −0.853508
\(52\) 0 0
\(53\) 22760.3 1.11298 0.556490 0.830854i \(-0.312148\pi\)
0.556490 + 0.830854i \(0.312148\pi\)
\(54\) 0 0
\(55\) 89.6008 0.00399397
\(56\) 0 0
\(57\) −15978.6 −0.651406
\(58\) 0 0
\(59\) 1579.56 0.0590752 0.0295376 0.999564i \(-0.490597\pi\)
0.0295376 + 0.999564i \(0.490597\pi\)
\(60\) 0 0
\(61\) −35327.9 −1.21561 −0.607804 0.794087i \(-0.707949\pi\)
−0.607804 + 0.794087i \(0.707949\pi\)
\(62\) 0 0
\(63\) 3969.00 0.125988
\(64\) 0 0
\(65\) 177.513 0.00521131
\(66\) 0 0
\(67\) −48572.1 −1.32190 −0.660952 0.750428i \(-0.729847\pi\)
−0.660952 + 0.750428i \(0.729847\pi\)
\(68\) 0 0
\(69\) 24396.5 0.616886
\(70\) 0 0
\(71\) 12764.0 0.300498 0.150249 0.988648i \(-0.451993\pi\)
0.150249 + 0.988648i \(0.451993\pi\)
\(72\) 0 0
\(73\) 10152.3 0.222976 0.111488 0.993766i \(-0.464438\pi\)
0.111488 + 0.993766i \(0.464438\pi\)
\(74\) 0 0
\(75\) 28123.3 0.577314
\(76\) 0 0
\(77\) −9966.21 −0.191559
\(78\) 0 0
\(79\) −8703.14 −0.156895 −0.0784474 0.996918i \(-0.524996\pi\)
−0.0784474 + 0.996918i \(0.524996\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −26277.1 −0.418680 −0.209340 0.977843i \(-0.567132\pi\)
−0.209340 + 0.977843i \(0.567132\pi\)
\(84\) 0 0
\(85\) −776.012 −0.0116499
\(86\) 0 0
\(87\) −7034.35 −0.0996382
\(88\) 0 0
\(89\) 33598.5 0.449619 0.224809 0.974403i \(-0.427824\pi\)
0.224809 + 0.974403i \(0.427824\pi\)
\(90\) 0 0
\(91\) −19744.6 −0.249946
\(92\) 0 0
\(93\) 86901.6 1.04189
\(94\) 0 0
\(95\) −782.121 −0.00889130
\(96\) 0 0
\(97\) 23000.5 0.248203 0.124102 0.992270i \(-0.460395\pi\)
0.124102 + 0.992270i \(0.460395\pi\)
\(98\) 0 0
\(99\) −16474.8 −0.168939
\(100\) 0 0
\(101\) 57527.8 0.561144 0.280572 0.959833i \(-0.409476\pi\)
0.280572 + 0.959833i \(0.409476\pi\)
\(102\) 0 0
\(103\) −167794. −1.55842 −0.779210 0.626763i \(-0.784379\pi\)
−0.779210 + 0.626763i \(0.784379\pi\)
\(104\) 0 0
\(105\) 194.275 0.00171966
\(106\) 0 0
\(107\) 67979.3 0.574007 0.287004 0.957929i \(-0.407341\pi\)
0.287004 + 0.957929i \(0.407341\pi\)
\(108\) 0 0
\(109\) 91585.8 0.738349 0.369175 0.929360i \(-0.379640\pi\)
0.369175 + 0.929360i \(0.379640\pi\)
\(110\) 0 0
\(111\) −34099.2 −0.262686
\(112\) 0 0
\(113\) 154355. 1.13717 0.568584 0.822625i \(-0.307492\pi\)
0.568584 + 0.822625i \(0.307492\pi\)
\(114\) 0 0
\(115\) 1194.16 0.00842012
\(116\) 0 0
\(117\) −32639.1 −0.220431
\(118\) 0 0
\(119\) 86315.1 0.558752
\(120\) 0 0
\(121\) −119683. −0.743135
\(122\) 0 0
\(123\) 162307. 0.967328
\(124\) 0 0
\(125\) 2753.24 0.0157605
\(126\) 0 0
\(127\) −54085.3 −0.297557 −0.148778 0.988871i \(-0.547534\pi\)
−0.148778 + 0.988871i \(0.547534\pi\)
\(128\) 0 0
\(129\) 118797. 0.628537
\(130\) 0 0
\(131\) 43981.5 0.223919 0.111960 0.993713i \(-0.464287\pi\)
0.111960 + 0.993713i \(0.464287\pi\)
\(132\) 0 0
\(133\) 86994.6 0.426445
\(134\) 0 0
\(135\) 321.148 0.00151660
\(136\) 0 0
\(137\) 79578.6 0.362239 0.181119 0.983461i \(-0.442028\pi\)
0.181119 + 0.983461i \(0.442028\pi\)
\(138\) 0 0
\(139\) −207284. −0.909973 −0.454987 0.890498i \(-0.650356\pi\)
−0.454987 + 0.890498i \(0.650356\pi\)
\(140\) 0 0
\(141\) 239837. 1.01594
\(142\) 0 0
\(143\) 81957.1 0.335156
\(144\) 0 0
\(145\) −344.318 −0.00136000
\(146\) 0 0
\(147\) −21609.0 −0.0824786
\(148\) 0 0
\(149\) 382884. 1.41287 0.706434 0.707779i \(-0.250303\pi\)
0.706434 + 0.707779i \(0.250303\pi\)
\(150\) 0 0
\(151\) 50287.6 0.179481 0.0897406 0.995965i \(-0.471396\pi\)
0.0897406 + 0.995965i \(0.471396\pi\)
\(152\) 0 0
\(153\) 142684. 0.492773
\(154\) 0 0
\(155\) 4253.66 0.0142211
\(156\) 0 0
\(157\) 367616. 1.19027 0.595135 0.803626i \(-0.297099\pi\)
0.595135 + 0.803626i \(0.297099\pi\)
\(158\) 0 0
\(159\) −204842. −0.642579
\(160\) 0 0
\(161\) −132825. −0.403847
\(162\) 0 0
\(163\) −206972. −0.610158 −0.305079 0.952327i \(-0.598683\pi\)
−0.305079 + 0.952327i \(0.598683\pi\)
