Properties

Label 1682.2.a.q.1.6
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.13716913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 13x^{4} + 17x^{3} + 52x^{2} - 32x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.63883\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.44077 q^{3} +1.00000 q^{4} -2.88581 q^{5} -2.44077 q^{6} -3.04359 q^{7} -1.00000 q^{8} +2.95734 q^{9} +2.88581 q^{10} +5.48435 q^{11} +2.44077 q^{12} -0.107544 q^{13} +3.04359 q^{14} -7.04359 q^{15} +1.00000 q^{16} -0.816005 q^{17} -2.95734 q^{18} -2.04266 q^{19} -2.88581 q^{20} -7.42869 q^{21} -5.48435 q^{22} -9.16509 q^{23} -2.44077 q^{24} +3.32789 q^{25} +0.107544 q^{26} -0.104116 q^{27} -3.04359 q^{28} +7.04359 q^{30} +3.44170 q^{31} -1.00000 q^{32} +13.3860 q^{33} +0.816005 q^{34} +8.78321 q^{35} +2.95734 q^{36} -5.90758 q^{37} +2.04266 q^{38} -0.262489 q^{39} +2.88581 q^{40} +2.43376 q^{41} +7.42869 q^{42} -5.48435 q^{43} +5.48435 q^{44} -8.53433 q^{45} +9.16509 q^{46} -5.91000 q^{47} +2.44077 q^{48} +2.26342 q^{49} -3.32789 q^{50} -1.99168 q^{51} -0.107544 q^{52} +3.95070 q^{53} +0.104116 q^{54} -15.8268 q^{55} +3.04359 q^{56} -4.98565 q^{57} +1.13359 q^{59} -7.04359 q^{60} -8.16584 q^{61} -3.44170 q^{62} -9.00093 q^{63} +1.00000 q^{64} +0.310351 q^{65} -13.3860 q^{66} +0.956413 q^{67} -0.816005 q^{68} -22.3699 q^{69} -8.78321 q^{70} +2.38979 q^{71} -2.95734 q^{72} -8.89410 q^{73} +5.90758 q^{74} +8.12261 q^{75} -2.04266 q^{76} -16.6921 q^{77} +0.262489 q^{78} +4.20062 q^{79} -2.88581 q^{80} -9.12615 q^{81} -2.43376 q^{82} -15.4732 q^{83} -7.42869 q^{84} +2.35483 q^{85} +5.48435 q^{86} -5.48435 q^{88} -5.54154 q^{89} +8.53433 q^{90} +0.327319 q^{91} -9.16509 q^{92} +8.40038 q^{93} +5.91000 q^{94} +5.89472 q^{95} -2.44077 q^{96} -11.9217 q^{97} -2.26342 q^{98} +16.2191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 2 q^{6} - 3 q^{7} - 6 q^{8} + 12 q^{9} + q^{11} - 2 q^{12} - 3 q^{13} + 3 q^{14} - 27 q^{15} + 6 q^{16} + 6 q^{17} - 12 q^{18} - 18 q^{19} + 10 q^{21} - q^{22} - 14 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.44077 1.40918 0.704589 0.709616i \(-0.251132\pi\)
0.704589 + 0.709616i \(0.251132\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.88581 −1.29057 −0.645286 0.763941i \(-0.723262\pi\)
−0.645286 + 0.763941i \(0.723262\pi\)
\(6\) −2.44077 −0.996439
\(7\) −3.04359 −1.15037 −0.575184 0.818024i \(-0.695069\pi\)
−0.575184 + 0.818024i \(0.695069\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.95734 0.985781
\(10\) 2.88581 0.912573
\(11\) 5.48435 1.65359 0.826797 0.562500i \(-0.190160\pi\)
0.826797 + 0.562500i \(0.190160\pi\)
\(12\) 2.44077 0.704589
\(13\) −0.107544 −0.0298273 −0.0149136 0.999889i \(-0.504747\pi\)
−0.0149136 + 0.999889i \(0.504747\pi\)
\(14\) 3.04359 0.813433
\(15\) −7.04359 −1.81865
\(16\) 1.00000 0.250000
\(17\) −0.816005 −0.197910 −0.0989551 0.995092i \(-0.531550\pi\)
−0.0989551 + 0.995092i \(0.531550\pi\)
\(18\) −2.95734 −0.697052
\(19\) −2.04266 −0.468618 −0.234309 0.972162i \(-0.575283\pi\)
−0.234309 + 0.972162i \(0.575283\pi\)
\(20\) −2.88581 −0.645286
\(21\) −7.42869 −1.62107
\(22\) −5.48435 −1.16927
\(23\) −9.16509 −1.91105 −0.955527 0.294903i \(-0.904713\pi\)
−0.955527 + 0.294903i \(0.904713\pi\)
\(24\) −2.44077 −0.498219
\(25\) 3.32789 0.665578
\(26\) 0.107544 0.0210911
\(27\) −0.104116 −0.0200371
\(28\) −3.04359 −0.575184
\(29\) 0 0
\(30\) 7.04359 1.28598
\(31\) 3.44170 0.618147 0.309073 0.951038i \(-0.399981\pi\)
0.309073 + 0.951038i \(0.399981\pi\)
\(32\) −1.00000 −0.176777
\(33\) 13.3860 2.33021
\(34\) 0.816005 0.139944
\(35\) 8.78321 1.48463
\(36\) 2.95734 0.492891
\(37\) −5.90758 −0.971200 −0.485600 0.874181i \(-0.661399\pi\)
−0.485600 + 0.874181i \(0.661399\pi\)
\(38\) 2.04266 0.331363
\(39\) −0.262489 −0.0420319
\(40\) 2.88581 0.456286
\(41\) 2.43376 0.380090 0.190045 0.981775i \(-0.439137\pi\)
0.190045 + 0.981775i \(0.439137\pi\)
\(42\) 7.42869 1.14627
\(43\) −5.48435 −0.836356 −0.418178 0.908365i \(-0.637331\pi\)
−0.418178 + 0.908365i \(0.637331\pi\)
\(44\) 5.48435 0.826797
\(45\) −8.53433 −1.27222
\(46\) 9.16509 1.35132
\(47\) −5.91000 −0.862062 −0.431031 0.902337i \(-0.641850\pi\)
−0.431031 + 0.902337i \(0.641850\pi\)
\(48\) 2.44077 0.352294
\(49\) 2.26342 0.323346
\(50\) −3.32789 −0.470635
\(51\) −1.99168 −0.278891
\(52\) −0.107544 −0.0149136
\(53\) 3.95070 0.542670 0.271335 0.962485i \(-0.412535\pi\)
0.271335 + 0.962485i \(0.412535\pi\)
\(54\) 0.104116 0.0141683
\(55\) −15.8268 −2.13408
\(56\) 3.04359 0.406716
\(57\) −4.98565 −0.660365
\(58\) 0 0
\(59\) 1.13359 0.147581 0.0737904 0.997274i \(-0.476490\pi\)
0.0737904 + 0.997274i \(0.476490\pi\)
\(60\) −7.04359 −0.909323
\(61\) −8.16584 −1.04553 −0.522764 0.852477i \(-0.675099\pi\)
−0.522764 + 0.852477i \(0.675099\pi\)
\(62\) −3.44170 −0.437096
\(63\) −9.00093 −1.13401
\(64\) 1.00000 0.125000
\(65\) 0.310351 0.0384943
\(66\) −13.3860 −1.64771
\(67\) 0.956413 0.116844 0.0584222 0.998292i \(-0.481393\pi\)
0.0584222 + 0.998292i \(0.481393\pi\)
\(68\) −0.816005 −0.0989551
\(69\) −22.3699 −2.69301
\(70\) −8.78321 −1.04979
\(71\) 2.38979 0.283616 0.141808 0.989894i \(-0.454709\pi\)
