Properties

Label 1682.2.a.r.1.1
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{28})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} + 14x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.56366\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.246980 q^{3} +1.00000 q^{4} -3.43143 q^{5} +0.246980 q^{6} +1.57064 q^{7} -1.00000 q^{8} -2.93900 q^{9} +3.43143 q^{10} -4.37431 q^{11} -0.246980 q^{12} -4.54503 q^{13} -1.57064 q^{14} +0.847493 q^{15} +1.00000 q^{16} +2.21432 q^{17} +2.93900 q^{18} -0.423299 q^{19} -3.43143 q^{20} -0.387917 q^{21} +4.37431 q^{22} -6.15540 q^{23} +0.246980 q^{24} +6.77471 q^{25} +4.54503 q^{26} +1.46681 q^{27} +1.57064 q^{28} -0.847493 q^{30} +7.46854 q^{31} -1.00000 q^{32} +1.08036 q^{33} -2.21432 q^{34} -5.38955 q^{35} -2.93900 q^{36} -1.58863 q^{37} +0.423299 q^{38} +1.12253 q^{39} +3.43143 q^{40} +4.56642 q^{41} +0.387917 q^{42} +9.26439 q^{43} -4.37431 q^{44} +10.0850 q^{45} +6.15540 q^{46} -4.31029 q^{47} -0.246980 q^{48} -4.53308 q^{49} -6.77471 q^{50} -0.546892 q^{51} -4.54503 q^{52} +6.53728 q^{53} -1.46681 q^{54} +15.0101 q^{55} -1.57064 q^{56} +0.104546 q^{57} -14.5556 q^{59} +0.847493 q^{60} -6.16373 q^{61} -7.46854 q^{62} -4.61612 q^{63} +1.00000 q^{64} +15.5959 q^{65} -1.08036 q^{66} -8.23637 q^{67} +2.21432 q^{68} +1.52026 q^{69} +5.38955 q^{70} +12.6713 q^{71} +2.93900 q^{72} +8.64084 q^{73} +1.58863 q^{74} -1.67322 q^{75} -0.423299 q^{76} -6.87048 q^{77} -1.12253 q^{78} +6.44491 q^{79} -3.43143 q^{80} +8.45473 q^{81} -4.56642 q^{82} +0.615687 q^{83} -0.387917 q^{84} -7.59829 q^{85} -9.26439 q^{86} +4.37431 q^{88} -5.06665 q^{89} -10.0850 q^{90} -7.13862 q^{91} -6.15540 q^{92} -1.84458 q^{93} +4.31029 q^{94} +1.45252 q^{95} +0.246980 q^{96} +8.13902 q^{97} +4.53308 q^{98} +12.8561 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 8 q^{3} + 6 q^{4} - 6 q^{5} - 8 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9} + 6 q^{10} + 2 q^{11} + 8 q^{12} - 8 q^{13} - 2 q^{14} - 8 q^{15} + 6 q^{16} + 12 q^{17} - 2 q^{18} + 4 q^{19} - 6 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.246980 −0.142594 −0.0712969 0.997455i \(-0.522714\pi\)
−0.0712969 + 0.997455i \(0.522714\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.43143 −1.53458 −0.767291 0.641299i \(-0.778396\pi\)
−0.767291 + 0.641299i \(0.778396\pi\)
\(6\) 0.246980 0.100829
\(7\) 1.57064 0.593648 0.296824 0.954932i \(-0.404073\pi\)
0.296824 + 0.954932i \(0.404073\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.93900 −0.979667
\(10\) 3.43143 1.08511
\(11\) −4.37431 −1.31890 −0.659451 0.751747i \(-0.729211\pi\)
−0.659451 + 0.751747i \(0.729211\pi\)
\(12\) −0.246980 −0.0712969
\(13\) −4.54503 −1.26056 −0.630282 0.776366i \(-0.717061\pi\)
−0.630282 + 0.776366i \(0.717061\pi\)
\(14\) −1.57064 −0.419772
\(15\) 0.847493 0.218822
\(16\) 1.00000 0.250000
\(17\) 2.21432 0.537052 0.268526 0.963272i \(-0.413464\pi\)
0.268526 + 0.963272i \(0.413464\pi\)
\(18\) 2.93900 0.692729
\(19\) −0.423299 −0.0971114 −0.0485557 0.998820i \(-0.515462\pi\)
−0.0485557 + 0.998820i \(0.515462\pi\)
\(20\) −3.43143 −0.767291
\(21\) −0.387917 −0.0846504
\(22\) 4.37431 0.932605
\(23\) −6.15540 −1.28349 −0.641744 0.766919i \(-0.721789\pi\)
−0.641744 + 0.766919i \(0.721789\pi\)
\(24\) 0.246980 0.0504145
\(25\) 6.77471 1.35494
\(26\) 4.54503 0.891353
\(27\) 1.46681 0.282288
\(28\) 1.57064 0.296824
\(29\) 0 0
\(30\) −0.847493 −0.154730
\(31\) 7.46854 1.34139 0.670694 0.741734i \(-0.265996\pi\)
0.670694 + 0.741734i \(0.265996\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.08036 0.188067
\(34\) −2.21432 −0.379753
\(35\) −5.38955 −0.911001
\(36\) −2.93900 −0.489834
\(37\) −1.58863 −0.261169 −0.130584 0.991437i \(-0.541685\pi\)
−0.130584 + 0.991437i \(0.541685\pi\)
\(38\) 0.423299 0.0686681
\(39\) 1.12253 0.179748
\(40\) 3.43143 0.542557
\(41\) 4.56642 0.713155 0.356577 0.934266i \(-0.383944\pi\)
0.356577 + 0.934266i \(0.383944\pi\)
\(42\) 0.387917 0.0598569
\(43\) 9.26439 1.41281 0.706403 0.707810i \(-0.250317\pi\)
0.706403 + 0.707810i \(0.250317\pi\)
\(44\) −4.37431 −0.659451
\(45\) 10.0850 1.50338
\(46\) 6.15540 0.907564
\(47\) −4.31029 −0.628721 −0.314361 0.949304i \(-0.601790\pi\)