\(164\) 0 0
\(165\) −806.407 −0.00230592
\(166\) 0 0
\(167\) 257285. 0.713878 0.356939 0.934128i \(-0.383820\pi\)
0.356939 + 0.934128i \(0.383820\pi\)
\(168\) 0 0
\(169\) −208923. −0.562691
\(170\) 0 0
\(171\) 143807. 0.376089
\(172\) 0 0
\(173\) −269032. −0.683421 −0.341710 0.939805i \(-0.611006\pi\)
−0.341710 + 0.939805i \(0.611006\pi\)
\(174\) 0 0
\(175\) −153115. −0.377941
\(176\) 0 0
\(177\) −14216.0 −0.0341071
\(178\) 0 0
\(179\) 533998. 1.24568 0.622841 0.782348i \(-0.285978\pi\)
0.622841 + 0.782348i \(0.285978\pi\)
\(180\) 0 0
\(181\) −629728. −1.42875 −0.714375 0.699763i \(-0.753289\pi\)
−0.714375 + 0.699763i \(0.753289\pi\)
\(182\) 0 0
\(183\) 317951. 0.701832
\(184\) 0 0
\(185\) −1669.09 −0.00358550
\(186\) 0 0
\(187\) −358282. −0.749239
\(188\) 0 0
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) −452199. −0.896903 −0.448452 0.893807i \(-0.648024\pi\)
−0.448452 + 0.893807i \(0.648024\pi\)
\(192\) 0 0
\(193\) −372356. −0.719556 −0.359778 0.933038i \(-0.617148\pi\)
−0.359778 + 0.933038i \(0.617148\pi\)
\(194\) 0 0
\(195\) −1597.62 −0.00300875
\(196\) 0 0
\(197\) −250110. −0.459161 −0.229581 0.973290i \(-0.573735\pi\)
−0.229581 + 0.973290i \(0.573735\pi\)
\(198\) 0 0
\(199\) −936025. −1.67554 −0.837770 0.546023i \(-0.816141\pi\)
−0.837770 + 0.546023i \(0.816141\pi\)
\(200\) 0 0
\(201\) 437149. 0.763201
\(202\) 0 0
\(203\) 38298.1 0.0652285
\(204\) 0 0
\(205\) 7944.59 0.0132034
\(206\) 0 0
\(207\) −219568. −0.356159
\(208\) 0 0
\(209\) −361102. −0.571827
\(210\) 0 0
\(211\) 961698. 1.48707 0.743537 0.668695i \(-0.233147\pi\)
0.743537 + 0.668695i \(0.233147\pi\)
\(212\) 0 0
\(213\) −114876. −0.173492
\(214\) 0 0
\(215\) 5814.88 0.00857916
\(216\) 0 0
\(217\) −473131. −0.682075
\(218\) 0 0
\(219\) −91370.9 −0.128735
\(220\) 0 0
\(221\) −709812. −0.977604
\(222\) 0 0
\(223\) −624199. −0.840545 −0.420273 0.907398i \(-0.638066\pi\)
−0.420273 + 0.907398i \(0.638066\pi\)
\(224\) 0 0
\(225\) −253109. −0.333313
\(226\) 0 0
\(227\) 698450. 0.899644 0.449822 0.893118i \(-0.351487\pi\)
0.449822 + 0.893118i \(0.351487\pi\)
\(228\) 0 0
\(229\) −987151. −1.24393 −0.621964 0.783046i \(-0.713665\pi\)
−0.621964 + 0.783046i \(0.713665\pi\)
\(230\) 0 0
\(231\) 89695.9 0.110597
\(232\) 0 0
\(233\) −1.11183e6 −1.34168 −0.670839 0.741603i \(-0.734066\pi\)
−0.670839 + 0.741603i \(0.734066\pi\)
\(234\) 0 0
\(235\) 11739.6 0.0138670
\(236\) 0 0
\(237\) 78328.3 0.0905832
\(238\) 0 0
\(239\) 1.50111e6 1.69988 0.849941 0.526878i \(-0.176638\pi\)
0.849941 + 0.526878i \(0.176638\pi\)
\(240\) 0 0
\(241\) −172734. −0.191574 −0.0957869 0.995402i \(-0.530537\pi\)
−0.0957869 + 0.995402i \(0.530537\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −1057.72 −0.00112578
\(246\) 0 0
\(247\) −715400. −0.746117
\(248\) 0 0
\(249\) 236494. 0.241725
\(250\) 0 0
\(251\) −136981. −0.137238 −0.0686192 0.997643i \(-0.521859\pi\)
−0.0686192 + 0.997643i \(0.521859\pi\)
\(252\) 0 0
\(253\) 551339. 0.541524
\(254\) 0 0
\(255\) 6984.11 0.00672606
\(256\) 0 0
\(257\) −1.97671e6 −1.86686 −0.933428 0.358765i \(-0.883198\pi\)
−0.933428 + 0.358765i \(0.883198\pi\)
\(258\) 0 0
\(259\) 185651. 0.171968
\(260\) 0 0
\(261\) 63309.2 0.0575262
\(262\) 0 0
\(263\) 414337. 0.369372 0.184686 0.982798i \(-0.440873\pi\)
0.184686 + 0.982798i \(0.440873\pi\)
\(264\) 0 0
\(265\) −10026.6 −0.00877082
\(266\) 0 0
\(267\) −302386. −0.259588
\(268\) 0 0
\(269\) 241748. 0.203696 0.101848 0.994800i \(-0.467524\pi\)
0.101848 + 0.994800i \(0.467524\pi\)
\(270\) 0 0
\(271\) 558814. 0.462215 0.231107 0.972928i \(-0.425765\pi\)
0.231107 + 0.972928i \(0.425765\pi\)
\(272\) 0 0
\(273\) 177702. 0.144306
\(274\) 0 0
\(275\) 635561. 0.506787
\(276\) 0 0
\(277\) 232158. 0.181796 0.0908981 0.995860i \(-0.471026\pi\)
0.0908981 + 0.995860i \(0.471026\pi\)
\(278\) 0 0