0.141808 + 0.989894i \(0.454709\pi\)
\(72\) −2.95734 −0.348526
\(73\) −8.89410 −1.04098 −0.520488 0.853869i \(-0.674250\pi\)
−0.520488 + 0.853869i \(0.674250\pi\)
\(74\) 5.90758 0.686742
\(75\) 8.12261 0.937918
\(76\) −2.04266 −0.234309
\(77\) −16.6921 −1.90224
\(78\) 0.262489 0.0297211
\(79\) 4.20062 0.472607 0.236303 0.971679i \(-0.424064\pi\)
0.236303 + 0.971679i \(0.424064\pi\)
\(80\) −2.88581 −0.322643
\(81\) −9.12615 −1.01402
\(82\) −2.43376 −0.268764
\(83\) −15.4732 −1.69840 −0.849202 0.528068i \(-0.822917\pi\)
−0.849202 + 0.528068i \(0.822917\pi\)
\(84\) −7.42869 −0.810536
\(85\) 2.35483 0.255418
\(86\) 5.48435 0.591393
\(87\) 0 0
\(88\) −5.48435 −0.584634
\(89\) −5.54154 −0.587402 −0.293701 0.955897i \(-0.594887\pi\)
−0.293701 + 0.955897i \(0.594887\pi\)
\(90\) 8.53433 0.899597
\(91\) 0.327319 0.0343124
\(92\) −9.16509 −0.955527
\(93\) 8.40038 0.871079
\(94\) 5.91000 0.609570
\(95\) 5.89472 0.604785
\(96\) −2.44077 −0.249110
\(97\) −11.9217 −1.21046 −0.605232 0.796049i \(-0.706920\pi\)
−0.605232 + 0.796049i \(0.706920\pi\)
\(98\) −2.26342 −0.228640
\(99\) 16.2191 1.63008
\(100\) 3.32789 0.332789
\(101\) 9.40543 0.935875 0.467937 0.883762i \(-0.344997\pi\)
0.467937 + 0.883762i \(0.344997\pi\)
\(102\) 1.99168 0.197205
\(103\) −11.3271 −1.11610 −0.558048 0.829808i \(-0.688450\pi\)
−0.558048 + 0.829808i \(0.688450\pi\)
\(104\) 0.107544 0.0105455
\(105\) 21.4378 2.09211
\(106\) −3.95070 −0.383725
\(107\) 10.4570 1.01092 0.505458 0.862851i \(-0.331324\pi\)
0.505458 + 0.862851i \(0.331324\pi\)
\(108\) −0.104116 −0.0100185
\(109\) −13.9287 −1.33413 −0.667064 0.745000i \(-0.732449\pi\)
−0.667064 + 0.745000i \(0.732449\pi\)
\(110\) 15.8268 1.50903
\(111\) −14.4190 −1.36859
\(112\) −3.04359 −0.287592
\(113\) 13.1190 1.23414 0.617068 0.786910i \(-0.288321\pi\)
0.617068 + 0.786910i \(0.288321\pi\)
\(114\) 4.98565 0.466949
\(115\) 26.4487 2.46635
\(116\) 0 0
\(117\) −0.318044 −0.0294032
\(118\) −1.13359 −0.104355
\(119\) 2.48358 0.227670
\(120\) 7.04359 0.642989
\(121\) 19.0781 1.73438
\(122\) 8.16584 0.739300
\(123\) 5.94024 0.535614
\(124\) 3.44170 0.309073
\(125\) 4.82538 0.431595
\(126\) 9.00093 0.801867
\(127\) 1.34000 0.118906 0.0594529 0.998231i \(-0.481064\pi\)
0.0594529 + 0.998231i \(0.481064\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −13.3860 −1.17857
\(130\) −0.310351 −0.0272196
\(131\) −5.10731 −0.446228 −0.223114 0.974792i \(-0.571622\pi\)
−0.223114 + 0.974792i \(0.571622\pi\)
\(132\) 13.3860 1.16510
\(133\) 6.21700 0.539083
\(134\) −0.956413 −0.0826215
\(135\) 0.300458 0.0258593
\(136\) 0.816005 0.0699718
\(137\) −1.19304 −0.101928 −0.0509642 0.998700i \(-0.516229\pi\)
−0.0509642 + 0.998700i \(0.516229\pi\)
\(138\) 22.3699 1.90425
\(139\) 10.0823 0.855172 0.427586 0.903975i \(-0.359364\pi\)
0.427586 + 0.903975i \(0.359364\pi\)
\(140\) 8.78321 0.742317
\(141\) −14.4249 −1.21480
\(142\) −2.38979 −0.200547
\(143\) −0.589808 −0.0493223
\(144\) 2.95734 0.246445
\(145\) 0 0
\(146\) 8.89410 0.736081
\(147\) 5.52448 0.455651
\(148\) −5.90758 −0.485600
\(149\) −1.75096 −0.143444 −0.0717220 0.997425i \(-0.522849\pi\)
−0.0717220 + 0.997425i \(0.522849\pi\)
\(150\) −8.12261 −0.663208
\(151\) −0.564094 −0.0459053 −0.0229527 0.999737i \(-0.507307\pi\)
−0.0229527 + 0.999737i \(0.507307\pi\)
\(152\) 2.04266 0.165681
\(153\) −2.41321 −0.195096
\(154\) 16.6921 1.34509
\(155\) −9.93208 −0.797764
\(156\) −0.262489 −0.0210160
\(157\) −17.3463 −1.38439 −0.692193 0.721712i \(-0.743355\pi\)
−0.692193 + 0.721712i \(0.743355\pi\)
\(158\) −4.20062 −0.334183
\(159\) 9.64273 0.764718
\(160\) 2.88581 0.228143
\(161\) 27.8948 2.19841
\(162\) 9.12615 0.717018
\(163\) −11.6189 −0.910060 −0.455030 0.890476i \(-0.650372\pi\)
−0.455030 + 0.890476i \(0.650372\pi\)
\(164\) 2.43376 0.190045
\(165\) −38.6295 −3.00730
\(166\) 15.4732 1.20095
\(167\) −8.50687 −0.658281 −0.329141 0.944281i \(-0.606759\pi\)
−0.329141 + 0.944281i \(0.606759\pi\)
\(168\) 7.42869 0.573136
\(169\) −12.9884 −0.999110
\(170\) −2.35483 −0.180608
\(171\) −6.04084 −0.461954
\(172\) −5.48435 −0.418178
\(173\) 10.1868 0.774484 0.387242 0.921978i \(-0.373428\pi\)
0.387242 + 0.921978i \(0.373428\pi\)
\(174\) 0 0
\(175\) −10.1287 −0.765660
\(176\) 5.48435 0.413399
\(177\) 2.76683 0.207967
\(178\) 5.54154 0.415356
\(179\) 4.78942 0.357978 0.178989 0.983851i \(-0.442717\pi\)
0.178989 + 0.983851i \(0.442717\pi\)
\(180\) −8.53433 −0.636111
\(181\) 0.737152 0.0547921 0.0273960 0.999625i \(-0.491278\pi\)
0.0273960 + 0.999625i \(0.491278\pi\)
\(182\) −0.327319 −0.0242625
\(183\) −19.9309 −1.47334
\(184\) 9.16509 0.675660
\(185\) 17.0481 1.25340
\(186\) −8.40038 −0.615946
\(187\) −4.47526 −0.327263
\(188\) −5.91000 −0.431031
\(189\) 0.316885 0.0230500
\(190\) −5.89472 −0.427648
\(191\) 0.120340 0.00870752 0.00435376 0.999991i \(-0.498614\pi\)
0.00435376 + 0.999991i \(0.498614\pi\)
\(192\) 2.44077 0.176147
\(193\) 21.1388 1.52161 0.760804 0.648982i \(-0.224805\pi\)
0.760804 + 0.648982i \(0.224805\pi\)
\(194\) 11.9217 0.855928
\(195\) 0.757494 0.0542453
\(196\) 2.26342 0.161673
\(197\) −16.0211 −1.14146 −0.570728 0.821139i \(-0.693339\pi\)
