Properties

Label 1680.2.d.d
Level 16801680
Weight 22
Character orbit 1680.d
Analytic conductor 13.41513.415
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,2,Mod(1231,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1231");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1680=24357 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1680.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.414867539613.4148675396
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+35x10120x9+328x8658x7+1045x61270x5+1183x4++13 x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 214 2^{14}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3+β1q5+β8q7+q9β7q11+(β6β52β1)q13+β1q15+(β11+β1)q17+(β4β31)q19+β7q99+O(q100) q + q^{3} + \beta_1 q^{5} + \beta_{8} q^{7} + q^{9} - \beta_{7} q^{11} + (\beta_{6} - \beta_{5} - 2 \beta_1) q^{13} + \beta_1 q^{15} + (\beta_{11} + \beta_1) q^{17} + (\beta_{4} - \beta_{3} - 1) q^{19}+ \cdots - \beta_{7} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q34q7+12q916q194q2112q25+12q27+8q29+32q31+4q3516q37+24q474q49+16q5316q57+24q594q63+16q65++32q93+O(q100) 12 q + 12 q^{3} - 4 q^{7} + 12 q^{9} - 16 q^{19} - 4 q^{21} - 12 q^{25} + 12 q^{27} + 8 q^{29} + 32 q^{31} + 4 q^{35} - 16 q^{37} + 24 q^{47} - 4 q^{49} + 16 q^{53} - 16 q^{57} + 24 q^{59} - 4 q^{63} + 16 q^{65}+ \cdots + 32 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x11+35x10120x9+328x8658x7+1045x61270x5+1183x4++13 x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 : Copy content Toggle raw display

β1\beta_{1}== (36ν11+198ν101172ν9+3789ν810216ν7+19460ν6++1156)/99 ( - 36 \nu^{11} + 198 \nu^{10} - 1172 \nu^{9} + 3789 \nu^{8} - 10216 \nu^{7} + 19460 \nu^{6} + \cdots + 1156 ) / 99 Copy content Toggle raw display
β2\beta_{2}== (8ν1040ν9+232ν8688ν7+1710ν62890ν5+3904ν4++272)/9 ( 8 \nu^{10} - 40 \nu^{9} + 232 \nu^{8} - 688 \nu^{7} + 1710 \nu^{6} - 2890 \nu^{5} + 3904 \nu^{4} + \cdots + 272 ) / 9 Copy content Toggle raw display
β3\beta_{3}== (4ν1020ν9+122ν8368ν7+996ν61784ν5+2684ν4++232)/3 ( 4 \nu^{10} - 20 \nu^{9} + 122 \nu^{8} - 368 \nu^{7} + 996 \nu^{6} - 1784 \nu^{5} + 2684 \nu^{4} + \cdots + 232 ) / 3 Copy content Toggle raw display
β4\beta_{4}== (16ν1080ν9+476ν81424ν7+3708ν66476ν5+9380ν4++781)/9 ( 16 \nu^{10} - 80 \nu^{9} + 476 \nu^{8} - 1424 \nu^{7} + 3708 \nu^{6} - 6476 \nu^{5} + 9380 \nu^{4} + \cdots + 781 ) / 9 Copy content Toggle raw display
β5\beta_{5}== (200ν11+935ν105625ν9+15924ν840742ν7+67108ν6+1499)/99 ( - 200 \nu^{11} + 935 \nu^{10} - 5625 \nu^{9} + 15924 \nu^{8} - 40742 \nu^{7} + 67108 \nu^{6} + \cdots - 1499 ) / 99 Copy content Toggle raw display
β6\beta_{6}== (200ν111265ν10+7275ν925626ν8+69650ν7140764ν6+10447)/99 ( 200 \nu^{11} - 1265 \nu^{10} + 7275 \nu^{9} - 25626 \nu^{8} + 69650 \nu^{7} - 140764 \nu^{6} + \cdots - 10447 ) / 99 Copy content Toggle raw display
β7\beta_{7}== (452ν112486ν10+14478ν946506ν8+122264ν7228298ν6+10234)/99 ( 452 \nu^{11} - 2486 \nu^{10} + 14478 \nu^{9} - 46506 \nu^{8} + 122264 \nu^{7} - 228298 \nu^{6} + \cdots - 10234 ) / 99 Copy content Toggle raw display