\(279\) −782115. −0.601534
\(280\) 0 0
\(281\) 1.85817e6 1.40385 0.701923 0.712253i \(-0.252325\pi\)
0.701923 + 0.712253i \(0.252325\pi\)
\(282\) 0 0
\(283\) 2.42916e6 1.80297 0.901487 0.432805i \(-0.142476\pi\)
0.901487 + 0.432805i \(0.142476\pi\)
\(284\) 0 0
\(285\) 7039.09 0.00513339
\(286\) 0 0
\(287\) −883670. −0.633265
\(288\) 0 0
\(289\) 1.68314e6 1.18543
\(290\) 0 0
\(291\) −207004. −0.143300
\(292\) 0 0
\(293\) −1.61912e6 −1.10182 −0.550908 0.834566i \(-0.685719\pi\)
−0.550908 + 0.834566i \(0.685719\pi\)
\(294\) 0 0
\(295\) −695.846 −0.000465541 0
\(296\) 0 0
\(297\) 148273. 0.0975372
\(298\) 0 0
\(299\) 1.09229e6 0.706577
\(300\) 0 0
\(301\) −646784. −0.411474
\(302\) 0 0
\(303\) −517750. −0.323977
\(304\) 0 0
\(305\) 15563.1 0.00957958
\(306\) 0 0
\(307\) 936495. 0.567100 0.283550 0.958957i \(-0.408488\pi\)
0.283550 + 0.958957i \(0.408488\pi\)
\(308\) 0 0
\(309\) 1.51015e6 0.899754
\(310\) 0 0
\(311\) 48784.9 0.0286012 0.0143006 0.999898i \(-0.495448\pi\)
0.0143006 + 0.999898i \(0.495448\pi\)
\(312\) 0 0
\(313\) 1.31634e6 0.759466 0.379733 0.925096i \(-0.376016\pi\)
0.379733 + 0.925096i \(0.376016\pi\)
\(314\) 0 0
\(315\) −1748.47 −0.000992847 0
\(316\) 0 0
\(317\) −3.08008e6 −1.72153 −0.860763 0.509006i \(-0.830013\pi\)
−0.860763 + 0.509006i \(0.830013\pi\)
\(318\) 0 0
\(319\) −158970. −0.0874659
\(320\) 0 0
\(321\) −611814. −0.331403
\(322\) 0 0
\(323\) 3.12743e6 1.66794
\(324\) 0 0
\(325\) 1.25915e6 0.661253
\(326\) 0 0
\(327\) −824272. −0.426286
\(328\) 0 0
\(329\) −1.30578e6 −0.665090
\(330\) 0 0
\(331\) −3.20819e6 −1.60950 −0.804749 0.593615i \(-0.797700\pi\)
−0.804749 + 0.593615i \(0.797700\pi\)
\(332\) 0 0
\(333\) 306893. 0.151662
\(334\) 0 0
\(335\) 21397.6 0.0104172
\(336\) 0 0
\(337\) 2.77901e6 1.33295 0.666477 0.745525i \(-0.267801\pi\)
0.666477 + 0.745525i \(0.267801\pi\)
\(338\) 0 0
\(339\) −1.38919e6 −0.656544
\(340\) 0 0
\(341\) 1.96390e6 0.914604
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) −10747.4 −0.00486136
\(346\) 0 0
\(347\) 3.01762e6 1.34537 0.672684 0.739930i \(-0.265141\pi\)
0.672684 + 0.739930i \(0.265141\pi\)
\(348\) 0 0
\(349\) 1.35064e6 0.593574 0.296787 0.954944i \(-0.404085\pi\)
0.296787 + 0.954944i \(0.404085\pi\)
\(350\) 0 0
\(351\) 293752. 0.127266
\(352\) 0 0
\(353\) 158501. 0.0677011 0.0338506 0.999427i \(-0.489223\pi\)
0.0338506 + 0.999427i \(0.489223\pi\)
\(354\) 0 0
\(355\) −5622.96 −0.00236807
\(356\) 0 0
\(357\) −776836. −0.322596
\(358\) 0 0
\(359\) −1.54504e6 −0.632709 −0.316354 0.948641i \(-0.602459\pi\)
−0.316354 + 0.948641i \(0.602459\pi\)
\(360\) 0 0
\(361\) 675948. 0.272989
\(362\) 0 0
\(363\) 1.07714e6 0.429049
\(364\) 0 0
\(365\) −4472.43 −0.00175716
\(366\) 0 0
\(367\) 2.51991e6 0.976607 0.488304 0.872674i \(-0.337616\pi\)
0.488304 + 0.872674i \(0.337616\pi\)
\(368\) 0 0
\(369\) −1.46076e6 −0.558487
\(370\) 0 0
\(371\) 1.11525e6 0.420667
\(372\) 0 0
\(373\) 2.94012e6 1.09419 0.547096 0.837070i \(-0.315733\pi\)
0.547096 + 0.837070i \(0.315733\pi\)
\(374\) 0 0
\(375\) −24779.2 −0.00909931
\(376\) 0 0
\(377\) −314945. −0.114125
\(378\) 0 0
\(379\) 4.62230e6 1.65295 0.826475 0.562973i \(-0.190342\pi\)
0.826475 + 0.562973i \(0.190342\pi\)
\(380\) 0 0
\(381\) 486768. 0.171795
\(382\) 0 0
\(383\) −4.60273e6 −1.60331 −0.801656 0.597785i \(-0.796048\pi\)
−0.801656 + 0.597785i \(0.796048\pi\)
\(384\) 0 0
\(385\) 4390.44 0.00150958
\(386\) 0 0
\(387\) −1.06917e6 −0.362886
\(388\) 0 0
\(389\) −3.16928e6 −1.06191 −0.530953 0.847401i \(-0.678166\pi\)
−0.530953 + 0.847401i \(0.678166\pi\)
\(390\) 0 0
\(391\) −4.77503e6 −1.57955
\(392\) 0 0
\(393\) −395834. −0.129280
\(394\) 0 0
\(395\) 3834.01 0.00123641
\(396\) 0 0
\(397\) −3.11443e6 −0.991749 −0.495874 0.868394i \(-0.665152\pi\)
−0.495874 + 0.868394i \(0.665152\pi\)
\(398\) 0 0
\(399\) −782952. −0.246208