−0.314361 + 0.949304i \(0.601790\pi\)
\(48\) −0.246980 −0.0356484
\(49\) −4.53308 −0.647583
\(50\) −6.77471 −0.958089
\(51\) −0.546892 −0.0765802
\(52\) −4.54503 −0.630282
\(53\) 6.53728 0.897964 0.448982 0.893541i \(-0.351787\pi\)
0.448982 + 0.893541i \(0.351787\pi\)
\(54\) −1.46681 −0.199608
\(55\) 15.0101 2.02396
\(56\) −1.57064 −0.209886
\(57\) 0.104546 0.0138475
\(58\) 0 0
\(59\) −14.5556 −1.89498 −0.947490 0.319787i \(-0.896389\pi\)
−0.947490 + 0.319787i \(0.896389\pi\)
\(60\) 0.847493 0.109411
\(61\) −6.16373 −0.789184 −0.394592 0.918856i \(-0.629114\pi\)
−0.394592 + 0.918856i \(0.629114\pi\)
\(62\) −7.46854 −0.948505
\(63\) −4.61612 −0.581577
\(64\) 1.00000 0.125000
\(65\) 15.5959 1.93444
\(66\) −1.08036 −0.132984
\(67\) −8.23637 −1.00623 −0.503116 0.864219i \(-0.667813\pi\)
−0.503116 + 0.864219i \(0.667813\pi\)
\(68\) 2.21432 0.268526
\(69\) 1.52026 0.183017
\(70\) 5.38955 0.644175
\(71\) 12.6713 1.50381 0.751904 0.659272i \(-0.229135\pi\)
0.751904 + 0.659272i \(0.229135\pi\)
\(72\) 2.93900 0.346365
\(73\) 8.64084 1.01133 0.505667 0.862729i \(-0.331246\pi\)
0.505667 + 0.862729i \(0.331246\pi\)
\(74\) 1.58863 0.184674
\(75\) −1.67322 −0.193206
\(76\) −0.423299 −0.0485557
\(77\) −6.87048 −0.782963
\(78\) −1.12253 −0.127101
\(79\) 6.44491 0.725109 0.362554 0.931963i \(-0.381905\pi\)
0.362554 + 0.931963i \(0.381905\pi\)
\(80\) −3.43143 −0.383646
\(81\) 8.45473 0.939415
\(82\) −4.56642 −0.504277
\(83\) 0.615687 0.0675804 0.0337902 0.999429i \(-0.489242\pi\)
0.0337902 + 0.999429i \(0.489242\pi\)
\(84\) −0.387917 −0.0423252
\(85\) −7.59829 −0.824150
\(86\) −9.26439 −0.999005
\(87\) 0 0
\(88\) 4.37431 0.466303
\(89\) −5.06665 −0.537063 −0.268532 0.963271i \(-0.586538\pi\)
−0.268532 + 0.963271i \(0.586538\pi\)
\(90\) −10.0850 −1.06305
\(91\) −7.13862 −0.748330
\(92\) −6.15540 −0.641744
\(93\) −1.84458 −0.191274
\(94\) 4.31029 0.444573
\(95\) 1.45252 0.149025
\(96\) 0.246980 0.0252073
\(97\) 8.13902 0.826392 0.413196 0.910642i \(-0.364412\pi\)
0.413196 + 0.910642i \(0.364412\pi\)
\(98\) 4.53308 0.457910
\(99\) 12.8561 1.29209
\(100\) 6.77471 0.677471
\(101\) 16.1534 1.60732 0.803662 0.595086i \(-0.202882\pi\)
0.803662 + 0.595086i \(0.202882\pi\)
\(102\) 0.546892 0.0541504
\(103\) −0.486918 −0.0479774 −0.0239887 0.999712i \(-0.507637\pi\)
−0.0239887 + 0.999712i \(0.507637\pi\)
\(104\) 4.54503 0.445677
\(105\) 1.33111 0.129903
\(106\) −6.53728 −0.634957
\(107\) −5.41656 −0.523638 −0.261819 0.965117i \(-0.584322\pi\)
−0.261819 + 0.965117i \(0.584322\pi\)
\(108\) 1.46681 0.141144
\(109\) 6.88139 0.659117 0.329559 0.944135i \(-0.393100\pi\)
0.329559 + 0.944135i \(0.393100\pi\)
\(110\) −15.0101 −1.43116
\(111\) 0.392358 0.0372410
\(112\) 1.57064 0.148412
\(113\) 5.15909 0.485326 0.242663 0.970111i \(-0.421979\pi\)
0.242663 + 0.970111i \(0.421979\pi\)
\(114\) −0.104546 −0.00979164
\(115\) 21.1218 1.96962
\(116\) 0 0
\(117\) 13.3578 1.23493
\(118\) 14.5556 1.33995
\(119\) 3.47791 0.318819
\(120\) −0.847493 −0.0773652
\(121\) 8.13455 0.739504
\(122\) 6.16373 0.558037
\(123\) −1.12781 −0.101691
\(124\) 7.46854 0.670694
\(125\) −6.08981 −0.544689
\(126\) 4.61612 0.411237
\(127\) −14.6339 −1.29855 −0.649276 0.760553i \(-0.724928\pi\)
−0.649276 + 0.760553i \(0.724928\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.28812 −0.201457
\(130\) −15.5959 −1.36785
\(131\) −12.7288 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(132\) 1.08036 0.0940336
\(133\) −0.664851 −0.0576499
\(134\) 8.23637 0.711514
\(135\) −5.03326 −0.433194
\(136\) −2.21432 −0.189876
\(137\) −7.19607 −0.614802 −0.307401 0.951580i \(-0.599459\pi\)
−0.307401 + 0.951580i \(0.599459\pi\)
\(138\) −1.52026 −0.129413
\(139\) 5.60448 0.475366 0.237683 0.971343i \(-0.423612\pi\)
0.237683 + 0.971343i \(0.423612\pi\)
\(140\) −5.38955 −0.455501
\(141\) 1.06455 0.0896517
\(142\) −12.6713 −1.06335
\(143\) 19.8813 1.66256
\(144\) −2.93900 −0.244917
\(145\) 0 0
\(146\) −8.64084 −0.715121
\(147\) 1.11958 0.0923412
\(148\) −1.58863 −0.130584
\(149\) 15.4995 1.26977 0.634884 0.772607i \(-0.281048\pi\)
0.634884 + 0.772607i \(0.281048\pi\)
\(150\) 1.67322 0.136618
\(151\) 2.02651 0.164915 0.0824575 0.996595i \(-0.473723\pi\)