−0.570728 + 0.821139i \(0.693339\pi\)
\(198\) −16.2191 −1.15264
\(199\) 13.8572 0.982311 0.491155 0.871072i \(-0.336575\pi\)
0.491155 + 0.871072i \(0.336575\pi\)
\(200\) −3.32789 −0.235318
\(201\) 2.33438 0.164655
\(202\) −9.40543 −0.661763
\(203\) 0 0
\(204\) −1.99168 −0.139445
\(205\) −7.02337 −0.490533
\(206\) 11.3271 0.789200
\(207\) −27.1043 −1.88388
\(208\) −0.107544 −0.00745682
\(209\) −11.2027 −0.774904
\(210\) −21.4378 −1.47935
\(211\) 24.3125 1.67374 0.836870 0.547401i \(-0.184383\pi\)
0.836870 + 0.547401i \(0.184383\pi\)
\(212\) 3.95070 0.271335
\(213\) 5.83291 0.399665
\(214\) −10.4570 −0.714825
\(215\) 15.8268 1.07938
\(216\) 0.104116 0.00708417
\(217\) −10.4751 −0.711096
\(218\) 13.9287 0.943371
\(219\) −21.7084 −1.46692
\(220\) −15.8268 −1.06704
\(221\) 0.0877563 0.00590313
\(222\) 14.4190 0.967741
\(223\) 10.4249 0.698105 0.349052 0.937103i \(-0.386504\pi\)
0.349052 + 0.937103i \(0.386504\pi\)
\(224\) 3.04359 0.203358
\(225\) 9.84172 0.656115
\(226\) −13.1190 −0.872665
\(227\) 20.9815 1.39259 0.696294 0.717757i \(-0.254831\pi\)
0.696294 + 0.717757i \(0.254831\pi\)
\(228\) −4.98565 −0.330183
\(229\) −0.984111 −0.0650319 −0.0325159 0.999471i \(-0.510352\pi\)
−0.0325159 + 0.999471i \(0.510352\pi\)
\(230\) −26.4487 −1.74398
\(231\) −40.7415 −2.68060
\(232\) 0 0
\(233\) 17.3778 1.13846 0.569229 0.822179i \(-0.307242\pi\)
0.569229 + 0.822179i \(0.307242\pi\)
\(234\) 0.318044 0.0207912
\(235\) 17.0551 1.11255
\(236\) 1.13359 0.0737904
\(237\) 10.2527 0.665987
\(238\) −2.48358 −0.160987
\(239\) −1.15163 −0.0744930 −0.0372465 0.999306i \(-0.511859\pi\)
−0.0372465 + 0.999306i \(0.511859\pi\)
\(240\) −7.04359 −0.454662
\(241\) −19.7078 −1.26949 −0.634747 0.772720i \(-0.718896\pi\)
−0.634747 + 0.772720i \(0.718896\pi\)
\(242\) −19.0781 −1.22639
\(243\) −21.9625 −1.40889
\(244\) −8.16584 −0.522764
\(245\) −6.53179 −0.417301
\(246\) −5.94024 −0.378736
\(247\) 0.219675 0.0139776
\(248\) −3.44170 −0.218548
\(249\) −37.7665 −2.39335
\(250\) −4.82538 −0.305184
\(251\) 8.50449 0.536799 0.268399 0.963308i \(-0.413505\pi\)
0.268399 + 0.963308i \(0.413505\pi\)
\(252\) −9.00093 −0.567005
\(253\) −50.2646 −3.16011
\(254\) −1.34000 −0.0840791
\(255\) 5.74760 0.359929
\(256\) 1.00000 0.0625000
\(257\) 22.7220 1.41736 0.708681 0.705529i \(-0.249291\pi\)
0.708681 + 0.705529i \(0.249291\pi\)
\(258\) 13.3860 0.833378
\(259\) 17.9802 1.11724
\(260\) 0.310351 0.0192471
\(261\) 0 0
\(262\) 5.10731 0.315531
\(263\) 26.0425 1.60585 0.802926 0.596079i \(-0.203275\pi\)
0.802926 + 0.596079i \(0.203275\pi\)
\(264\) −13.3860 −0.823853
\(265\) −11.4010 −0.700355
\(266\) −6.21700 −0.381189
\(267\) −13.5256 −0.827753
\(268\) 0.956413 0.0584222
\(269\) −1.45648 −0.0888029 −0.0444014 0.999014i \(-0.514138\pi\)
−0.0444014 + 0.999014i \(0.514138\pi\)
\(270\) −0.300458 −0.0182853
\(271\) 10.9282 0.663839 0.331919 0.943308i \(-0.392304\pi\)
0.331919 + 0.943308i \(0.392304\pi\)
\(272\) −0.816005 −0.0494776
\(273\) 0.798909 0.0483522
\(274\) 1.19304 0.0720743
\(275\) 18.2513 1.10060
\(276\) −22.3699 −1.34651
\(277\) −2.47242 −0.148553 −0.0742766 0.997238i \(-0.523665\pi\)
−0.0742766 + 0.997238i \(0.523665\pi\)
\(278\) −10.0823 −0.604698
\(279\) 10.1783 0.609358
\(280\) −8.78321 −0.524897
\(281\) −0.186647 −0.0111344 −0.00556721 0.999985i \(-0.501772\pi\)
−0.00556721 + 0.999985i \(0.501772\pi\)
\(282\) 14.4249 0.858992
\(283\) −18.4487 −1.09666 −0.548331 0.836261i \(-0.684737\pi\)
−0.548331 + 0.836261i \(0.684737\pi\)
\(284\) 2.38979 0.141808
\(285\) 14.3876 0.852250
\(286\) 0.589808 0.0348761
\(287\) −7.40736 −0.437243
\(288\) −2.95734 −0.174263
\(289\) −16.3341 −0.960832
\(290\) 0 0
\(291\) −29.0981 −1.70576
\(292\) −8.89410 −0.520488
\(293\) 1.55630 0.0909202 0.0454601 0.998966i \(-0.485525\pi\)
0.0454601 + 0.998966i \(0.485525\pi\)
\(294\) −5.52448 −0.322194
\(295\) −3.27132 −0.190464
\(296\) 5.90758 0.343371
\(297\) −0.571007 −0.0331332
\(298\) 1.75096 0.101430
\(299\) 0.985649 0.0570016
\(300\) 8.12261 0.468959
\(301\) 16.6921 0.962117
\(302\) 0.564094 0.0324600
\(303\) 22.9565 1.31881
\(304\) −2.04266 −0.117154
\(305\) 23.5651 1.34933
\(306\) 2.41321 0.137954
\(307\) −19.6000 −1.11863 −0.559316 0.828955i \(-0.688936\pi\)
−0.559316 + 0.828955i \(0.688936\pi\)
\(308\) −16.6921 −0.951121
\(309\) −27.6469 −1.57278
\(310\) 9.93208 0.564104
\(311\) 26.4681 1.50087 0.750433 0.660946i \(-0.229845\pi\)
0.750433 + 0.660946i \(0.229845\pi\)
\(312\) 0.262489 0.0148605
\(313\) 21.8049 1.23249 0.616244 0.787555i \(-0.288654\pi\)
0.616244 + 0.787555i \(0.288654\pi\)
\(314\) 17.3463 0.978909
\(315\) 25.9750 1.46352
\(316\) 4.20062 0.236303
\(317\) −18.9285 −1.06313 −0.531564 0.847018i \(-0.678396\pi\)
−0.531564 + 0.847018i \(0.678396\pi\)
\(318\) −9.64273 −0.540737
\(319\) 0 0
\(320\) −2.88581 −0.161322
\(321\) 25.5231 1.42456
\(322\) −27.8948 −1.55451
\(323\) 1.66682 0.0927442
\(324\) −9.12615 −0.507008
\(325\) −0.357894 −0.0198524
\(326\) 11.6189 0.643510
\(327\) −33.9967 −1.88002
\(328\) −2.43376 −0.134382
\(329\) 17.9876 0.991688
\(330\) 38.6295 2.12648
\(331\) −17.7806 −0.977311 −0.488656 0.872477i \(-0.662513\pi\)