\(400\) 0 0
\(401\) 6.35836e6 1.97462 0.987312 0.158795i \(-0.0507608\pi\)
0.987312 + 0.158795i \(0.0507608\pi\)
\(402\) 0 0
\(403\) 3.89079e6 1.19337
\(404\) 0 0
\(405\) −2890.33 −0.000875609 0
\(406\) 0 0
\(407\) −770612. −0.230595
\(408\) 0 0
\(409\) 4.46377e6 1.31945 0.659726 0.751507i \(-0.270673\pi\)
0.659726 + 0.751507i \(0.270673\pi\)
\(410\) 0 0
\(411\) −716208. −0.209139
\(412\) 0 0
\(413\) 77398.3 0.0223283
\(414\) 0 0
\(415\) 11575.9 0.00329940
\(416\) 0 0
\(417\) 1.86556e6 0.525373
\(418\) 0 0
\(419\) −2.96754e6 −0.825773 −0.412887 0.910782i \(-0.635479\pi\)
−0.412887 + 0.910782i \(0.635479\pi\)
\(420\) 0 0
\(421\) 6.81021e6 1.87264 0.936322 0.351143i \(-0.114207\pi\)
0.936322 + 0.351143i \(0.114207\pi\)
\(422\) 0 0
\(423\) −2.15854e6 −0.586554
\(424\) 0 0
\(425\) −5.50445e6 −1.47823
\(426\) 0 0
\(427\) −1.73107e6 −0.459457
\(428\) 0 0
\(429\) −737614. −0.193502
\(430\) 0 0
\(431\) −675836. −0.175246 −0.0876230 0.996154i \(-0.527927\pi\)
−0.0876230 + 0.996154i \(0.527927\pi\)
\(432\) 0 0
\(433\) −1.24399e6 −0.318859 −0.159429 0.987209i \(-0.550965\pi\)
−0.159429 + 0.987209i \(0.550965\pi\)
\(434\) 0 0
\(435\) 3098.86 0.000785197 0
\(436\) 0 0
\(437\) −4.81262e6 −1.20553
\(438\) 0 0
\(439\) 313929. 0.0777445 0.0388723 0.999244i \(-0.487623\pi\)
0.0388723 + 0.999244i \(0.487623\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) −3.43067e6 −0.830557 −0.415279 0.909694i \(-0.636316\pi\)
−0.415279 + 0.909694i \(0.636316\pi\)
\(444\) 0 0
\(445\) −14801.2 −0.00354321
\(446\) 0 0
\(447\) −3.44595e6 −0.815719
\(448\) 0 0
\(449\) 363883. 0.0851816 0.0425908 0.999093i \(-0.486439\pi\)
0.0425908 + 0.999093i \(0.486439\pi\)
\(450\) 0 0
\(451\) 3.66799e6 0.849154
\(452\) 0 0
\(453\) −452589. −0.103623
\(454\) 0 0
\(455\) 8698.14 0.00196969
\(456\) 0 0
\(457\) −5.52131e6 −1.23666 −0.618332 0.785917i \(-0.712191\pi\)
−0.618332 + 0.785917i \(0.712191\pi\)
\(458\) 0 0
\(459\) −1.28416e6 −0.284503
\(460\) 0 0
\(461\) −300842. −0.0659306 −0.0329653 0.999456i \(-0.510495\pi\)
−0.0329653 + 0.999456i \(0.510495\pi\)
\(462\) 0 0
\(463\) −6.80343e6 −1.47494 −0.737472 0.675378i \(-0.763981\pi\)
−0.737472 + 0.675378i \(0.763981\pi\)
\(464\) 0 0
\(465\) −38283.0 −0.00821057
\(466\) 0 0
\(467\) 2.40398e6 0.510080 0.255040 0.966931i \(-0.417911\pi\)
0.255040 + 0.966931i \(0.417911\pi\)
\(468\) 0 0
\(469\) −2.38003e6 −0.499633
\(470\) 0 0
\(471\) −3.30855e6 −0.687203
\(472\) 0 0
\(473\) 2.68471e6 0.551752
\(474\) 0 0
\(475\) −5.54778e6 −1.12820
\(476\) 0 0
\(477\) 1.84358e6 0.370993
\(478\) 0 0
\(479\) 5.09265e6 1.01416 0.507078 0.861900i \(-0.330726\pi\)
0.507078 + 0.861900i \(0.330726\pi\)
\(480\) 0 0
\(481\) −1.52670e6 −0.300879
\(482\) 0 0
\(483\) 1.19543e6 0.233161
\(484\) 0 0
\(485\) −10132.4 −0.00195596
\(486\) 0 0
\(487\) −7.33002e6 −1.40050 −0.700249 0.713899i \(-0.746928\pi\)
−0.700249 + 0.713899i \(0.746928\pi\)
\(488\) 0 0
\(489\) 1.86275e6 0.352275
\(490\) 0 0
\(491\) 1.36290e6 0.255130 0.127565 0.991830i \(-0.459284\pi\)
0.127565 + 0.991830i \(0.459284\pi\)
\(492\) 0 0
\(493\) 1.37680e6 0.255126
\(494\) 0 0
\(495\) 7257.66 0.00133132
\(496\) 0 0
\(497\) 625436. 0.113577
\(498\) 0 0
\(499\) 5.05087e6 0.908060 0.454030 0.890986i \(-0.349986\pi\)
0.454030 + 0.890986i \(0.349986\pi\)
\(500\) 0 0
\(501\) −2.31557e6 −0.412157
\(502\) 0 0
\(503\) −5.93004e6 −1.04505 −0.522526 0.852623i \(-0.675010\pi\)
−0.522526 + 0.852623i \(0.675010\pi\)
\(504\) 0 0
\(505\) −25342.9 −0.00442208
\(506\) 0 0
\(507\) 1.88031e6 0.324870
\(508\) 0 0
\(509\) −7.01042e6 −1.19936 −0.599680 0.800240i \(-0.704706\pi\)
−0.599680 + 0.800240i \(0.704706\pi\)
\(510\) 0 0
\(511\) 497464. 0.0842770
\(512\) 0 0
\(513\) −1.29427e6 −0.217135
\(514\) 0 0
\(515\) 73918.9 0.0122811
\(516\) 0 0
\(517\) 5.42011e6 0.891829
\(518\) 0 0