0.0824575 + 0.996595i \(0.473723\pi\)
\(152\) 0.423299 0.0343341
\(153\) −6.50789 −0.526132
\(154\) 6.87048 0.553639
\(155\) −25.6278 −2.05847
\(156\) 1.12253 0.0898742
\(157\) −0.631946 −0.0504348 −0.0252174 0.999682i \(-0.508028\pi\)
−0.0252174 + 0.999682i \(0.508028\pi\)
\(158\) −6.44491 −0.512729
\(159\) −1.61457 −0.128044
\(160\) 3.43143 0.271278
\(161\) −9.66793 −0.761940
\(162\) −8.45473 −0.664266
\(163\) 24.3103 1.90413 0.952065 0.305897i \(-0.0989563\pi\)
0.952065 + 0.305897i \(0.0989563\pi\)
\(164\) 4.56642 0.356577
\(165\) −3.70719 −0.288605
\(166\) −0.615687 −0.0477866
\(167\) 14.8620 1.15006 0.575029 0.818133i \(-0.304991\pi\)
0.575029 + 0.818133i \(0.304991\pi\)
\(168\) 0.387917 0.0299284
\(169\) 7.65727 0.589020
\(170\) 7.59829 0.582762
\(171\) 1.24408 0.0951368
\(172\) 9.26439 0.706403
\(173\) −0.183131 −0.0139232 −0.00696160 0.999976i \(-0.502216\pi\)
−0.00696160 + 0.999976i \(0.502216\pi\)
\(174\) 0 0
\(175\) 10.6407 0.804359
\(176\) −4.37431 −0.329726
\(177\) 3.59494 0.270212
\(178\) 5.06665 0.379761
\(179\) −7.94570 −0.593890 −0.296945 0.954895i \(-0.595968\pi\)
−0.296945 + 0.954895i \(0.595968\pi\)
\(180\) 10.0850 0.751690
\(181\) 1.79743 0.133602 0.0668011 0.997766i \(-0.478721\pi\)
0.0668011 + 0.997766i \(0.478721\pi\)
\(182\) 7.13862 0.529150
\(183\) 1.52231 0.112533
\(184\) 6.15540 0.453782
\(185\) 5.45126 0.400785
\(186\) 1.84458 0.135251
\(187\) −9.68612 −0.708319
\(188\) −4.31029 −0.314361
\(189\) 2.30384 0.167580
\(190\) −1.45252 −0.105377
\(191\) −20.0665 −1.45196 −0.725981 0.687715i \(-0.758614\pi\)
−0.725981 + 0.687715i \(0.758614\pi\)
\(192\) −0.246980 −0.0178242
\(193\) 7.08658 0.510103 0.255051 0.966927i \(-0.417908\pi\)
0.255051 + 0.966927i \(0.417908\pi\)
\(194\) −8.13902 −0.584348
\(195\) −3.85188 −0.275839
\(196\) −4.53308 −0.323791
\(197\) 4.62674 0.329641 0.164821 0.986324i \(-0.447295\pi\)
0.164821 + 0.986324i \(0.447295\pi\)
\(198\) −12.8561 −0.913642
\(199\) 3.58103 0.253852 0.126926 0.991912i \(-0.459489\pi\)
0.126926 + 0.991912i \(0.459489\pi\)
\(200\) −6.77471 −0.479045
\(201\) 2.03421 0.143482
\(202\) −16.1534 −1.13655
\(203\) 0 0
\(204\) −0.546892 −0.0382901
\(205\) −15.6694 −1.09439
\(206\) 0.486918 0.0339252
\(207\) 18.0907 1.25739
\(208\) −4.54503 −0.315141
\(209\) 1.85164 0.128080
\(210\) −1.33111 −0.0918553
\(211\) 1.81599 0.125018 0.0625091 0.998044i \(-0.480090\pi\)
0.0625091 + 0.998044i \(0.480090\pi\)
\(212\) 6.53728 0.448982
\(213\) −3.12956 −0.214434
\(214\) 5.41656 0.370268
\(215\) −31.7901 −2.16807
\(216\) −1.46681 −0.0998039
\(217\) 11.7304 0.796312
\(218\) −6.88139 −0.466066
\(219\) −2.13411 −0.144210
\(220\) 15.0101 1.01198
\(221\) −10.0641 −0.676988
\(222\) −0.392358 −0.0263334
\(223\) 20.9351 1.40192 0.700958 0.713203i \(-0.252756\pi\)
0.700958 + 0.713203i \(0.252756\pi\)
\(224\) −1.57064 −0.104943
\(225\) −19.9109 −1.32739
\(226\) −5.15909 −0.343177
\(227\) 2.77986 0.184506 0.0922530 0.995736i \(-0.470593\pi\)
0.0922530 + 0.995736i \(0.470593\pi\)
\(228\) 0.104546 0.00692374
\(229\) −24.0260 −1.58768 −0.793842 0.608124i \(-0.791922\pi\)
−0.793842 + 0.608124i \(0.791922\pi\)
\(230\) −21.1218 −1.39273
\(231\) 1.69687 0.111646
\(232\) 0 0
\(233\) −3.18472 −0.208638 −0.104319 0.994544i \(-0.533266\pi\)
−0.104319 + 0.994544i \(0.533266\pi\)
\(234\) −13.3578 −0.873229
\(235\) 14.7905 0.964824
\(236\) −14.5556 −0.947490
\(237\) −1.59176 −0.103396
\(238\) −3.47791 −0.225439
\(239\) 12.8020 0.828094 0.414047 0.910255i \(-0.364115\pi\)
0.414047 + 0.910255i \(0.364115\pi\)
\(240\) 0.847493 0.0547055
\(241\) 0.472390 0.0304293 0.0152146 0.999884i \(-0.495157\pi\)
0.0152146 + 0.999884i \(0.495157\pi\)
\(242\) −8.13455 −0.522909
\(243\) −6.48858 −0.416243
\(244\) −6.16373 −0.394592
\(245\) 15.5549 0.993769
\(246\) 1.12781 0.0719067
\(247\) 1.92390 0.122415
\(248\) −7.46854 −0.474253
\(249\) −0.152062 −0.00963655
\(250\) 6.08981 0.385153
\(251\) 0.992245 0.0626300 0.0313150 0.999510i \(-0.490031\pi\)
0.0313150 + 0.999510i \(0.490031\pi\)
\(252\) −4.61612 −0.290788
\(253\) 26.9256 1.69280
\(254\) 14.6339 0.918215
\(255\) 1.87662 0.117519
\(256\) 1.00000 0.0625000
\(257\) −21.2077 −1.32290 −0.661450 0.749989i \(-0.730059\pi\)