−0.488656 + 0.872477i \(0.662513\pi\)
\(332\) −15.4732 −0.849202
\(333\) −17.4707 −0.957391
\(334\) 8.50687 0.465475
\(335\) −2.76003 −0.150796
\(336\) −7.42869 −0.405268
\(337\) −2.83904 −0.154652 −0.0773261 0.997006i \(-0.524638\pi\)
−0.0773261 + 0.997006i \(0.524638\pi\)
\(338\) 12.9884 0.706478
\(339\) 32.0205 1.73912
\(340\) 2.35483 0.127709
\(341\) 18.8755 1.02216
\(342\) 6.04084 0.326651
\(343\) 14.4162 0.778401
\(344\) 5.48435 0.295697
\(345\) 64.5551 3.47553
\(346\) −10.1868 −0.547643
\(347\) −7.14376 −0.383497 −0.191749 0.981444i \(-0.561416\pi\)
−0.191749 + 0.981444i \(0.561416\pi\)
\(348\) 0 0
\(349\) 8.26091 0.442197 0.221098 0.975252i \(-0.429036\pi\)
0.221098 + 0.975252i \(0.429036\pi\)
\(350\) 10.1287 0.541403
\(351\) 0.0111970 0.000597651 0
\(352\) −5.48435 −0.292317
\(353\) 18.1818 0.967718 0.483859 0.875146i \(-0.339235\pi\)
0.483859 + 0.875146i \(0.339235\pi\)
\(354\) −2.76683 −0.147055
\(355\) −6.89647 −0.366027
\(356\) −5.54154 −0.293701
\(357\) 6.06184 0.320827
\(358\) −4.78942 −0.253129
\(359\) 19.8073 1.04539 0.522695 0.852520i \(-0.324927\pi\)
0.522695 + 0.852520i \(0.324927\pi\)
\(360\) 8.53433 0.449799
\(361\) −14.8276 −0.780398
\(362\) −0.737152 −0.0387438
\(363\) 46.5653 2.44404
\(364\) 0.327319 0.0171562
\(365\) 25.6667 1.34345
\(366\) 19.9309 1.04181
\(367\) −3.83357 −0.200111 −0.100055 0.994982i \(-0.531902\pi\)
−0.100055 + 0.994982i \(0.531902\pi\)
\(368\) −9.16509 −0.477764
\(369\) 7.19747 0.374685
\(370\) −17.0481 −0.886291
\(371\) −12.0243 −0.624270
\(372\) 8.40038 0.435539
\(373\) 18.1776 0.941202 0.470601 0.882346i \(-0.344037\pi\)
0.470601 + 0.882346i \(0.344037\pi\)
\(374\) 4.47526 0.231410
\(375\) 11.7776 0.608194
\(376\) 5.91000 0.304785
\(377\) 0 0
\(378\) −0.316885 −0.0162988
\(379\) −37.3670 −1.91941 −0.959707 0.281003i \(-0.909333\pi\)
−0.959707 + 0.281003i \(0.909333\pi\)
\(380\) 5.89472 0.302393
\(381\) 3.27063 0.167559
\(382\) −0.120340 −0.00615715
\(383\) −11.8246 −0.604208 −0.302104 0.953275i \(-0.597689\pi\)
−0.302104 + 0.953275i \(0.597689\pi\)
\(384\) −2.44077 −0.124555
\(385\) 48.1702 2.45498
\(386\) −21.1388 −1.07594
\(387\) −16.2191 −0.824464
\(388\) −11.9217 −0.605232
\(389\) 29.8660 1.51426 0.757132 0.653262i \(-0.226600\pi\)
0.757132 + 0.653262i \(0.226600\pi\)
\(390\) −0.757494 −0.0383572
\(391\) 7.47876 0.378217
\(392\) −2.26342 −0.114320
\(393\) −12.4658 −0.628815
\(394\) 16.0211 0.807131
\(395\) −12.1222 −0.609934
\(396\) 16.2191 0.815041
\(397\) −8.10324 −0.406690 −0.203345 0.979107i \(-0.565181\pi\)
−0.203345 + 0.979107i \(0.565181\pi\)
\(398\) −13.8572 −0.694599
\(399\) 15.1743 0.759663
\(400\) 3.32789 0.166395
\(401\) 5.94737 0.296997 0.148499 0.988913i \(-0.452556\pi\)
0.148499 + 0.988913i \(0.452556\pi\)
\(402\) −2.33438 −0.116428
\(403\) −0.370133 −0.0184377
\(404\) 9.40543 0.467937
\(405\) 26.3363 1.30866
\(406\) 0 0
\(407\) −32.3993 −1.60597
\(408\) 1.99168 0.0986027
\(409\) −13.1395 −0.649706 −0.324853 0.945765i \(-0.605315\pi\)
−0.324853 + 0.945765i \(0.605315\pi\)
\(410\) 7.02337 0.346859
\(411\) −2.91194 −0.143635
\(412\) −11.3271 −0.558048
\(413\) −3.45018 −0.169772
\(414\) 27.1043 1.33211
\(415\) 44.6527 2.19191
\(416\) 0.107544 0.00527277
\(417\) 24.6086 1.20509
\(418\) 11.2027 0.547940
\(419\) 22.1612 1.08265 0.541324 0.840814i \(-0.317923\pi\)
0.541324 + 0.840814i \(0.317923\pi\)
\(420\) 21.4378 1.04606
\(421\) −23.8521 −1.16248 −0.581240 0.813732i \(-0.697432\pi\)
−0.581240 + 0.813732i \(0.697432\pi\)
\(422\) −24.3125 −1.18351
\(423\) −17.4779 −0.849804
\(424\) −3.95070 −0.191863
\(425\) −2.71558 −0.131725
\(426\) −5.83291 −0.282606
\(427\) 24.8534 1.20274
\(428\) 10.4570 0.505458
\(429\) −1.43958 −0.0695038
\(430\) −15.8268 −0.763236
\(431\) −0.776969 −0.0374253 −0.0187126 0.999825i \(-0.505957\pi\)
−0.0187126 + 0.999825i \(0.505957\pi\)
\(432\) −0.104116 −0.00500926
\(433\) −0.612460 −0.0294329 −0.0147165 0.999892i \(-0.504685\pi\)
−0.0147165 + 0.999892i \(0.504685\pi\)
\(434\) 10.4751 0.502821
\(435\) 0 0
\(436\) −13.9287 −0.667064
\(437\) 18.7211 0.895554
\(438\) 21.7084 1.03727
\(439\) −10.8953 −0.520004 −0.260002 0.965608i \(-0.583723\pi\)
−0.260002 + 0.965608i \(0.583723\pi\)
\(440\) 15.8268 0.754513
\(441\) 6.69371 0.318748
\(442\) −0.0877563 −0.00417414
\(443\) 34.8279 1.65472 0.827362 0.561669i \(-0.189841\pi\)
0.827362 + 0.561669i \(0.189841\pi\)
\(444\) −14.4190 −0.684297
\(445\) 15.9918 0.758085
\(446\) −10.4249 −0.493635
\(447\) −4.27368 −0.202138
\(448\) −3.04359 −0.143796
\(449\) −5.02242 −0.237022 −0.118511 0.992953i \(-0.537812\pi\)
−0.118511 + 0.992953i \(0.537812\pi\)
\(450\) −9.84172 −0.463943
\(451\) 13.3476 0.628514
\(452\) 13.1190 0.617068
\(453\) −1.37682 −0.0646887
\(454\) −20.9815 −0.984708
\(455\) −0.944580 −0.0442826
\(456\) 4.98565 0.233474
\(457\) 38.2426 1.78891 0.894456 0.447156i \(-0.147563\pi\)
0.894456 + 0.447156i \(0.147563\pi\)
\(458\) 0.984111 0.0459845
\(459\) 0.0849588 0.00396554
\(460\) 26.4487 1.23318
\(461\) −25.9962 −1.21076 −0.605381 0.795935i \(-0.706979\pi\)
−0.605381 + 0.795935i \(0.706979\pi\)
\(462\) 40.7415 1.89547
\(463\) 17.3502 0.806331 0.403166 0.915127i \(-0.367910\pi\)