\(519\) 2.42129e6 0.394573
\(520\) 0 0
\(521\) −4.40461e6 −0.710908 −0.355454 0.934694i \(-0.615674\pi\)
−0.355454 + 0.934694i \(0.615674\pi\)
\(522\) 0 0
\(523\) −7.18270e6 −1.14824 −0.574121 0.818770i \(-0.694656\pi\)
−0.574121 + 0.818770i \(0.694656\pi\)
\(524\) 0 0
\(525\) 1.37804e6 0.218204
\(526\) 0 0
\(527\) −1.70089e7 −2.66778
\(528\) 0 0
\(529\) 911672. 0.141644
\(530\) 0 0
\(531\) 127944. 0.0196917
\(532\) 0 0
\(533\) 7.26686e6 1.10797
\(534\) 0 0
\(535\) −29947.1 −0.00452345
\(536\) 0 0
\(537\) −4.80599e6 −0.719195
\(538\) 0 0
\(539\) −488344. −0.0724026
\(540\) 0 0
\(541\) 9.23327e6 1.35632 0.678161 0.734914i \(-0.262777\pi\)
0.678161 + 0.734914i \(0.262777\pi\)
\(542\) 0 0
\(543\) 5.66755e6 0.824889
\(544\) 0 0
\(545\) −40346.5 −0.00581855
\(546\) 0 0
\(547\) −4.61993e6 −0.660187 −0.330093 0.943948i \(-0.607080\pi\)
−0.330093 + 0.943948i \(0.607080\pi\)
\(548\) 0 0
\(549\) −2.86156e6 −0.405203
\(550\) 0 0
\(551\) 1.38764e6 0.194715
\(552\) 0 0
\(553\) −426454. −0.0593006
\(554\) 0 0
\(555\) 15021.8 0.00207009
\(556\) 0 0
\(557\) 9.71536e6 1.32685 0.663424 0.748244i \(-0.269103\pi\)
0.663424 + 0.748244i \(0.269103\pi\)
\(558\) 0 0
\(559\) 5.31882e6 0.719923
\(560\) 0 0
\(561\) 3.22454e6 0.432574
\(562\) 0 0
\(563\) 9.70410e6 1.29028 0.645141 0.764064i \(-0.276799\pi\)
0.645141 + 0.764064i \(0.276799\pi\)
\(564\) 0 0
\(565\) −67998.3 −0.00896143
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) 7.91242e6 1.02454 0.512270 0.858825i \(-0.328805\pi\)
0.512270 + 0.858825i \(0.328805\pi\)
\(570\) 0 0
\(571\) 7.91956e6 1.01651 0.508254 0.861207i \(-0.330291\pi\)
0.508254 + 0.861207i \(0.330291\pi\)
\(572\) 0 0
\(573\) 4.06979e6 0.517827
\(574\) 0 0
\(575\) 8.47048e6 1.06841
\(576\) 0 0
\(577\) −6.81761e6 −0.852497 −0.426248 0.904606i \(-0.640165\pi\)
−0.426248 + 0.904606i \(0.640165\pi\)
\(578\) 0 0
\(579\) 3.35120e6 0.415436
\(580\) 0 0
\(581\) −1.28758e6 −0.158246
\(582\) 0 0
\(583\) −4.62925e6 −0.564079
\(584\) 0 0
\(585\) 14378.6 0.00173710
\(586\) 0 0
\(587\) 5.75763e6 0.689682 0.344841 0.938661i \(-0.387933\pi\)
0.344841 + 0.938661i \(0.387933\pi\)
\(588\) 0 0
\(589\) −1.71428e7 −2.03607
\(590\) 0 0
\(591\) 2.25099e6 0.265097
\(592\) 0 0
\(593\) 1.22350e6 0.142879 0.0714393 0.997445i \(-0.477241\pi\)
0.0714393 + 0.997445i \(0.477241\pi\)
\(594\) 0 0
\(595\) −38024.6 −0.00440324
\(596\) 0 0
\(597\) 8.42422e6 0.967373
\(598\) 0 0
\(599\) −590873. −0.0672864 −0.0336432 0.999434i \(-0.510711\pi\)
−0.0336432 + 0.999434i \(0.510711\pi\)
\(600\) 0 0
\(601\) −1.27472e7 −1.43955 −0.719776 0.694207i \(-0.755755\pi\)
−0.719776 + 0.694207i \(0.755755\pi\)
\(602\) 0 0
\(603\) −3.93434e6 −0.440634
\(604\) 0 0
\(605\) 52724.1 0.00585626
\(606\) 0 0
\(607\) 7.36918e6 0.811797 0.405899 0.913918i \(-0.366959\pi\)
0.405899 + 0.913918i \(0.366959\pi\)
\(608\) 0 0
\(609\) −344683. −0.0376597
\(610\) 0 0
\(611\) 1.07381e7 1.16365
\(612\) 0 0
\(613\) −5.05204e6 −0.543020 −0.271510 0.962436i \(-0.587523\pi\)
−0.271510 + 0.962436i \(0.587523\pi\)
\(614\) 0 0
\(615\) −71501.3 −0.00762301
\(616\) 0 0
\(617\) 1.04265e7 1.10262 0.551309 0.834301i \(-0.314129\pi\)
0.551309 + 0.834301i \(0.314129\pi\)
\(618\) 0 0
\(619\) 1.84513e7 1.93553 0.967765 0.251856i \(-0.0810410\pi\)
0.967765 + 0.251856i \(0.0810410\pi\)
\(620\) 0 0
\(621\) 1.97612e6 0.205629
\(622\) 0 0
\(623\) 1.64633e6 0.169940
\(624\) 0 0
\(625\) 9.76381e6 0.999814
\(626\) 0 0
\(627\) 3.24992e6 0.330144
\(628\) 0 0
\(629\) 6.67410e6 0.672614
\(630\) 0 0
\(631\) 2.28762e6 0.228723 0.114362 0.993439i \(-0.463518\pi\)
0.114362 + 0.993439i \(0.463518\pi\)
\(632\) 0 0
\(633\) −8.65528e6 −0.858562
\(634\) 0 0
\(635\) 23826.3 0.00234489
\(636\) 0 0
\(637\) −967487. −0.0944705
\(638\) 0 0
\(639\) 1.03388e6 0.100166
\(640\) 0 0
\(641\) −6.98845e6 −0.671793 −0.335897 0.941899i \(-0.609039\pi\)