−0.661450 + 0.749989i \(0.730059\pi\)
\(258\) 2.28812 0.142452
\(259\) −2.49517 −0.155042
\(260\) 15.5959 0.967219
\(261\) 0 0
\(262\) 12.7288 0.786386
\(263\) 4.59716 0.283473 0.141737 0.989904i \(-0.454731\pi\)
0.141737 + 0.989904i \(0.454731\pi\)
\(264\) −1.08036 −0.0664918
\(265\) −22.4322 −1.37800
\(266\) 0.664851 0.0407647
\(267\) 1.25136 0.0765819
\(268\) −8.23637 −0.503116
\(269\) 2.23745 0.136420 0.0682098 0.997671i \(-0.478271\pi\)
0.0682098 + 0.997671i \(0.478271\pi\)
\(270\) 5.03326 0.306315
\(271\) 5.66146 0.343909 0.171955 0.985105i \(-0.444992\pi\)
0.171955 + 0.985105i \(0.444992\pi\)
\(272\) 2.21432 0.134263
\(273\) 1.76309 0.106707
\(274\) 7.19607 0.434730
\(275\) −29.6347 −1.78704
\(276\) 1.52026 0.0915087
\(277\) −20.7393 −1.24611 −0.623053 0.782180i \(-0.714108\pi\)
−0.623053 + 0.782180i \(0.714108\pi\)
\(278\) −5.60448 −0.336135
\(279\) −21.9500 −1.31411
\(280\) 5.38955 0.322087
\(281\) 18.6958 1.11530 0.557648 0.830077i \(-0.311704\pi\)
0.557648 + 0.830077i \(0.311704\pi\)
\(282\) −1.06455 −0.0633933
\(283\) −8.59049 −0.510651 −0.255326 0.966855i \(-0.582183\pi\)
−0.255326 + 0.966855i \(0.582183\pi\)
\(284\) 12.6713 0.751904
\(285\) −0.358743 −0.0212501
\(286\) −19.8813 −1.17561
\(287\) 7.17222 0.423363
\(288\) 2.93900 0.173182
\(289\) −12.0968 −0.711575
\(290\) 0 0
\(291\) −2.01017 −0.117838
\(292\) 8.64084 0.505667
\(293\) 7.69030 0.449272 0.224636 0.974443i \(-0.427881\pi\)
0.224636 + 0.974443i \(0.427881\pi\)
\(294\) −1.11958 −0.0652951
\(295\) 49.9466 2.90800
\(296\) 1.58863 0.0923370
\(297\) −6.41628 −0.372311
\(298\) −15.4995 −0.897862
\(299\) 27.9764 1.61792
\(300\) −1.67322 −0.0966032
\(301\) 14.5511 0.838709
\(302\) −2.02651 −0.116612
\(303\) −3.98956 −0.229194
\(304\) −0.423299 −0.0242778
\(305\) 21.1504 1.21107
\(306\) 6.50789 0.372031
\(307\) 14.7061 0.839322 0.419661 0.907681i \(-0.362149\pi\)
0.419661 + 0.907681i \(0.362149\pi\)
\(308\) −6.87048 −0.391482
\(309\) 0.120259 0.00684128
\(310\) 25.6278 1.45556
\(311\) 16.9331 0.960186 0.480093 0.877218i \(-0.340603\pi\)
0.480093 + 0.877218i \(0.340603\pi\)
\(312\) −1.12253 −0.0635507
\(313\) 16.1943 0.915356 0.457678 0.889118i \(-0.348681\pi\)
0.457678 + 0.889118i \(0.348681\pi\)
\(314\) 0.631946 0.0356628
\(315\) 15.8399 0.892478
\(316\) 6.44491 0.362554
\(317\) −10.7887 −0.605956 −0.302978 0.952997i \(-0.597981\pi\)
−0.302978 + 0.952997i \(0.597981\pi\)
\(318\) 1.61457 0.0905408
\(319\) 0 0
\(320\) −3.43143 −0.191823
\(321\) 1.33778 0.0746676
\(322\) 9.66793 0.538773
\(323\) −0.937319 −0.0521538
\(324\) 8.45473 0.469707
\(325\) −30.7913 −1.70799
\(326\) −24.3103 −1.34642
\(327\) −1.69956 −0.0939860
\(328\) −4.56642 −0.252138
\(329\) −6.76994 −0.373239
\(330\) 3.70719 0.204074
\(331\) 26.4094 1.45159 0.725796 0.687910i \(-0.241471\pi\)
0.725796 + 0.687910i \(0.241471\pi\)
\(332\) 0.615687 0.0337902
\(333\) 4.66897 0.255858
\(334\) −14.8620 −0.813213
\(335\) 28.2625 1.54415
\(336\) −0.387917 −0.0211626
\(337\) −20.6226 −1.12338 −0.561691 0.827347i \(-0.689849\pi\)
−0.561691 + 0.827347i \(0.689849\pi\)
\(338\) −7.65727 −0.416500
\(339\) −1.27419 −0.0692045
\(340\) −7.59829 −0.412075
\(341\) −32.6697 −1.76916
\(342\) −1.24408 −0.0672719
\(343\) −18.1144 −0.978083
\(344\) −9.26439 −0.499502
\(345\) −5.21666 −0.280855
\(346\) 0.183131 0.00984519
\(347\) 5.27973 0.283431 0.141715 0.989907i \(-0.454738\pi\)
0.141715 + 0.989907i \(0.454738\pi\)
\(348\) 0 0
\(349\) −20.1993 −1.08124 −0.540622 0.841266i \(-0.681811\pi\)
−0.540622 + 0.841266i \(0.681811\pi\)
\(350\) −10.6407 −0.568767
\(351\) −6.66670 −0.355842
\(352\) 4.37431 0.233151
\(353\) −12.7715 −0.679757 −0.339878 0.940469i \(-0.610386\pi\)
−0.339878 + 0.940469i \(0.610386\pi\)
\(354\) −3.59494 −0.191069
\(355\) −43.4808 −2.30772
\(356\) −5.06665 −0.268532
\(357\) −0.858973 −0.0454617
\(358\) 7.94570 0.419943
\(359\) −2.41249 −0.127327 −0.0636633 0.997971i \(-0.520278\pi\)
−0.0636633 + 0.997971i \(0.520278\pi\)
\(360\) −10.0850 −0.531525
\(361\) −18.8208 −0.990569
\(362\) −1.79743 −0.0944710
\(363\) −2.00907 −0.105449
\(364\) −7.13862 −0.374165
\(365\) −29.6505 −1.55198
\(366\) −1.52231 −0.0795726
\(367\) 26.3208 1.37393 0.686967 0.726688i \(-0.258942\pi\)