0.403166 + 0.915127i \(0.367910\pi\)
\(464\) 0 0
\(465\) −24.2419 −1.12419
\(466\) −17.3778 −0.805012
\(467\) −29.2399 −1.35306 −0.676530 0.736415i \(-0.736517\pi\)
−0.676530 + 0.736415i \(0.736517\pi\)
\(468\) −0.318044 −0.0147016
\(469\) −2.91093 −0.134414
\(470\) −17.0551 −0.786694
\(471\) −42.3383 −1.95085
\(472\) −1.13359 −0.0521777
\(473\) −30.0781 −1.38299
\(474\) −10.2527 −0.470924
\(475\) −6.79774 −0.311902
\(476\) 2.48358 0.113835
\(477\) 11.6836 0.534954
\(478\) 1.15163 0.0526745
\(479\) −42.9871 −1.96413 −0.982065 0.188543i \(-0.939624\pi\)
−0.982065 + 0.188543i \(0.939624\pi\)
\(480\) 7.04359 0.321494
\(481\) 0.635324 0.0289683
\(482\) 19.7078 0.897668
\(483\) 68.0846 3.09796
\(484\) 19.0781 0.867188
\(485\) 34.4037 1.56219
\(486\) 21.9625 0.996237
\(487\) −9.99343 −0.452845 −0.226423 0.974029i \(-0.572703\pi\)
−0.226423 + 0.974029i \(0.572703\pi\)
\(488\) 8.16584 0.369650
\(489\) −28.3590 −1.28244
\(490\) 6.53179 0.295076
\(491\) −3.80604 −0.171764 −0.0858821 0.996305i \(-0.527371\pi\)
−0.0858821 + 0.996305i \(0.527371\pi\)
\(492\) 5.94024 0.267807
\(493\) 0 0
\(494\) −0.219675 −0.00988365
\(495\) −46.8053 −2.10374
\(496\) 3.44170 0.154537
\(497\) −7.27352 −0.326262
\(498\) 37.7665 1.69236
\(499\) −28.3943 −1.27110 −0.635552 0.772058i \(-0.719227\pi\)
−0.635552 + 0.772058i \(0.719227\pi\)
\(500\) 4.82538 0.215798
\(501\) −20.7633 −0.927635
\(502\) −8.50449 −0.379574
\(503\) −1.63425 −0.0728675 −0.0364337 0.999336i \(-0.511600\pi\)
−0.0364337 + 0.999336i \(0.511600\pi\)
\(504\) 9.00093 0.400933
\(505\) −27.1423 −1.20781
\(506\) 50.2646 2.23453
\(507\) −31.7017 −1.40792
\(508\) 1.34000 0.0594529
\(509\) 36.4706 1.61653 0.808267 0.588817i \(-0.200406\pi\)
0.808267 + 0.588817i \(0.200406\pi\)
\(510\) −5.74760 −0.254508
\(511\) 27.0700 1.19750
\(512\) −1.00000 −0.0441942
\(513\) 0.212672 0.00938972
\(514\) −22.7220 −1.00223
\(515\) 32.6880 1.44040
\(516\) −13.3860 −0.589287
\(517\) −32.4125 −1.42550
\(518\) −17.9802 −0.790006
\(519\) 24.8635 1.09139
\(520\) −0.310351 −0.0136098
\(521\) −37.4549 −1.64093 −0.820465 0.571697i \(-0.806285\pi\)
−0.820465 + 0.571697i \(0.806285\pi\)
\(522\) 0 0
\(523\) 37.9515 1.65950 0.829751 0.558133i \(-0.188482\pi\)
0.829751 + 0.558133i \(0.188482\pi\)
\(524\) −5.10731 −0.223114
\(525\) −24.7219 −1.07895
\(526\) −26.0425 −1.13551
\(527\) −2.80844 −0.122338
\(528\) 13.3860 0.582552
\(529\) 60.9989 2.65213
\(530\) 11.4010 0.495226
\(531\) 3.35241 0.145482
\(532\) 6.21700 0.269541
\(533\) −0.261736 −0.0113370
\(534\) 13.5256 0.585310
\(535\) −30.1769 −1.30466
\(536\) −0.956413 −0.0413108
\(537\) 11.6899 0.504455
\(538\) 1.45648 0.0627931
\(539\) 12.4134 0.534683
\(540\) 0.300458 0.0129296
\(541\) −25.2604 −1.08603 −0.543014 0.839724i \(-0.682717\pi\)
−0.543014 + 0.839724i \(0.682717\pi\)
\(542\) −10.9282 −0.469405
\(543\) 1.79922 0.0772118
\(544\) 0.816005 0.0349859
\(545\) 40.1956 1.72179
\(546\) −0.798909 −0.0341902
\(547\) −14.9623 −0.639744 −0.319872 0.947461i \(-0.603640\pi\)
−0.319872 + 0.947461i \(0.603640\pi\)
\(548\) −1.19304 −0.0509642
\(549\) −24.1492 −1.03066
\(550\) −18.2513 −0.778240
\(551\) 0 0
\(552\) 22.3699 0.952124
\(553\) −12.7850 −0.543672
\(554\) 2.47242 0.105043
\(555\) 41.6105 1.76627
\(556\) 10.0823 0.427586
\(557\) 23.7019 1.00428 0.502141 0.864786i \(-0.332546\pi\)
0.502141 + 0.864786i \(0.332546\pi\)
\(558\) −10.1783 −0.430881
\(559\) 0.589808 0.0249462
\(560\) 8.78321 0.371158
\(561\) −10.9231 −0.461172
\(562\) 0.186647 0.00787322
\(563\) −38.7490 −1.63308 −0.816538 0.577292i \(-0.804109\pi\)
−0.816538 + 0.577292i \(0.804109\pi\)
\(564\) −14.4249 −0.607399
\(565\) −37.8590 −1.59274
\(566\) 18.4487 0.775457
\(567\) 27.7762 1.16649
\(568\) −2.38979 −0.100273
\(569\) −1.15229 −0.0483064 −0.0241532 0.999708i \(-0.507689\pi\)
−0.0241532 + 0.999708i \(0.507689\pi\)
\(570\) −14.3876 −0.602632
\(571\) 16.7044 0.699057 0.349528 0.936926i \(-0.386342\pi\)
0.349528 + 0.936926i \(0.386342\pi\)
\(572\) −0.589808 −0.0246611
\(573\) 0.293723 0.0122704
\(574\) 7.40736 0.309177
\(575\) −30.5004 −1.27196
\(576\) 2.95734 0.123223
\(577\) 13.9742 0.581752 0.290876 0.956761i \(-0.406053\pi\)
0.290876 + 0.956761i \(0.406053\pi\)
\(578\) 16.3341 0.679410
\(579\) 51.5950 2.14422
\(580\) 0 0
\(581\) 47.0940 1.95379
\(582\) 29.0981 1.20615
\(583\) 21.6670 0.897356
\(584\) 8.89410 0.368040
\(585\) 0.917814 0.0379469
\(586\) −1.55630 −0.0642903
\(587\) −36.7791 −1.51804 −0.759018 0.651069i \(-0.774321\pi\)
−0.759018 + 0.651069i \(0.774321\pi\)
\(588\) 5.52448 0.227826
\(589\) −7.03021 −0.289675
\(590\) 3.27132 0.134678
\(591\) −39.1038 −1.60851
\(592\) −5.90758 −0.242800
\(593\) 28.8630 1.18526 0.592630 0.805475i \(-0.298090\pi\)
0.592630 + 0.805475i \(0.298090\pi\)
\(594\) 0.571007 0.0234287
\(595\) −7.16714 −0.293824
\(596\) −1.75096 −0.0717220
\(597\) 33.8222 1.38425
\(598\) −0.985649 −0.0403062
\(599\) 7.65942 0.312955 0.156478 0.987681i \(-0.449986\pi\)
0.156478 + 0.987681i \(0.449986\pi\)
\(600\) −8.12261 −0.331604
\(601\) 30.5315 1.24540 0.622702 0.782459i \(-0.286035\pi\)
0.622702 + 0.782459i \(0.286035\pi\)