−0.335897 + 0.941899i \(0.609039\pi\)
\(642\) 0 0
\(643\) −1.47461e7 −1.40653 −0.703265 0.710928i \(-0.748275\pi\)
−0.703265 + 0.710928i \(0.748275\pi\)
\(644\) 0 0
\(645\) −52333.9 −0.00495318
\(646\) 0 0
\(647\) −3.20477e6 −0.300979 −0.150490 0.988612i \(-0.548085\pi\)
−0.150490 + 0.988612i \(0.548085\pi\)
\(648\) 0 0
\(649\) −321269. −0.0299404
\(650\) 0 0
\(651\) 4.25818e6 0.393796
\(652\) 0 0
\(653\) −2.10963e6 −0.193608 −0.0968041 0.995303i \(-0.530862\pi\)
−0.0968041 + 0.995303i \(0.530862\pi\)
\(654\) 0 0
\(655\) −19375.3 −0.00176459
\(656\) 0 0
\(657\) 822338. 0.0743254
\(658\) 0 0
\(659\) −1.74852e7 −1.56840 −0.784202 0.620505i \(-0.786928\pi\)
−0.784202 + 0.620505i \(0.786928\pi\)
\(660\) 0 0
\(661\) −973131. −0.0866299 −0.0433149 0.999061i \(-0.513792\pi\)
−0.0433149 + 0.999061i \(0.513792\pi\)
\(662\) 0 0
\(663\) 6.38831e6 0.564420
\(664\) 0 0
\(665\) −38323.9 −0.00336059
\(666\) 0 0
\(667\) −2.11869e6 −0.184396
\(668\) 0 0
\(669\) 5.61779e6 0.485289
\(670\) 0 0
\(671\) 7.18542e6 0.616092
\(672\) 0 0
\(673\) 651051. 0.0554086 0.0277043 0.999616i \(-0.491180\pi\)
0.0277043 + 0.999616i \(0.491180\pi\)
\(674\) 0 0
\(675\) 2.27798e6 0.192438
\(676\) 0 0
\(677\) −4.62839e6 −0.388113 −0.194057 0.980990i \(-0.562165\pi\)
−0.194057 + 0.980990i \(0.562165\pi\)
\(678\) 0 0
\(679\) 1.12702e6 0.0938119
\(680\) 0 0
\(681\) −6.28605e6 −0.519410
\(682\) 0 0
\(683\) 1.77222e7 1.45367 0.726836 0.686811i \(-0.240990\pi\)
0.726836 + 0.686811i \(0.240990\pi\)
\(684\) 0 0
\(685\) −35057.0 −0.00285462
\(686\) 0 0
\(687\) 8.88436e6 0.718182
\(688\) 0 0
\(689\) −9.17128e6 −0.736007
\(690\) 0 0
\(691\) 1.41125e7 1.12437 0.562186 0.827011i \(-0.309960\pi\)
0.562186 + 0.827011i \(0.309960\pi\)
\(692\) 0 0
\(693\) −807263. −0.0638531
\(694\) 0 0
\(695\) 91315.3 0.00717103
\(696\) 0 0
\(697\) −3.17676e7 −2.47687
\(698\) 0 0
\(699\) 1.00065e7 0.774619
\(700\) 0 0
\(701\) 1.02386e6 0.0786947 0.0393474 0.999226i \(-0.487472\pi\)
0.0393474 + 0.999226i \(0.487472\pi\)
\(702\) 0 0
\(703\) 6.72664e6 0.513346
\(704\) 0 0
\(705\) −105656. −0.00800611
\(706\) 0 0
\(707\) 2.81886e6 0.212092
\(708\) 0 0
\(709\) −7.14313e6 −0.533670 −0.266835 0.963742i \(-0.585978\pi\)
−0.266835 + 0.963742i \(0.585978\pi\)
\(710\) 0 0
\(711\) −704954. −0.0522982
\(712\) 0 0
\(713\) 2.61740e7 1.92818
\(714\) 0 0
\(715\) −36104.8 −0.00264119
\(716\) 0 0
\(717\) −1.35100e7 −0.981427
\(718\) 0 0
\(719\) 1.74905e7 1.26177 0.630884 0.775878i \(-0.282693\pi\)
0.630884 + 0.775878i \(0.282693\pi\)
\(720\) 0 0
\(721\) −8.22193e6 −0.589027
\(722\) 0 0
\(723\) 1.55461e6 0.110605
\(724\) 0 0
\(725\) −2.44233e6 −0.172568
\(726\) 0 0
\(727\) −8.07868e6 −0.566897 −0.283449 0.958987i \(-0.591479\pi\)
−0.283449 + 0.958987i \(0.591479\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −2.32516e7 −1.60939
\(732\) 0 0
\(733\) −6.42261e6 −0.441521 −0.220761 0.975328i \(-0.570854\pi\)
−0.220761 + 0.975328i \(0.570854\pi\)
\(734\) 0 0
\(735\) 9519.46 0.000649971 0
\(736\) 0 0
\(737\) 9.87917e6 0.669965
\(738\) 0 0
\(739\) −2.45407e7 −1.65301 −0.826506 0.562927i \(-0.809675\pi\)
−0.826506 + 0.562927i \(0.809675\pi\)
\(740\) 0 0
\(741\) 6.43860e6 0.430771
\(742\) 0 0
\(743\) −1.53250e7 −1.01842 −0.509212 0.860641i \(-0.670063\pi\)
−0.509212 + 0.860641i \(0.670063\pi\)
\(744\) 0 0
\(745\) −168673. −0.0111341
\(746\) 0 0
\(747\) −2.12844e6 −0.139560
\(748\) 0 0
\(749\) 3.33099e6 0.216954
\(750\) 0 0
\(751\) −1.24971e7 −0.808554 −0.404277 0.914637i \(-0.632477\pi\)
−0.404277 + 0.914637i \(0.632477\pi\)
\(752\) 0 0
\(753\) 1.23283e6 0.0792346
\(754\) 0 0
\(755\) −22153.3 −0.00141440
\(756\) 0 0
\(757\) −1.56124e7 −0.990217 −0.495108 0.868831i \(-0.664872\pi\)
−0.495108 + 0.868831i \(0.664872\pi\)
\(758\) 0 0
\(759\) −4.96205e6 −0.312649
\(760\) 0 0