0.686967 + 0.726688i \(0.258942\pi\)
\(368\) −6.15540 −0.320872
\(369\) −13.4207 −0.698654
\(370\) −5.45126 −0.283398
\(371\) 10.2677 0.533074
\(372\) −1.84458 −0.0956368
\(373\) −23.8819 −1.23656 −0.618278 0.785960i \(-0.712169\pi\)
−0.618278 + 0.785960i \(0.712169\pi\)
\(374\) 9.68612 0.500857
\(375\) 1.50406 0.0776693
\(376\) 4.31029 0.222286
\(377\) 0 0
\(378\) −2.30384 −0.118497
\(379\) 5.55826 0.285509 0.142754 0.989758i \(-0.454404\pi\)
0.142754 + 0.989758i \(0.454404\pi\)
\(380\) 1.45252 0.0745127
\(381\) 3.61429 0.185165
\(382\) 20.0665 1.02669
\(383\) 23.2565 1.18835 0.594176 0.804335i \(-0.297478\pi\)
0.594176 + 0.804335i \(0.297478\pi\)
\(384\) 0.246980 0.0126036
\(385\) 23.5756 1.20152
\(386\) −7.08658 −0.360697
\(387\) −27.2281 −1.38408
\(388\) 8.13902 0.413196
\(389\) −23.8652 −1.21001 −0.605006 0.796221i \(-0.706829\pi\)
−0.605006 + 0.796221i \(0.706829\pi\)
\(390\) 3.85188 0.195048
\(391\) −13.6300 −0.689300
\(392\) 4.53308 0.228955
\(393\) 3.14374 0.158581
\(394\) −4.62674 −0.233092
\(395\) −22.1152 −1.11274
\(396\) 12.8561 0.646043
\(397\) −6.97686 −0.350159 −0.175079 0.984554i \(-0.556018\pi\)
−0.175079 + 0.984554i \(0.556018\pi\)
\(398\) −3.58103 −0.179501
\(399\) 0.164205 0.00822052
\(400\) 6.77471 0.338736
\(401\) 8.70652 0.434783 0.217391 0.976085i \(-0.430245\pi\)
0.217391 + 0.976085i \(0.430245\pi\)
\(402\) −2.03421 −0.101457
\(403\) −33.9447 −1.69091
\(404\) 16.1534 0.803662
\(405\) −29.0118 −1.44161
\(406\) 0 0
\(407\) 6.94914 0.344456
\(408\) 0.546892 0.0270752
\(409\) 6.65711 0.329173 0.164587 0.986363i \(-0.447371\pi\)
0.164587 + 0.986363i \(0.447371\pi\)
\(410\) 15.6694 0.773854
\(411\) 1.77728 0.0876669
\(412\) −0.486918 −0.0239887
\(413\) −22.8617 −1.12495
\(414\) −18.0907 −0.889110
\(415\) −2.11269 −0.103708
\(416\) 4.54503 0.222838
\(417\) −1.38419 −0.0677842
\(418\) −1.85164 −0.0905666
\(419\) −23.1279 −1.12987 −0.564935 0.825135i \(-0.691099\pi\)
−0.564935 + 0.825135i \(0.691099\pi\)
\(420\) 1.33111 0.0649515
\(421\) −1.62673 −0.0792820 −0.0396410 0.999214i \(-0.512621\pi\)
−0.0396410 + 0.999214i \(0.512621\pi\)
\(422\) −1.81599 −0.0884012
\(423\) 12.6680 0.615937
\(424\) −6.53728 −0.317478
\(425\) 15.0014 0.727674
\(426\) 3.12956 0.151628
\(427\) −9.68102 −0.468497
\(428\) −5.41656 −0.261819
\(429\) −4.91028 −0.237071
\(430\) 31.7901 1.53306
\(431\) −0.392815 −0.0189212 −0.00946061 0.999955i \(-0.503011\pi\)
−0.00946061 + 0.999955i \(0.503011\pi\)
\(432\) 1.46681 0.0705720
\(433\) −36.9800 −1.77714 −0.888572 0.458738i \(-0.848302\pi\)
−0.888572 + 0.458738i \(0.848302\pi\)
\(434\) −11.7304 −0.563078
\(435\) 0 0
\(436\) 6.88139 0.329559
\(437\) 2.60557 0.124641
\(438\) 2.13411 0.101972
\(439\) −13.6888 −0.653332 −0.326666 0.945140i \(-0.605925\pi\)
−0.326666 + 0.945140i \(0.605925\pi\)
\(440\) −15.0101 −0.715580
\(441\) 13.3227 0.634415
\(442\) 10.0641 0.478703
\(443\) −4.37363 −0.207797 −0.103899 0.994588i \(-0.533132\pi\)
−0.103899 + 0.994588i \(0.533132\pi\)
\(444\) 0.392358 0.0186205
\(445\) 17.3858 0.824168
\(446\) −20.9351 −0.991304
\(447\) −3.82806 −0.181061
\(448\) 1.57064 0.0742059
\(449\) −19.7322 −0.931218 −0.465609 0.884990i \(-0.654165\pi\)
−0.465609 + 0.884990i \(0.654165\pi\)
\(450\) 19.9109 0.938609
\(451\) −19.9749 −0.940582
\(452\) 5.15909 0.242663
\(453\) −0.500506 −0.0235158
\(454\) −2.77986 −0.130466
\(455\) 24.4957 1.14837
\(456\) −0.104546 −0.00489582
\(457\) 36.3594 1.70082 0.850412 0.526118i \(-0.176353\pi\)
0.850412 + 0.526118i \(0.176353\pi\)
\(458\) 24.0260 1.12266
\(459\) 3.24799 0.151603
\(460\) 21.1218 0.984810
\(461\) −8.77942 −0.408898 −0.204449 0.978877i \(-0.565540\pi\)
−0.204449 + 0.978877i \(0.565540\pi\)
\(462\) −1.69687 −0.0789454
\(463\) −9.83531 −0.457086 −0.228543 0.973534i \(-0.573396\pi\)
−0.228543 + 0.973534i \(0.573396\pi\)
\(464\) 0 0
\(465\) 6.32953 0.293525
\(466\) 3.18472 0.147529
\(467\) 4.43077 0.205032 0.102516 0.994731i \(-0.467311\pi\)
0.102516 + 0.994731i \(0.467311\pi\)
\(468\) 13.3578 0.617466
\(469\) −12.9364 −0.597347
\(470\) −14.7905 −0.682234
\(471\) 0.156078 0.00719168
\(472\) 14.5556 0.669976
\(473\) −40.5253 −1.86335
\(474\) 1.59176 0.0731120
