Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1680,2,Mod(1231,1680)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1680.1231");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1680.d (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1231.1 |
|
0 | 1.00000 | 0 | − | 1.00000i | 0 | −2.64150 | − | 0.149926i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
1231.2 | 0 | 1.00000 | 0 | − | 1.00000i | 0 | −2.46778 | + | 0.953976i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.3 | 0 | 1.00000 | 0 | − | 1.00000i | 0 | −0.585484 | − | 2.58016i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.4 | 0 | 1.00000 | 0 | − | 1.00000i | 0 | 0.321212 | + | 2.62618i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.5 | 0 | 1.00000 | 0 | − | 1.00000i | 0 | 1.05584 | + | 2.42594i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.6 | 0 | 1.00000 | 0 | − | 1.00000i | 0 | 2.31771 | − | 1.27602i | 0 | 1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.7 | 0 | 1.00000 | 0 | 1.00000i | 0 | −2.64150 | + | 0.149926i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.8 | 0 | 1.00000 | 0 | 1.00000i | 0 | −2.46778 | − | 0.953976i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.9 | 0 | 1.00000 | 0 | 1.00000i | 0 | −0.585484 | + | 2.58016i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.10 | 0 | 1.00000 | 0 | 1.00000i | 0 | 0.321212 | − | 2.62618i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.11 | 0 | 1.00000 | 0 | 1.00000i | 0 | 1.05584 | − | 2.42594i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1231.12 | 0 | 1.00000 | 0 | 1.00000i | 0 | 2.31771 | + | 1.27602i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
28.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1680.2.d.d | yes | 12 |
3.b | odd | 2 | 1 | 5040.2.d.f | 12 | ||
4.b | odd | 2 | 1 | 1680.2.d.c | ✓ | 12 | |
7.b | odd | 2 | 1 | 1680.2.d.c | ✓ | 12 | |
12.b | even | 2 | 1 | 5040.2.d.g | 12 | ||
21.c | even | 2 | 1 | 5040.2.d.g | 12 | ||
28.d | even | 2 | 1 | inner | 1680.2.d.d | yes | 12 |
84.h | odd | 2 | 1 | 5040.2.d.f | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1680.2.d.c | ✓ | 12 | 4.b | odd | 2 | 1 | |
1680.2.d.c | ✓ | 12 | 7.b | odd | 2 | 1 | |
1680.2.d.d | yes | 12 | 1.a | even | 1 | 1 | trivial |
1680.2.d.d | yes | 12 | 28.d | even | 2 | 1 | inner |
5040.2.d.f | 12 | 3.b | odd | 2 | 1 | ||
5040.2.d.f | 12 | 84.h | odd | 2 | 1 | ||
5040.2.d.g | 12 | 12.b | even | 2 | 1 | ||
5040.2.d.g | 12 | 21.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|