\(761\) 1.82820e7 1.14436 0.572179 0.820128i \(-0.306098\pi\)
0.572179 + 0.820128i \(0.306098\pi\)
\(762\) 0 0
\(763\) 4.48770e6 0.279070
\(764\) 0 0
\(765\) −62857.0 −0.00388329
\(766\) 0 0
\(767\) −636485. −0.0390661
\(768\) 0 0
\(769\) 1.32020e7 0.805051 0.402526 0.915409i \(-0.368132\pi\)
0.402526 + 0.915409i \(0.368132\pi\)
\(770\) 0 0
\(771\) 1.77904e7 1.07783
\(772\) 0 0
\(773\) −1.45645e7 −0.876689 −0.438344 0.898807i \(-0.644435\pi\)
−0.438344 + 0.898807i \(0.644435\pi\)
\(774\) 0 0
\(775\) 3.01723e7 1.80449
\(776\) 0 0
\(777\) −1.67086e6 −0.0992860
\(778\) 0 0
\(779\) −3.20177e7 −1.89037
\(780\) 0 0
\(781\) −2.59610e6 −0.152298
\(782\) 0 0
\(783\) −569783. −0.0332127
\(784\) 0 0
\(785\) −161947. −0.00937990
\(786\) 0 0
\(787\) 1.78163e7 1.02537 0.512685 0.858577i \(-0.328651\pi\)
0.512685 + 0.858577i \(0.328651\pi\)
\(788\) 0 0
\(789\) −3.72903e6 −0.213257
\(790\) 0 0
\(791\) 7.56339e6 0.429809
\(792\) 0 0
\(793\) 1.42354e7 0.803874
\(794\) 0 0
\(795\) 90239.6 0.00506384
\(796\) 0 0
\(797\) −2.29429e7 −1.27939 −0.639696 0.768628i \(-0.720940\pi\)
−0.639696 + 0.768628i \(0.720940\pi\)
\(798\) 0 0
\(799\) −4.69424e7 −2.60134
\(800\) 0 0
\(801\) 2.72148e6 0.149873
\(802\) 0 0
\(803\) −2.06490e6 −0.113008
\(804\) 0 0
\(805\) 58513.9 0.00318251
\(806\) 0 0
\(807\) −2.17574e6 −0.117604
\(808\) 0 0
\(809\) 2.92525e6 0.157142 0.0785710 0.996909i \(-0.474964\pi\)
0.0785710 + 0.996909i \(0.474964\pi\)
\(810\) 0 0
\(811\) 7.22818e6 0.385902 0.192951 0.981208i \(-0.438194\pi\)
0.192951 + 0.981208i \(0.438194\pi\)
\(812\) 0 0
\(813\) −5.02933e6 −0.266860
\(814\) 0 0
\(815\) 91177.8 0.00480834
\(816\) 0 0
\(817\) −2.34347e7 −1.22830
\(818\) 0 0
\(819\) −1.59931e6 −0.0833152
\(820\) 0 0
\(821\) 2.85795e7 1.47978 0.739890 0.672728i \(-0.234878\pi\)
0.739890 + 0.672728i \(0.234878\pi\)
\(822\) 0 0
\(823\) 1.31774e6 0.0678157 0.0339078 0.999425i \(-0.489205\pi\)
0.0339078 + 0.999425i \(0.489205\pi\)
\(824\) 0 0
\(825\) −5.72005e6 −0.292593
\(826\) 0 0
\(827\) −3.02202e7 −1.53650 −0.768252 0.640147i \(-0.778873\pi\)
−0.768252 + 0.640147i \(0.778873\pi\)
\(828\) 0 0
\(829\) −8.04061e6 −0.406352 −0.203176 0.979142i \(-0.565126\pi\)
−0.203176 + 0.979142i \(0.565126\pi\)
\(830\) 0 0
\(831\) −2.08942e6 −0.104960
\(832\) 0 0
\(833\) 4.22944e6 0.211189
\(834\) 0 0
\(835\) −113342. −0.00562570
\(836\) 0 0
\(837\) 7.03903e6 0.347296
\(838\) 0 0
\(839\) −4.62114e6 −0.226644 −0.113322 0.993558i \(-0.536149\pi\)
−0.113322 + 0.993558i \(0.536149\pi\)
\(840\) 0 0
\(841\) −1.99003e7 −0.970217
\(842\) 0 0
\(843\) −1.67235e7 −0.810511
\(844\) 0 0
\(845\) 92037.4 0.00443427
\(846\) 0 0
\(847\) −5.86445e6 −0.280879
\(848\) 0 0
\(849\) −2.18624e7 −1.04095
\(850\) 0 0
\(851\) −1.02704e7 −0.486142
\(852\) 0 0
\(853\) 2.20395e7 1.03712 0.518559 0.855042i \(-0.326468\pi\)
0.518559 + 0.855042i \(0.326468\pi\)
\(854\) 0 0
\(855\) −63351.8 −0.00296377
\(856\) 0 0
\(857\) −1.48477e7 −0.690569 −0.345284 0.938498i \(-0.612218\pi\)
−0.345284 + 0.938498i \(0.612218\pi\)
\(858\) 0 0
\(859\) −668744. −0.0309227 −0.0154613 0.999880i \(-0.504922\pi\)
−0.0154613 + 0.999880i \(0.504922\pi\)
\(860\) 0 0
\(861\) 7.95303e6 0.365616
\(862\) 0 0
\(863\) −1.09838e7 −0.502024 −0.251012 0.967984i \(-0.580763\pi\)
−0.251012 + 0.967984i \(0.580763\pi\)
\(864\) 0 0
\(865\) 118517. 0.00538569
\(866\) 0 0
\(867\) −1.51483e7 −0.684408
\(868\) 0 0
\(869\) 1.77015e6 0.0795171
\(870\) 0 0
\(871\) 1.95722e7 0.874166
\(872\) 0 0
\(873\) 1.86304e6 0.0827344
\(874\) 0 0
\(875\) 134909. 0.00595690
\(876\) 0 0
\(877\) 4.15400e7 1.82376 0.911879 0.410460i \(-0.134632\pi\)
0.911879 + 0.410460i \(0.134632\pi\)
\(878\) 0 0
\(879\) 1.45721e7 0.636134
\(880\) 0 0
\(881\) 4.03497e7 1.75146 0.875730 0.482801i \(-0.160381\pi\)
0.875730 + 0.482801i \(0.160381\pi\)
\(882\) 0 0