\(475\) −2.86773 −0.131580
\(476\) 3.47791 0.159410
\(477\) −19.2131 −0.879706
\(478\) −12.8020 −0.585551
\(479\) −21.1257 −0.965259 −0.482629 0.875825i \(-0.660318\pi\)
−0.482629 + 0.875825i \(0.660318\pi\)
\(480\) −0.847493 −0.0386826
\(481\) 7.22035 0.329220
\(482\) −0.472390 −0.0215168
\(483\) 2.38778 0.108648
\(484\) 8.13455 0.369752
\(485\) −27.9285 −1.26817
\(486\) 6.48858 0.294328
\(487\) −20.8892 −0.946578 −0.473289 0.880907i \(-0.656933\pi\)
−0.473289 + 0.880907i \(0.656933\pi\)
\(488\) 6.16373 0.279019
\(489\) −6.00415 −0.271517
\(490\) −15.5549 −0.702701
\(491\) 9.03901 0.407925 0.203962 0.978979i \(-0.434618\pi\)
0.203962 + 0.978979i \(0.434618\pi\)
\(492\) −1.12781 −0.0508457
\(493\) 0 0
\(494\) −1.92390 −0.0865605
\(495\) −44.1148 −1.98281
\(496\) 7.46854 0.335347
\(497\) 19.9021 0.892732
\(498\) 0.152062 0.00681407
\(499\) −41.3877 −1.85277 −0.926385 0.376579i \(-0.877100\pi\)
−0.926385 + 0.376579i \(0.877100\pi\)
\(500\) −6.08981 −0.272345
\(501\) −3.67061 −0.163991
\(502\) −0.992245 −0.0442861
\(503\) 40.0349 1.78507 0.892535 0.450979i \(-0.148925\pi\)
0.892535 + 0.450979i \(0.148925\pi\)
\(504\) 4.61612 0.205618
\(505\) −55.4293 −2.46657
\(506\) −26.9256 −1.19699
\(507\) −1.89119 −0.0839906
\(508\) −14.6339 −0.649276
\(509\) −21.0580 −0.933377 −0.466689 0.884422i \(-0.654553\pi\)
−0.466689 + 0.884422i \(0.654553\pi\)
\(510\) −1.87662 −0.0830982
\(511\) 13.5717 0.600376
\(512\) −1.00000 −0.0441942
\(513\) −0.620900 −0.0274134
\(514\) 21.2077 0.935432
\(515\) 1.67082 0.0736253
\(516\) −2.28812 −0.100729
\(517\) 18.8545 0.829222
\(518\) 2.49517 0.109631
\(519\) 0.0452297 0.00198536
\(520\) −15.5959 −0.683927
\(521\) 12.1752 0.533406 0.266703 0.963779i \(-0.414066\pi\)
0.266703 + 0.963779i \(0.414066\pi\)
\(522\) 0 0
\(523\) 24.2771 1.06156 0.530781 0.847509i \(-0.321899\pi\)
0.530781 + 0.847509i \(0.321899\pi\)
\(524\) −12.7288 −0.556059
\(525\) −2.62803 −0.114696
\(526\) −4.59716 −0.200446
\(527\) 16.5377 0.720395
\(528\) 1.08036 0.0470168
\(529\) 14.8889 0.647344
\(530\) 22.4322 0.974393
\(531\) 42.7790 1.85645
\(532\) −0.664851 −0.0288250
\(533\) −20.7545 −0.898977
\(534\) −1.25136 −0.0541516
\(535\) 18.5865 0.803566
\(536\) 8.23637 0.355757
\(537\) 1.96243 0.0846850
\(538\) −2.23745 −0.0964632
\(539\) 19.8291 0.854098
\(540\) −5.03326 −0.216597
\(541\) −12.3846 −0.532458 −0.266229 0.963910i \(-0.585778\pi\)
−0.266229 + 0.963910i \(0.585778\pi\)
\(542\) −5.66146 −0.243180
\(543\) −0.443929 −0.0190508
\(544\) −2.21432 −0.0949382
\(545\) −23.6130 −1.01147
\(546\) −1.76309 −0.0754534
\(547\) 32.2704 1.37978 0.689891 0.723914i \(-0.257659\pi\)
0.689891 + 0.723914i \(0.257659\pi\)
\(548\) −7.19607 −0.307401
\(549\) 18.1152 0.773138
\(550\) 29.6347 1.26363
\(551\) 0 0
\(552\) −1.52026 −0.0647064
\(553\) 10.1226 0.430459
\(554\) 20.7393 0.881130
\(555\) −1.34635 −0.0571494
\(556\) 5.60448 0.237683
\(557\) 39.2120 1.66147 0.830733 0.556671i \(-0.187922\pi\)
0.830733 + 0.556671i \(0.187922\pi\)
\(558\) 21.9500 0.929219
\(559\) −42.1069 −1.78093
\(560\) −5.38955 −0.227750
\(561\) 2.39227 0.101002
\(562\) −18.6958 −0.788634
\(563\) 42.8169 1.80452 0.902259 0.431195i \(-0.141908\pi\)
0.902259 + 0.431195i \(0.141908\pi\)
\(564\) 1.06455 0.0448258
\(565\) −17.7031 −0.744773
\(566\) 8.59049 0.361085
\(567\) 13.2794 0.557681
\(568\) −12.6713 −0.531677
\(569\) 36.8744 1.54586 0.772929 0.634493i \(-0.218791\pi\)
0.772929 + 0.634493i \(0.218791\pi\)
\(570\) 0.358743 0.0150261
\(571\) −18.8019 −0.786834 −0.393417 0.919360i \(-0.628707\pi\)
−0.393417 + 0.919360i \(0.628707\pi\)
\(572\) 19.8813 0.831280
\(573\) 4.95602 0.207041
\(574\) −7.17222 −0.299363
\(575\) −41.7011 −1.73905
\(576\) −2.93900 −0.122458
\(577\) −6.13904 −0.255572 −0.127786 0.991802i \(-0.540787\pi\)
−0.127786 + 0.991802i \(0.540787\pi\)
\(578\) 12.0968 0.503160
\(579\) −1.75024 −0.0727375
\(580\) 0 0
\(581\) 0.967025 0.0401190
\(582\) 2.01017 0.0833243
\(583\) −28.5961 −1.18433
\(584\) −8.64084 −0.357561
\(585\) −45.8365 −1.89511
\(586\) −7.69030 −0.317683
\(587\) −29.5333 −1.21897 −0.609484 0.792798i \(-0.708623\pi\)
−0.609484 + 0.792798i \(0.708623\pi\)
\(588\) 1.11958 0.0461706
\(589\) −3.16142 −0.130264