\(602\) −16.6921 −0.680319
\(603\) 2.82844 0.115183
\(604\) −0.564094 −0.0229527
\(605\) −55.0558 −2.23834
\(606\) −22.9565 −0.932542
\(607\) 17.3469 0.704089 0.352045 0.935983i \(-0.385486\pi\)
0.352045 + 0.935983i \(0.385486\pi\)
\(608\) 2.04266 0.0828407
\(609\) 0 0
\(610\) −23.5651 −0.954121
\(611\) 0.635584 0.0257130
\(612\) −2.41321 −0.0975481
\(613\) 42.0660 1.69903 0.849515 0.527564i \(-0.176895\pi\)
0.849515 + 0.527564i \(0.176895\pi\)
\(614\) 19.6000 0.790992
\(615\) −17.1424 −0.691249
\(616\) 16.6921 0.672544
\(617\) −38.1341 −1.53522 −0.767610 0.640917i \(-0.778554\pi\)
−0.767610 + 0.640917i \(0.778554\pi\)
\(618\) 27.6469 1.11212
\(619\) −11.0550 −0.444339 −0.222170 0.975008i \(-0.571314\pi\)
−0.222170 + 0.975008i \(0.571314\pi\)
\(620\) −9.93208 −0.398882
\(621\) 0.954229 0.0382919
\(622\) −26.4681 −1.06127
\(623\) 16.8661 0.675728
\(624\) −0.262489 −0.0105080
\(625\) −30.5646 −1.22258
\(626\) −21.8049 −0.871500
\(627\) −27.3431 −1.09198
\(628\) −17.3463 −0.692193
\(629\) 4.82061 0.192210
\(630\) −25.9750 −1.03487
\(631\) −5.25268 −0.209106 −0.104553 0.994519i \(-0.533341\pi\)
−0.104553 + 0.994519i \(0.533341\pi\)
\(632\) −4.20062 −0.167092
\(633\) 59.3411 2.35860
\(634\) 18.9285 0.751746
\(635\) −3.86699 −0.153457
\(636\) 9.64273 0.382359
\(637\) −0.243417 −0.00964452
\(638\) 0 0
\(639\) 7.06742 0.279583
\(640\) 2.88581 0.114072
\(641\) −42.8000 −1.69050 −0.845249 0.534373i \(-0.820548\pi\)
−0.845249 + 0.534373i \(0.820548\pi\)
\(642\) −25.5231 −1.00732
\(643\) 5.70529 0.224995 0.112497 0.993652i \(-0.464115\pi\)
0.112497 + 0.993652i \(0.464115\pi\)
\(644\) 27.8948 1.09921
\(645\) 38.6295 1.52104
\(646\) −1.66682 −0.0655801
\(647\) −43.8776 −1.72501 −0.862503 0.506052i \(-0.831104\pi\)
−0.862503 + 0.506052i \(0.831104\pi\)
\(648\) 9.12615 0.358509
\(649\) 6.21700 0.244039
\(650\) 0.357894 0.0140378
\(651\) −25.5673 −1.00206
\(652\) −11.6189 −0.455030
\(653\) 8.56897 0.335330 0.167665 0.985844i \(-0.446377\pi\)
0.167665 + 0.985844i \(0.446377\pi\)
\(654\) 33.9967 1.32938
\(655\) 14.7387 0.575890
\(656\) 2.43376 0.0950224
\(657\) −26.3029 −1.02617
\(658\) −17.9876 −0.701229
\(659\) −41.1046 −1.60121 −0.800603 0.599195i \(-0.795487\pi\)
−0.800603 + 0.599195i \(0.795487\pi\)
\(660\) −38.6295 −1.50365
\(661\) 4.19096 0.163009 0.0815047 0.996673i \(-0.474027\pi\)
0.0815047 + 0.996673i \(0.474027\pi\)
\(662\) 17.7806 0.691063
\(663\) 0.214193 0.00831855
\(664\) 15.4732 0.600477
\(665\) −17.9411 −0.695725
\(666\) 17.4707 0.676977
\(667\) 0 0
\(668\) −8.50687 −0.329141
\(669\) 25.4448 0.983753
\(670\) 2.76003 0.106629
\(671\) −44.7844 −1.72888
\(672\) 7.42869 0.286568
\(673\) 26.9200 1.03769 0.518845 0.854869i \(-0.326362\pi\)
0.518845 + 0.854869i \(0.326362\pi\)
\(674\) 2.83904 0.109356
\(675\) −0.346485 −0.0133362
\(676\) −12.9884 −0.499555
\(677\) −7.71912 −0.296670 −0.148335 0.988937i \(-0.547391\pi\)
−0.148335 + 0.988937i \(0.547391\pi\)
\(678\) −32.0205 −1.22974
\(679\) 36.2847 1.39248
\(680\) −2.35483 −0.0903038
\(681\) 51.2108 1.96240
\(682\) −18.8755 −0.722779
\(683\) −20.9011 −0.799758 −0.399879 0.916568i \(-0.630948\pi\)
−0.399879 + 0.916568i \(0.630948\pi\)
\(684\) −6.04084 −0.230977
\(685\) 3.44289 0.131546
\(686\) −14.4162 −0.550413
\(687\) −2.40199 −0.0916415
\(688\) −5.48435 −0.209089
\(689\) −0.424873 −0.0161864
\(690\) −64.5551 −2.45757
\(691\) 11.7693 0.447726 0.223863 0.974621i \(-0.428133\pi\)
0.223863 + 0.974621i \(0.428133\pi\)
\(692\) 10.1868 0.387242
\(693\) −49.3643 −1.87519
\(694\) 7.14376 0.271173
\(695\) −29.0957 −1.10366
\(696\) 0 0
\(697\) −1.98596 −0.0752236
\(698\) −8.26091 −0.312680
\(699\) 42.4152 1.60429
\(700\) −10.1287 −0.382830
\(701\) −40.9645 −1.54721 −0.773605 0.633669i \(-0.781548\pi\)
−0.773605 + 0.633669i \(0.781548\pi\)
\(702\) −0.0111970 −0.000422603 0
\(703\) 12.0672 0.455121
\(704\) 5.48435 0.206699
\(705\) 41.6276 1.56779
\(706\) −18.1818 −0.684280
\(707\) −28.6262 −1.07660
\(708\) 2.76683 0.103984
\(709\) −27.2842 −1.02468 −0.512339 0.858783i \(-0.671221\pi\)
−0.512339 + 0.858783i \(0.671221\pi\)
\(710\) 6.89647 0.258820
\(711\) 12.4227 0.465887
\(712\) 5.54154 0.207678
\(713\) −31.5435 −1.18131
\(714\) −6.06184 −0.226859
\(715\) 1.70207 0.0636540
\(716\) 4.78942 0.178989
\(717\) −2.81087 −0.104974
\(718\) −19.8073 −0.739203
\(719\) −23.1238 −0.862372 −0.431186 0.902263i \(-0.641905\pi\)
−0.431186 + 0.902263i \(0.641905\pi\)
\(720\) −8.53433 −0.318056
\(721\) 34.4752 1.28392
\(722\) 14.8276 0.551824
\(723\) −48.1023 −1.78894
\(724\) 0.737152 0.0273960
\(725\) 0 0
\(726\) −46.5653 −1.72820
\(727\) −47.1118 −1.74728 −0.873639 0.486574i \(-0.838246\pi\)
−0.873639 + 0.486574i \(0.838246\pi\)
\(728\) −0.327319 −0.0121312
\(729\) −26.2268 −0.971363
\(730\) −25.6667 −0.949966
\(731\) 4.47526 0.165523
\(732\) −19.9309 −0.736668
\(733\) −24.4234 −0.902099 −0.451050 0.892499i \(-0.648950\pi\)
−0.451050 + 0.892499i \(0.648950\pi\)
\(734\) 3.83357 0.141500
\(735\) −15.9426 −0.588051
\(736\) 9.16509 0.337830
\(737\) 5.24531 0.193213
\(738\) −7.19747 −0.264942
\(739\) 12.8289 0.471920 0.235960 0.971763i \(-0.424177\pi\)
