Properties

Label 1682.2.a.e
Level $1682$
Weight $2$
Character orbit 1682.a
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} + 4 q^{7} - q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} + 4 q^{7} - q^{8} + 6 q^{9} - q^{11} + 3 q^{12} + 6 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} - 6 q^{18} + q^{19} + 12 q^{21} + q^{22} - 6 q^{23} - 3 q^{24} - 5 q^{25} - 6 q^{26} + 9 q^{27} + 4 q^{28} - q^{32} - 3 q^{33} - 2 q^{34} + 6 q^{36} - 8 q^{37} - q^{38} + 18 q^{39} - 11 q^{41} - 12 q^{42} + q^{43} - q^{44} + 6 q^{46} - 4 q^{47} + 3 q^{48} + 9 q^{49} + 5 q^{50} + 6 q^{51} + 6 q^{52} - 2 q^{53} - 9 q^{54} - 4 q^{56} + 3 q^{57} - 4 q^{59} - 8 q^{61} + 24 q^{63} + q^{64} + 3 q^{66} + 8 q^{67} + 2 q^{68} - 18 q^{69} - 2 q^{71} - 6 q^{72} + 6 q^{73} + 8 q^{74} - 15 q^{75} + q^{76} - 4 q^{77} - 18 q^{78} - 4 q^{79} + 9 q^{81} + 11 q^{82} + 15 q^{83} + 12 q^{84} - q^{86} + q^{88} + 3 q^{89} + 24 q^{91} - 6 q^{92} + 4 q^{94} - 3 q^{96} - 3 q^{97} - 9 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 3.00000 1.00000 0 −3.00000 4.00000 −1.00000 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.a.e 1
29.b even 2 1 1682.2.a.f yes 1
29.c odd 4 2 1682.2.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.2.a.e 1 1.a even 1 1 trivial
1682.2.a.f yes 1 29.b even 2 1
1682.2.b.c 2 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1682))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 11 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 15 \) Copy content Toggle raw display
$89$ \( T - 3 \) Copy content Toggle raw display
$97$ \( T + 3 \) Copy content Toggle raw display
show more
show less