β8\beta_{8}== (614ν113355ν10+19631ν962803ν8+165728ν7308630ν6+11036)/99 ( 614 \nu^{11} - 3355 \nu^{10} + 19631 \nu^{9} - 62803 \nu^{8} + 165728 \nu^{7} - 308630 \nu^{6} + \cdots - 11036 ) / 99 Copy content Toggle raw display
β9\beta_{9}== (614ν11+3399ν1019851ν9+64211ν8170040ν7+321104ν6++14644)/99 ( - 614 \nu^{11} + 3399 \nu^{10} - 19851 \nu^{9} + 64211 \nu^{8} - 170040 \nu^{7} + 321104 \nu^{6} + \cdots + 14644 ) / 99 Copy content Toggle raw display
β10\beta_{10}== (800ν114400ν10+25800ν983100ν8+220784ν7415744ν6+17698)/99 ( 800 \nu^{11} - 4400 \nu^{10} + 25800 \nu^{9} - 83100 \nu^{8} + 220784 \nu^{7} - 415744 \nu^{6} + \cdots - 17698 ) / 99 Copy content Toggle raw display
β11\beta_{11}== (328ν11+1804ν1010578ν9+34071ν890532ν7+170492ν6++7604)/33 ( - 328 \nu^{11} + 1804 \nu^{10} - 10578 \nu^{9} + 34071 \nu^{8} - 90532 \nu^{7} + 170492 \nu^{6} + \cdots + 7604 ) / 33 Copy content Toggle raw display
ν\nu== (β10+2β62β5+2)/4 ( -\beta_{10} + 2\beta_{6} - 2\beta_{5} + 2 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β10+4β9+4β8+2β62β5+2β44β38)/4 ( -\beta_{10} + 4\beta_{9} + 4\beta_{8} + 2\beta_{6} - 2\beta_{5} + 2\beta_{4} - 4\beta_{3} - 8 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (6β11+14β10+7β9+5β8+3β715β6+15β5+13)/4 ( 6 \beta_{11} + 14 \beta_{10} + 7 \beta_{9} + 5 \beta_{8} + 3 \beta_{7} - 15 \beta_{6} + 15 \beta_{5} + \cdots - 13 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (12β11+29β1044β948β8+6β728β6+36β5++56)/4 ( 12 \beta_{11} + 29 \beta_{10} - 44 \beta_{9} - 48 \beta_{8} + 6 \beta_{7} - 28 \beta_{6} + 36 \beta_{5} + \cdots + 56 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (72β11154β10138β9112β835β7+156β6++162)/4 ( - 72 \beta_{11} - 154 \beta_{10} - 138 \beta_{9} - 112 \beta_{8} - 35 \beta_{7} + 156 \beta_{6} + \cdots + 162 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (246β11535β10+407β9+495β8120β7+477β6+515)/4 ( - 246 \beta_{11} - 535 \beta_{10} + 407 \beta_{9} + 495 \beta_{8} - 120 \beta_{7} + 477 \beta_{6} + \cdots - 515 ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (655β11+1401β10+2146β9+1900β8+322β71498β6+2385)/4 ( 655 \beta_{11} + 1401 \beta_{10} + 2146 \beta_{9} + 1900 \beta_{8} + 322 \beta_{7} - 1498 \beta_{6} + \cdots - 2385 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== (3796β11+8169β102928β94332β8+1862β77426β6++4174)/4 ( 3796 \beta_{11} + 8169 \beta_{10} - 2928 \beta_{9} - 4332 \beta_{8} + 1862 \beta_{7} - 7426 \beta_{6} + \cdots + 4174 ) / 4 Copy content Toggle raw display
ν9\nu^{9}== (4370β119371β1029832β928188β82154β7+11476β6++33800)/4 ( - 4370 \beta_{11} - 9371 \beta_{10} - 29832 \beta_{9} - 28188 \beta_{8} - 2154 \beta_{7} + 11476 \beta_{6} + \cdots + 33800 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (52102β11112014β10+6865β9+26251β825605β7+19131)/4 ( - 52102 \beta_{11} - 112014 \beta_{10} + 6865 \beta_{9} + 26251 \beta_{8} - 25605 \beta_{7} + \cdots - 19131 ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (2533β11+5385β10+381155β9+380155β8+1274β739735β6+443144)/4 ( 2533 \beta_{11} + 5385 \beta_{10} + 381155 \beta_{9} + 380155 \beta_{8} + 1274 \beta_{7} - 39735 \beta_{6} + \cdots - 443144 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1680Z)×\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times.