0.235960 + 0.971763i \(0.424177\pi\)
\(740\) 17.0481 0.626702
\(741\) 0.536176 0.0196969
\(742\) 12.0243 0.441425
\(743\) −0.349393 −0.0128180 −0.00640899 0.999979i \(-0.502040\pi\)
−0.00640899 + 0.999979i \(0.502040\pi\)
\(744\) −8.40038 −0.307973
\(745\) 5.05293 0.185125
\(746\) −18.1776 −0.665530
\(747\) −45.7596 −1.67425
\(748\) −4.47526 −0.163632
\(749\) −31.8268 −1.16292
\(750\) −11.7776 −0.430058
\(751\) −38.7195 −1.41289 −0.706447 0.707765i \(-0.749703\pi\)
−0.706447 + 0.707765i \(0.749703\pi\)
\(752\) −5.91000 −0.215515
\(753\) 20.7575 0.756445
\(754\) 0 0
\(755\) 1.62787 0.0592442
\(756\) 0.316885 0.0115250
\(757\) 42.6278 1.54933 0.774666 0.632370i \(-0.217918\pi\)
0.774666 + 0.632370i \(0.217918\pi\)
\(758\) 37.3670 1.35723
\(759\) −122.684 −4.45315
\(760\) −5.89472 −0.213824
\(761\) −8.66810 −0.314218 −0.157109 0.987581i \(-0.550217\pi\)
−0.157109 + 0.987581i \(0.550217\pi\)
\(762\) −3.27063 −0.118482
\(763\) 42.3932 1.53474
\(764\) 0.120340 0.00435376
\(765\) 6.96405 0.251786
\(766\) 11.8246 0.427240
\(767\) −0.121911 −0.00440193
\(768\) 2.44077 0.0880736
\(769\) 21.8200 0.786850 0.393425 0.919357i \(-0.371290\pi\)
0.393425 + 0.919357i \(0.371290\pi\)
\(770\) −48.1702 −1.73593
\(771\) 55.4592 1.99731
\(772\) 21.1388 0.760804
\(773\) 39.8500 1.43331 0.716653 0.697430i \(-0.245673\pi\)
0.716653 + 0.697430i \(0.245673\pi\)
\(774\) 16.2191 0.582984
\(775\) 11.4536 0.411425
\(776\) 11.9217 0.427964
\(777\) 43.8855 1.57439
\(778\) −29.8660 −1.07075
\(779\) −4.97134 −0.178117
\(780\) 0.757494 0.0271226
\(781\) 13.1064 0.468985
\(782\) −7.47876 −0.267440
\(783\) 0 0
\(784\) 2.26342 0.0808364
\(785\) 50.0582 1.78665
\(786\) 12.4658 0.444639
\(787\) 32.5707 1.16102 0.580510 0.814253i \(-0.302853\pi\)
0.580510 + 0.814253i \(0.302853\pi\)
\(788\) −16.0211 −0.570728
\(789\) 63.5638 2.26293
\(790\) 12.1222 0.431288
\(791\) −39.9289 −1.41971
\(792\) −16.2191 −0.576321
\(793\) 0.878186 0.0311853
\(794\) 8.10324 0.287573
\(795\) −27.8271 −0.986924
\(796\) 13.8572 0.491155
\(797\) 13.5804 0.481044 0.240522 0.970644i \(-0.422681\pi\)
0.240522 + 0.970644i \(0.422681\pi\)
\(798\) −15.1743 −0.537163
\(799\) 4.82259 0.170611
\(800\) −3.32789 −0.117659
\(801\) −16.3882 −0.579050
\(802\) −5.94737 −0.210009
\(803\) −48.7784 −1.72135
\(804\) 2.33438 0.0823273
\(805\) −80.4989 −2.83721
\(806\) 0.370133 0.0130374
\(807\) −3.55492 −0.125139
\(808\) −9.40543 −0.330882
\(809\) −2.36666 −0.0832073 −0.0416037 0.999134i \(-0.513247\pi\)
−0.0416037 + 0.999134i \(0.513247\pi\)
\(810\) −26.3363 −0.925364
\(811\) −45.5629 −1.59993 −0.799965 0.600047i \(-0.795148\pi\)
−0.799965 + 0.600047i \(0.795148\pi\)
\(812\) 0 0
\(813\) 26.6731 0.935466
\(814\) 32.3993 1.13559
\(815\) 33.5298 1.17450
\(816\) −1.99168 −0.0697227
\(817\) 11.2027 0.391931
\(818\) 13.1395 0.459411
\(819\) 0.967995 0.0338245
\(820\) −7.02337 −0.245267
\(821\) 38.8974 1.35753 0.678765 0.734356i \(-0.262516\pi\)
0.678765 + 0.734356i \(0.262516\pi\)
\(822\) 2.91194 0.101565
\(823\) −9.56146 −0.333291 −0.166646 0.986017i \(-0.553294\pi\)
−0.166646 + 0.986017i \(0.553294\pi\)
\(824\) 11.3271 0.394600
\(825\) 44.5473 1.55094
\(826\) 3.45018 0.120047
\(827\) −1.22644 −0.0426476 −0.0213238 0.999773i \(-0.506788\pi\)
−0.0213238 + 0.999773i \(0.506788\pi\)
\(828\) −27.1043 −0.941940
\(829\) −45.1704 −1.56883 −0.784417 0.620234i \(-0.787038\pi\)
−0.784417 + 0.620234i \(0.787038\pi\)
\(830\) −44.6527 −1.54992
\(831\) −6.03459 −0.209338
\(832\) −0.107544 −0.00372841
\(833\) −1.84696 −0.0639934
\(834\) −24.6086 −0.852126
\(835\) 24.5492 0.849560
\(836\) −11.2027 −0.387452
\(837\) −0.358334 −0.0123858
\(838\) −22.1612 −0.765547
\(839\) 4.50926 0.155677 0.0778384 0.996966i \(-0.475198\pi\)
0.0778384 + 0.996966i \(0.475198\pi\)
\(840\) −21.4378 −0.739673
\(841\) 0 0
\(842\) 23.8521 0.821998
\(843\) −0.455561 −0.0156904
\(844\) 24.3125 0.836870
\(845\) 37.4821 1.28942
\(846\) 17.4779 0.600902
\(847\) −58.0659 −1.99517
\(848\) 3.95070 0.135667
\(849\) −45.0290 −1.54539
\(850\) 2.71558 0.0931435
\(851\) 54.1435 1.85602
\(852\) 5.83291 0.199832
\(853\) 11.4706 0.392747 0.196373 0.980529i \(-0.437084\pi\)
0.196373 + 0.980529i \(0.437084\pi\)
\(854\) −24.8534 −0.850467
\(855\) 17.4327 0.596186
\(856\) −10.4570 −0.357413
\(857\) −5.18116 −0.176985 −0.0884926 0.996077i \(-0.528205\pi\)
−0.0884926 + 0.996077i \(0.528205\pi\)
\(858\) 1.43958 0.0491466
\(859\) −24.6785 −0.842020 −0.421010 0.907056i \(-0.638324\pi\)
−0.421010 + 0.907056i \(0.638324\pi\)
\(860\) 15.8268 0.539689
\(861\) −18.0796 −0.616153
\(862\) 0.776969 0.0264637
\(863\) 36.2370 1.23352 0.616762 0.787150i \(-0.288444\pi\)
0.616762 + 0.787150i \(0.288444\pi\)
\(864\) 0.104116 0.00354208
\(865\) −29.3970 −0.999529
\(866\) 0.612460 0.0208122
\(867\) −39.8678 −1.35398
\(868\) −10.4751 −0.355548
\(869\) 23.0377 0.781500
\(870\) 0 0
\(871\) −0.102856 −0.00348516
\(872\) 13.9287 0.471686
\(873\) −35.2565 −1.19325
\(874\) −18.7211 −0.633252
\(875\) −14.6865 −0.496493
\(876\) −21.7084 −0.733460
\(877\) −27.3664 −0.924099 −0.462049 0.886854i \(-0.652886\pi\)
−0.462049 + 0.886854i \(0.652886\pi\)
\(878\) 10.8953 0.367698