\(590\) −49.9466 −2.05627
\(591\) −1.14271 −0.0470048
\(592\) −1.58863 −0.0652921
\(593\) 18.0707 0.742074 0.371037 0.928618i \(-0.379002\pi\)
0.371037 + 0.928618i \(0.379002\pi\)
\(594\) 6.41628 0.263263
\(595\) −11.9342 −0.489255
\(596\) 15.4995 0.634884
\(597\) −0.884441 −0.0361978
\(598\) −27.9764 −1.14404
\(599\) 10.6956 0.437010 0.218505 0.975836i \(-0.429882\pi\)
0.218505 + 0.975836i \(0.429882\pi\)
\(600\) 1.67322 0.0683088
\(601\) 4.26071 0.173798 0.0868989 0.996217i \(-0.472304\pi\)
0.0868989 + 0.996217i \(0.472304\pi\)
\(602\) −14.5511 −0.593057
\(603\) 24.2067 0.985772
\(604\) 2.02651 0.0824575
\(605\) −27.9131 −1.13483
\(606\) 3.98956 0.162065
\(607\) 10.6644 0.432856 0.216428 0.976299i \(-0.430559\pi\)
0.216428 + 0.976299i \(0.430559\pi\)
\(608\) 0.423299 0.0171670
\(609\) 0 0
\(610\) −21.1504 −0.856354
\(611\) 19.5904 0.792543
\(612\) −6.50789 −0.263066
\(613\) −12.9410 −0.522681 −0.261340 0.965247i \(-0.584165\pi\)
−0.261340 + 0.965247i \(0.584165\pi\)
\(614\) −14.7061 −0.593490
\(615\) 3.87001 0.156054
\(616\) 6.87048 0.276819
\(617\) −13.1331 −0.528719 −0.264360 0.964424i \(-0.585161\pi\)
−0.264360 + 0.964424i \(0.585161\pi\)
\(618\) −0.120259 −0.00483752
\(619\) −22.1454 −0.890101 −0.445050 0.895506i \(-0.646814\pi\)
−0.445050 + 0.895506i \(0.646814\pi\)
\(620\) −25.6278 −1.02924
\(621\) −9.02881 −0.362314
\(622\) −16.9331 −0.678954
\(623\) −7.95789 −0.318826
\(624\) 1.12253 0.0449371
\(625\) −12.9768 −0.519073
\(626\) −16.1943 −0.647254
\(627\) −0.457317 −0.0182635
\(628\) −0.631946 −0.0252174
\(629\) −3.51773 −0.140261
\(630\) −15.8399 −0.631077
\(631\) 9.77633 0.389190 0.194595 0.980884i \(-0.437661\pi\)
0.194595 + 0.980884i \(0.437661\pi\)
\(632\) −6.44491 −0.256365
\(633\) −0.448513 −0.0178268
\(634\) 10.7887 0.428476
\(635\) 50.2154 1.99274
\(636\) −1.61457 −0.0640220
\(637\) 20.6030 0.816319
\(638\) 0 0
\(639\) −37.2410 −1.47323
\(640\) 3.43143 0.135639
\(641\) 8.50080 0.335762 0.167881 0.985807i \(-0.446308\pi\)
0.167881 + 0.985807i \(0.446308\pi\)
\(642\) −1.33778 −0.0527979
\(643\) 40.2359 1.58675 0.793374 0.608734i \(-0.208322\pi\)
0.793374 + 0.608734i \(0.208322\pi\)
\(644\) −9.66793 −0.380970
\(645\) 7.85151 0.309153
\(646\) 0.937319 0.0368783
\(647\) 21.2127 0.833956 0.416978 0.908916i \(-0.363089\pi\)
0.416978 + 0.908916i \(0.363089\pi\)
\(648\) −8.45473 −0.332133
\(649\) 63.6707 2.49929
\(650\) 30.7913 1.20773
\(651\) −2.89717 −0.113549
\(652\) 24.3103 0.952065
\(653\) 27.2722 1.06724 0.533622 0.845723i \(-0.320830\pi\)
0.533622 + 0.845723i \(0.320830\pi\)
\(654\) 1.69956 0.0664582
\(655\) 43.6779 1.70664
\(656\) 4.56642 0.178289
\(657\) −25.3955 −0.990771
\(658\) 6.76994 0.263920
\(659\) −18.3346 −0.714216 −0.357108 0.934063i \(-0.616237\pi\)
−0.357108 + 0.934063i \(0.616237\pi\)
\(660\) −3.70719 −0.144302
\(661\) −17.0116 −0.661673 −0.330837 0.943688i \(-0.607331\pi\)
−0.330837 + 0.943688i \(0.607331\pi\)
\(662\) −26.4094 −1.02643
\(663\) 2.48564 0.0965342
\(664\) −0.615687 −0.0238933
\(665\) 2.28139 0.0884686
\(666\) −4.66897 −0.180919
\(667\) 0 0
\(668\) 14.8620 0.575029
\(669\) −5.17053 −0.199904
\(670\) −28.2625 −1.09188
\(671\) 26.9620 1.04086
\(672\) 0.387917 0.0149642
\(673\) 4.90116 0.188926 0.0944629 0.995528i \(-0.469887\pi\)
0.0944629 + 0.995528i \(0.469887\pi\)
\(674\) 20.6226 0.794351
\(675\) 9.93723 0.382484
\(676\) 7.65727 0.294510
\(677\) 37.4400 1.43894 0.719468 0.694525i \(-0.244386\pi\)
0.719468 + 0.694525i \(0.244386\pi\)
\(678\) 1.27419 0.0489350
\(679\) 12.7835 0.490586
\(680\) 7.59829 0.291381
\(681\) −0.686570 −0.0263094
\(682\) 32.6697 1.25099
\(683\) 41.7713 1.59833 0.799167 0.601109i \(-0.205274\pi\)
0.799167 + 0.601109i \(0.205274\pi\)
\(684\) 1.24408 0.0475684
\(685\) 24.6928 0.943464
\(686\) 18.1144 0.691609
\(687\) 5.93393 0.226394
\(688\) 9.26439 0.353202
\(689\) −29.7121 −1.13194
\(690\) 5.21666 0.198595
\(691\) −1.25355 −0.0476872 −0.0238436 0.999716i \(-0.507590\pi\)
−0.0238436 + 0.999716i \(0.507590\pi\)
\(692\) −0.183131 −0.00696160
\(693\) 20.1923 0.767043
\(694\) −5.27973 −0.200416
\(695\) −19.2314 −0.729488
\(696\) 0 0
\(697\) 10.1115 0.383001
\(698\) 20.1993 0.764555
\(699\) 0.786561 0.0297505
