Properties

Label 1680.4.a.bp
Level $1680$
Weight $4$
Character orbit 1680.a
Self dual yes
Analytic conductor $99.123$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,4,Mod(1,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.1232088096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{130}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + 5 q^{5} + 7 q^{7} + 9 q^{9} + 8 q^{11} + ( - \beta + 2) q^{13} + 15 q^{15} + (\beta + 42) q^{17} + ( - 2 \beta + 16) q^{19} + 21 q^{21} + ( - \beta - 16) q^{23} + 25 q^{25} + 27 q^{27} + ( - 5 \beta + 22) q^{29}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 10 q^{5} + 14 q^{7} + 18 q^{9} + 16 q^{11} + 4 q^{13} + 30 q^{15} + 84 q^{17} + 32 q^{19} + 42 q^{21} - 32 q^{23} + 50 q^{25} + 54 q^{27} + 44 q^{29} + 40 q^{31} + 48 q^{33} + 70 q^{35}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
11.4018
−11.4018
0 3.00000 0 5.00000 0 7.00000 0 9.00000 0
1.2 0 3.00000 0 5.00000 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.4.a.bp 2
4.b odd 2 1 420.4.a.h 2
12.b even 2 1 1260.4.a.m 2
20.d odd 2 1 2100.4.a.u 2
20.e even 4 2 2100.4.k.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.4.a.h 2 4.b odd 2 1
1260.4.a.m 2 12.b even 2 1
1680.4.a.bp 2 1.a even 1 1 trivial
2100.4.a.u 2 20.d odd 2 1
2100.4.k.k 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1680))\):

\( T_{11} - 8 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 2076 \) Copy content Toggle raw display
\( T_{17}^{2} - 84T_{17} - 316 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( (T - 8)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 2076 \) Copy content Toggle raw display
$17$ \( T^{2} - 84T - 316 \) Copy content Toggle raw display
$19$ \( T^{2} - 32T - 8064 \) Copy content Toggle raw display
$23$ \( T^{2} + 32T - 1824 \) Copy content Toggle raw display
$29$ \( T^{2} - 44T - 51516 \) Copy content Toggle raw display
$31$ \( T^{2} - 40T - 101520 \) Copy content Toggle raw display
$37$ \( T^{2} - 428T - 6204 \) Copy content Toggle raw display
$41$ \( T^{2} - 260T - 116220 \) Copy content Toggle raw display
$43$ \( T^{2} + 216T - 40336 \) Copy content Toggle raw display
$47$ \( T^{2} + 368T - 68064 \) Copy content Toggle raw display
$53$ \( T^{2} - 884T + 120484 \) Copy content Toggle raw display
$59$ \( T^{2} + 616T - 113136 \) Copy content Toggle raw display
$61$ \( T^{2} - 732T + 81956 \) Copy content Toggle raw display
$67$ \( T^{2} + 1368 T + 449136 \) Copy content Toggle raw display
$71$ \( T^{2} - 632T - 68624 \) Copy content Toggle raw display
$73$ \( T^{2} - 2028 T + 1026116 \) Copy content Toggle raw display
$79$ \( T^{2} + 176 T - 1190336 \) Copy content Toggle raw display
$83$ \( T^{2} + 536T - 136176 \) Copy content Toggle raw display
$89$ \( T^{2} - 1380 T + 342980 \) Copy content Toggle raw display
$97$ \( T^{2} - 1132 T + 151876 \) Copy content Toggle raw display
show more
show less