\(883\) −2.10878e7 −0.910183 −0.455092 0.890445i \(-0.650394\pi\)
−0.455092 + 0.890445i \(0.650394\pi\)
\(884\) 0 0
\(885\) 6262.61 0.000268780 0
\(886\) 0 0
\(887\) 3.52443e6 0.150411 0.0752056 0.997168i \(-0.476039\pi\)
0.0752056 + 0.997168i \(0.476039\pi\)
\(888\) 0 0
\(889\) −2.65018e6 −0.112466
\(890\) 0 0
\(891\) −1.33446e6 −0.0563131
\(892\) 0 0
\(893\) −4.73119e7 −1.98537
\(894\) 0 0
\(895\) −235244. −0.00981658
\(896\) 0 0
\(897\) −9.83061e6 −0.407943
\(898\) 0 0
\(899\) −7.54687e6 −0.311435
\(900\) 0 0
\(901\) 4.00929e7 1.64534
\(902\) 0 0
\(903\) 5.82105e6 0.237565
\(904\) 0 0
\(905\) 277415. 0.0112592
\(906\) 0 0
\(907\) −2.95093e7 −1.19108 −0.595540 0.803325i \(-0.703062\pi\)
−0.595540 + 0.803325i \(0.703062\pi\)
\(908\) 0 0
\(909\) 4.65975e6 0.187048
\(910\) 0 0
\(911\) 1.32643e7 0.529527 0.264763 0.964313i \(-0.414706\pi\)
0.264763 + 0.964313i \(0.414706\pi\)
\(912\) 0 0
\(913\) 5.34455e6 0.212195
\(914\) 0 0
\(915\) −140068. −0.00553077
\(916\) 0 0
\(917\) 2.15509e6 0.0846336
\(918\) 0 0
\(919\) 1.89419e7 0.739834 0.369917 0.929065i \(-0.379386\pi\)
0.369917 + 0.929065i \(0.379386\pi\)
\(920\) 0 0
\(921\) −8.42845e6 −0.327415
\(922\) 0 0
\(923\) −5.14327e6 −0.198717
\(924\) 0 0
\(925\) −1.18393e7 −0.454957
\(926\) 0 0
\(927\) −1.35913e7 −0.519473
\(928\) 0 0
\(929\) 2.92211e7 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(930\) 0 0
\(931\) 4.26274e6 0.161181
\(932\) 0 0
\(933\) −439064. −0.0165129
\(934\) 0 0
\(935\) 157835. 0.00590437
\(936\) 0 0
\(937\) −6.46944e6 −0.240723 −0.120362 0.992730i \(-0.538405\pi\)
−0.120362 + 0.992730i \(0.538405\pi\)
\(938\) 0 0
\(939\) −1.18471e7 −0.438478
\(940\) 0 0
\(941\) −4.11564e7 −1.51518 −0.757588 0.652733i \(-0.773622\pi\)
−0.757588 + 0.652733i \(0.773622\pi\)
\(942\) 0 0
\(943\) 4.88854e7 1.79019
\(944\) 0 0
\(945\) 15736.3 0.000573221 0
\(946\) 0 0
\(947\) −3.00657e7 −1.08942 −0.544711 0.838624i \(-0.683361\pi\)
−0.544711 + 0.838624i \(0.683361\pi\)
\(948\) 0 0
\(949\) −4.09089e6 −0.147453
\(950\) 0 0
\(951\) 2.77207e7 0.993923
\(952\) 0 0
\(953\) 2.95724e7 1.05476 0.527381 0.849629i \(-0.323174\pi\)
0.527381 + 0.849629i \(0.323174\pi\)
\(954\) 0 0
\(955\) 199208. 0.00706803
\(956\) 0 0
\(957\) 1.43073e6 0.0504985
\(958\) 0 0
\(959\) 3.89935e6 0.136913
\(960\) 0 0
\(961\) 6.46041e7 2.25658
\(962\) 0 0
\(963\) 5.50633e6 0.191336
\(964\) 0 0
\(965\) 164035. 0.00567045
\(966\) 0 0
\(967\) 3.49436e7 1.20172 0.600858 0.799356i \(-0.294826\pi\)
0.600858 + 0.799356i \(0.294826\pi\)
\(968\) 0 0
\(969\) −2.81468e7 −0.962986
\(970\) 0 0
\(971\) −1.13425e7 −0.386065 −0.193032 0.981192i \(-0.561832\pi\)
−0.193032 + 0.981192i \(0.561832\pi\)
\(972\) 0 0
\(973\) −1.01569e7 −0.343938
\(974\) 0 0
\(975\) −1.13323e7 −0.381774
\(976\) 0 0
\(977\) 4.24082e7 1.42139 0.710694 0.703501i \(-0.248381\pi\)
0.710694 + 0.703501i \(0.248381\pi\)
\(978\) 0 0
\(979\) −6.83366e6 −0.227875
\(980\) 0 0
\(981\) 7.41845e6 0.246116
\(982\) 0 0
\(983\) −3.98560e7 −1.31556 −0.657779 0.753211i \(-0.728504\pi\)
−0.657779 + 0.753211i \(0.728504\pi\)
\(984\) 0 0
\(985\) 110182. 0.00361841
\(986\) 0 0
\(987\) 1.17520e7 0.383990
\(988\) 0 0
\(989\) 3.57806e7 1.16321
\(990\) 0 0
\(991\) 2.81338e7 0.910007 0.455004 0.890490i \(-0.349638\pi\)
0.455004 + 0.890490i \(0.349638\pi\)
\(992\) 0 0
\(993\) 2.88737e7 0.929244
\(994\) 0 0
\(995\) 412349. 0.0132041
\(996\) 0 0
\(997\) 5.67938e7 1.80952 0.904760 0.425922i \(-0.140050\pi\)
0.904760 + 0.425922i \(0.140050\pi\)
\(998\) 0 0
\(999\) −2.76204e6 −0.0875620
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.6.a.h.1.2 2
3.2 odd 2 504.6.a.t.1.1 2
4.3 odd 2 336.6.a.w.1.2 2
12.11 even 2 1008.6.a.bu.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.6.a.h.1.2 2 1.1 even 1 trivial
336.6.a.w.1.2 2 4.3 odd 2
504.6.a.t.1.1 2 3.2 odd 2
1008.6.a.bu.1.1 2 12.11 even 2