\(879\) 3.79857 0.128123
\(880\) −15.8268 −0.533521
\(881\) 3.17405 0.106936 0.0534682 0.998570i \(-0.482972\pi\)
0.0534682 + 0.998570i \(0.482972\pi\)
\(882\) −6.69371 −0.225389
\(883\) 8.67680 0.291998 0.145999 0.989285i \(-0.453360\pi\)
0.145999 + 0.989285i \(0.453360\pi\)
\(884\) 0.0877563 0.00295156
\(885\) −7.98453 −0.268397
\(886\) −34.8279 −1.17007
\(887\) −2.46214 −0.0826706 −0.0413353 0.999145i \(-0.513161\pi\)
−0.0413353 + 0.999145i \(0.513161\pi\)
\(888\) 14.4190 0.483871
\(889\) −4.07841 −0.136785
\(890\) −15.9918 −0.536047
\(891\) −50.0510 −1.67677
\(892\) 10.4249 0.349052
\(893\) 12.0721 0.403977
\(894\) 4.27368 0.142933
\(895\) −13.8213 −0.461997
\(896\) 3.04359 0.101679
\(897\) 2.40574 0.0803253
\(898\) 5.02242 0.167600
\(899\) 0 0
\(900\) 9.84172 0.328057
\(901\) −3.22379 −0.107400
\(902\) −13.3476 −0.444427
\(903\) 40.7415 1.35579
\(904\) −13.1190 −0.436333
\(905\) −2.12728 −0.0707132
\(906\) 1.37682 0.0457418
\(907\) −6.91867 −0.229731 −0.114865 0.993381i \(-0.536644\pi\)
−0.114865 + 0.993381i \(0.536644\pi\)
\(908\) 20.9815 0.696294
\(909\) 27.8151 0.922568
\(910\) 0.944580 0.0313125
\(911\) −51.8794 −1.71884 −0.859421 0.511269i \(-0.829176\pi\)
−0.859421 + 0.511269i \(0.829176\pi\)
\(912\) −4.98565 −0.165091
\(913\) −84.8605 −2.80847
\(914\) −38.2426 −1.26495
\(915\) 57.5168 1.90145
\(916\) −0.984111 −0.0325159
\(917\) 15.5446 0.513326
\(918\) −0.0849588 −0.00280406
\(919\) −27.1032 −0.894052 −0.447026 0.894521i \(-0.647517\pi\)
−0.447026 + 0.894521i \(0.647517\pi\)
\(920\) −26.4487 −0.871988
\(921\) −47.8390 −1.57635
\(922\) 25.9962 0.856139
\(923\) −0.257007 −0.00845949
\(924\) −40.7415 −1.34030
\(925\) −19.6598 −0.646410
\(926\) −17.3502 −0.570162
\(927\) −33.4983 −1.10023
\(928\) 0 0
\(929\) −40.7022 −1.33539 −0.667697 0.744433i \(-0.732720\pi\)
−0.667697 + 0.744433i \(0.732720\pi\)
\(930\) 24.2419 0.794923
\(931\) −4.62339 −0.151525
\(932\) 17.3778 0.569229
\(933\) 64.6024 2.11499
\(934\) 29.2399 0.956757
\(935\) 12.9147 0.422357
\(936\) 0.318044 0.0103956
\(937\) 2.92447 0.0955383 0.0477691 0.998858i \(-0.484789\pi\)
0.0477691 + 0.998858i \(0.484789\pi\)
\(938\) 2.91093 0.0950451
\(939\) 53.2208 1.73679
\(940\) 17.0551 0.556277
\(941\) 30.1902 0.984171 0.492085 0.870547i \(-0.336235\pi\)
0.492085 + 0.870547i \(0.336235\pi\)
\(942\) 42.3383 1.37946
\(943\) −22.3056 −0.726372
\(944\) 1.13359 0.0368952
\(945\) −0.914469 −0.0297477
\(946\) 30.0781 0.977924
\(947\) −25.3391 −0.823410 −0.411705 0.911317i \(-0.635067\pi\)
−0.411705 + 0.911317i \(0.635067\pi\)
\(948\) 10.2527 0.332993
\(949\) 0.956505 0.0310495
\(950\) 6.79774 0.220548
\(951\) −46.2000 −1.49814
\(952\) −2.48358 −0.0804933
\(953\) 33.2844 1.07819 0.539094 0.842245i \(-0.318767\pi\)
0.539094 + 0.842245i \(0.318767\pi\)
\(954\) −11.6836 −0.378269
\(955\) −0.347279 −0.0112377
\(956\) −1.15163 −0.0372465
\(957\) 0 0
\(958\) 42.9871 1.38885
\(959\) 3.63113 0.117255
\(960\) −7.04359 −0.227331
\(961\) −19.1547 −0.617894
\(962\) −0.635324 −0.0204837
\(963\) 30.9249 0.996541
\(964\) −19.7078 −0.634747
\(965\) −61.0027 −1.96375
\(966\) −68.0846 −2.19059
\(967\) 37.6906 1.21205 0.606024 0.795447i \(-0.292764\pi\)
0.606024 + 0.795447i \(0.292764\pi\)
\(968\) −19.0781 −0.613194
\(969\) 4.06831 0.130693
\(970\) −34.4037 −1.10464
\(971\) 23.2873 0.747324 0.373662 0.927565i \(-0.378102\pi\)
0.373662 + 0.927565i \(0.378102\pi\)
\(972\) −21.9625 −0.704446
\(973\) −30.6864 −0.983762
\(974\) 9.99343 0.320210
\(975\) −0.873537 −0.0279756
\(976\) −8.16584 −0.261382
\(977\) −14.6622 −0.469085 −0.234542 0.972106i \(-0.575359\pi\)
−0.234542 + 0.972106i \(0.575359\pi\)
\(978\) 28.3590 0.906820
\(979\) −30.3917 −0.971324
\(980\) −6.53179 −0.208651
\(981\) −41.1920 −1.31516
\(982\) 3.80604 0.121456
\(983\) −17.2640 −0.550636 −0.275318 0.961353i \(-0.588783\pi\)
−0.275318 + 0.961353i \(0.588783\pi\)
\(984\) −5.94024 −0.189368
\(985\) 46.2338 1.47313
\(986\) 0 0
\(987\) 43.9035 1.39746
\(988\) 0.219675 0.00698880
\(989\) 50.2646 1.59832
\(990\) 46.8053 1.48757
\(991\) 9.40478 0.298753 0.149376 0.988780i \(-0.452273\pi\)
0.149376 + 0.988780i \(0.452273\pi\)
\(992\) −3.44170 −0.109274
\(993\) −43.3983 −1.37720
\(994\) 7.27352 0.230702
\(995\) −39.9892 −1.26774
\(996\) −37.7665 −1.19668
\(997\) 46.5435 1.47405 0.737023 0.675867i \(-0.236231\pi\)
0.737023 + 0.675867i \(0.236231\pi\)
\(998\) 28.3943 0.898806
\(999\) 0.615071 0.0194600
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.q.1.6 6
29.4 even 14 58.2.d.b.45.1 12
29.12 odd 4 1682.2.b.i.1681.6 12
29.17 odd 4 1682.2.b.i.1681.7 12
29.22 even 14 58.2.d.b.49.1 yes 12
29.28 even 2 1682.2.a.t.1.1 6
87.62 odd 14 522.2.k.h.451.1 12
87.80 odd 14 522.2.k.h.397.1 12
116.51 odd 14 464.2.u.h.49.2 12
116.91 odd 14 464.2.u.h.161.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.45.1 12 29.4 even 14
58.2.d.b.49.1 yes 12 29.22 even 14
464.2.u.h.49.2 12 116.51 odd 14
464.2.u.h.161.2 12 116.91 odd 14
522.2.k.h.397.1 12 87.80 odd 14
522.2.k.h.451.1 12 87.62 odd 14
1682.2.a.q.1.6 6 1.1 even 1 trivial
1682.2.a.t.1.1 6 29.28 even 2
1682.2.b.i.1681.6 12 29.12 odd 4
1682.2.b.i.1681.7 12 29.17 odd 4