nn 241241 337337 421421 11211121 14711471
χ(n)\chi(n) 1-1 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1231.1
0.500000 3.50753i
0.500000 1.60175i
0.500000 + 0.280541i
0.500000 + 1.18724i
0.500000 + 0.189815i
0.500000 + 1.45168i
0.500000 + 3.50753i
0.500000 + 1.60175i
0.500000 0.280541i
0.500000 1.18724i
0.500000 0.189815i
0.500000 1.45168i
0 1.00000 0 1.00000i 0 −2.64150 0.149926i 0 1.00000 0
1231.2 0 1.00000 0 1.00000i 0 −2.46778 + 0.953976i 0 1.00000 0
1231.3 0 1.00000 0 1.00000i 0 −0.585484 2.58016i 0 1.00000 0
1231.4 0 1.00000 0 1.00000i 0 0.321212 + 2.62618i 0 1.00000 0
1231.5 0 1.00000 0 1.00000i 0 1.05584 + 2.42594i 0 1.00000 0
1231.6 0 1.00000 0 1.00000i 0 2.31771 1.27602i 0 1.00000 0
1231.7 0 1.00000 0 1.00000i 0 −2.64150 + 0.149926i 0 1.00000 0
1231.8 0 1.00000 0 1.00000i 0 −2.46778 0.953976i 0 1.00000 0
1231.9 0 1.00000 0 1.00000i 0 −0.585484 + 2.58016i 0 1.00000 0
1231.10 0 1.00000 0 1.00000i 0 0.321212 2.62618i 0 1.00000 0
1231.11 0 1.00000 0 1.00000i 0 1.05584 2.42594i 0 1.00000 0
1231.12 0 1.00000 0 1.00000i 0 2.31771 + 1.27602i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1231.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.d.d yes 12
3.b odd 2 1 5040.2.d.f 12
4.b odd 2 1 1680.2.d.c 12
7.b odd 2 1 1680.2.d.c 12
12.b even 2 1 5040.2.d.g 12
21.c even 2 1 5040.2.d.g 12
28.d even 2 1 inner 1680.2.d.d yes 12
84.h odd 2 1 5040.2.d.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1680.2.d.c 12 4.b odd 2 1
1680.2.d.c 12 7.b odd 2 1
1680.2.d.d yes 12 1.a even 1 1 trivial
1680.2.d.d yes 12 28.d even 2 1 inner
5040.2.d.f 12 3.b odd 2 1
5040.2.d.f 12 84.h odd 2 1
5040.2.d.g 12 12.b even 2 1
5040.2.d.g 12 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1680,[χ])S_{2}^{\mathrm{new}}(1680, [\chi]):

T1112+96T1110+3360T118+51840T116+334080T114+718848T112+331776 T_{11}^{12} + 96T_{11}^{10} + 3360T_{11}^{8} + 51840T_{11}^{6} + 334080T_{11}^{4} + 718848T_{11}^{2} + 331776 Copy content Toggle raw display
T196+8T19540T194304T193+656T192+2624T195312 T_{19}^{6} + 8T_{19}^{5} - 40T_{19}^{4} - 304T_{19}^{3} + 656T_{19}^{2} + 2624T_{19} - 5312 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 (T1)12 (T - 1)^{12} Copy content Toggle raw display
55 (T2+1)6 (T^{2} + 1)^{6} Copy content Toggle raw display
77 T12+4T11++117649 T^{12} + 4 T^{11} + \cdots + 117649 Copy content Toggle raw display
1111 T12+96T10++331776 T^{12} + 96 T^{10} + \cdots + 331776 Copy content Toggle raw display
1313 T12+88T10++331776 T^{12} + 88 T^{10} + \cdots + 331776 Copy content Toggle raw display
1717 T12+112T10++36864 T^{12} + 112 T^{10} + \cdots + 36864 Copy content Toggle raw display
1919 (T6+8T5+5312)2 (T^{6} + 8 T^{5} + \cdots - 5312)^{2} Copy content Toggle raw display
2323 T12+184T10++36864 T^{12} + 184 T^{10} + \cdots + 36864 Copy content Toggle raw display
2929 (T64T5++576)2 (T^{6} - 4 T^{5} + \cdots + 576)^{2} Copy content Toggle raw display
3131 (T616T5+192)2 (T^{6} - 16 T^{5} + \cdots - 192)^{2} Copy content Toggle raw display
3737 (T6+8T5++12352)2 (T^{6} + 8 T^{5} + \cdots + 12352)^{2} Copy content Toggle raw display
4141 T12+232T10++50466816 T^{12} + 232 T^{10} + \cdots + 50466816 Copy content Toggle raw display
4343 T12+208T10++6230016 T^{12} + 208 T^{10} + \cdots + 6230016 Copy content Toggle raw display
4747 (T612T5++5184)2 (T^{6} - 12 T^{5} + \cdots + 5184)^{2} Copy content Toggle raw display
5353 (T68T5++576)2 (T^{6} - 8 T^{5} + \cdots + 576)^{2} Copy content Toggle raw display
5959 (T612T5+1728)2 (T^{6} - 12 T^{5} + \cdots - 1728)^{2} Copy content Toggle raw display
6161 T12+376T10++6230016 T^{12} + 376 T^{10} + \cdots + 6230016 Copy content Toggle raw display
6767 T12++178259595264 T^{12} + \cdots + 178259595264 Copy content Toggle raw display
7171 T12++9475854336 T^{12} + \cdots + 9475854336 Copy content Toggle raw display
7373 T12+280T10++6230016 T^{12} + 280 T^{10} + \cdots + 6230016 Copy content Toggle raw display
7979 T12+456T10++2985984 T^{12} + 456 T^{10} + \cdots + 2985984 Copy content Toggle raw display
8383 (T68T5+294912)2 (T^{6} - 8 T^{5} + \cdots - 294912)^{2} Copy content Toggle raw display
8989 T12++732893184 T^{12} + \cdots + 732893184 Copy content Toggle raw display
9797 T12+472T10++331776 T^{12} + 472 T^{10} + \cdots + 331776 Copy content Toggle raw display
show more
show less