\(700\) 10.6407 0.402179
\(701\) −36.1405 −1.36501 −0.682503 0.730882i \(-0.739109\pi\)
−0.682503 + 0.730882i \(0.739109\pi\)
\(702\) 6.66670 0.251618
\(703\) 0.672463 0.0253624
\(704\) −4.37431 −0.164863
\(705\) −3.65295 −0.137578
\(706\) 12.7715 0.480661
\(707\) 25.3712 0.954184
\(708\) 3.59494 0.135106
\(709\) 27.5004 1.03280 0.516400 0.856347i \(-0.327272\pi\)
0.516400 + 0.856347i \(0.327272\pi\)
\(710\) 43.4808 1.63180
\(711\) −18.9416 −0.710365
\(712\) 5.06665 0.189881
\(713\) −45.9718 −1.72166
\(714\) 0.858973 0.0321462
\(715\) −68.2214 −2.55134
\(716\) −7.94570 −0.296945
\(717\) −3.16184 −0.118081
\(718\) 2.41249 0.0900335
\(719\) −3.76398 −0.140373 −0.0701865 0.997534i \(-0.522359\pi\)
−0.0701865 + 0.997534i \(0.522359\pi\)
\(720\) 10.0850 0.375845
\(721\) −0.764774 −0.0284817
\(722\) 18.8208 0.700438
\(723\) −0.116671 −0.00433903
\(724\) 1.79743 0.0668011
\(725\) 0 0
\(726\) 2.00907 0.0745635
\(727\) 39.7913 1.47578 0.737890 0.674921i \(-0.235823\pi\)
0.737890 + 0.674921i \(0.235823\pi\)
\(728\) 7.13862 0.264575
\(729\) −23.7616 −0.880061
\(730\) 29.6505 1.09741
\(731\) 20.5143 0.758750
\(732\) 1.52231 0.0562664
\(733\) 45.6514 1.68617 0.843087 0.537777i \(-0.180736\pi\)
0.843087 + 0.537777i \(0.180736\pi\)
\(734\) −26.3208 −0.971518
\(735\) −3.84175 −0.141705
\(736\) 6.15540 0.226891
\(737\) 36.0284 1.32712
\(738\) 13.4207 0.494023
\(739\) 47.5516 1.74922 0.874608 0.484831i \(-0.161119\pi\)
0.874608 + 0.484831i \(0.161119\pi\)
\(740\) 5.45126 0.200392
\(741\) −0.475165 −0.0174556
\(742\) −10.2677 −0.376940
\(743\) 19.1947 0.704185 0.352092 0.935965i \(-0.385470\pi\)
0.352092 + 0.935965i \(0.385470\pi\)
\(744\) 1.84458 0.0676254
\(745\) −53.1854 −1.94856
\(746\) 23.8819 0.874377
\(747\) −1.80950 −0.0662063
\(748\) −9.68612 −0.354159
\(749\) −8.50748 −0.310857
\(750\) −1.50406 −0.0549205
\(751\) 3.63323 0.132578 0.0662892 0.997800i \(-0.478884\pi\)
0.0662892 + 0.997800i \(0.478884\pi\)
\(752\) −4.31029 −0.157180
\(753\) −0.245064 −0.00893064
\(754\) 0 0
\(755\) −6.95382 −0.253076
\(756\) 2.30384 0.0837898
\(757\) 40.3662 1.46714 0.733568 0.679616i \(-0.237854\pi\)
0.733568 + 0.679616i \(0.237854\pi\)
\(758\) −5.55826 −0.201885
\(759\) −6.65007 −0.241382
\(760\) −1.45252 −0.0526884
\(761\) 28.6289 1.03780 0.518899 0.854836i \(-0.326342\pi\)
0.518899 + 0.854836i \(0.326342\pi\)
\(762\) −3.61429 −0.130932
\(763\) 10.8082 0.391283
\(764\) −20.0665 −0.725981
\(765\) 22.3314 0.807393
\(766\) −23.2565 −0.840291
\(767\) 66.1556 2.38874
\(768\) −0.246980 −0.00891211
\(769\) −42.7668 −1.54221 −0.771106 0.636707i \(-0.780296\pi\)
−0.771106 + 0.636707i \(0.780296\pi\)
\(770\) −23.5756 −0.849604
\(771\) 5.23787 0.188637
\(772\) 7.08658 0.255051
\(773\) 45.5294 1.63758 0.818788 0.574095i \(-0.194646\pi\)
0.818788 + 0.574095i \(0.194646\pi\)
\(774\) 27.2281 0.978692
\(775\) 50.5972 1.81751
\(776\) −8.13902 −0.292174
\(777\) 0.616255 0.0221080
\(778\) 23.8652 0.855608
\(779\) −1.93296 −0.0692555
\(780\) −3.85188 −0.137919
\(781\) −55.4282 −1.98338
\(782\) 13.6300 0.487409
\(783\) 0 0
\(784\) −4.53308 −0.161896
\(785\) 2.16848 0.0773963
\(786\) −3.14374 −0.112134
\(787\) −32.6352 −1.16332 −0.581659 0.813433i \(-0.697596\pi\)
−0.581659 + 0.813433i \(0.697596\pi\)
\(788\) 4.62674 0.164821
\(789\) −1.13541 −0.0404215
\(790\) 22.1152 0.786825
\(791\) 8.10309 0.288113
\(792\) −12.8561 −0.456821
\(793\) 28.0143 0.994817
\(794\) 6.97686 0.247600
\(795\) 5.54030 0.196494
\(796\) 3.58103 0.126926
\(797\) 10.1161 0.358330 0.179165 0.983819i \(-0.442660\pi\)
0.179165 + 0.983819i \(0.442660\pi\)
\(798\) −0.164205 −0.00581278
\(799\) −9.54438 −0.337656
\(800\) −6.77471 −0.239522
\(801\) 14.8909 0.526143
\(802\) −8.70652 −0.307438
\(803\) −37.7977 −1.33385
\(804\) 2.03421 0.0717412
\(805\) 33.1748 1.16926
\(806\) 33.9447 1.19565
\(807\) −0.552604 −0.0194526
\(808\) −16.1534 −0.568275
\(809\) −8.02875 −0.282276 −0.141138 0.989990i \(-0.545076\pi\)
−0.141138 + 0.989990i \(0.545076\pi\)
\(810\) 29.0118 1.01937
\(811\) 6.02885 0.211702 0.105851 0.994382i \(-0.466243\pi\)
0.105851 + 0.994382i \(0.466243\pi\)
\(812\) 0 0
\(813\) −1.39826 −0.0490393
\(814\) −6.94914 −0.243567
\(815\) −83.4191 −2.92204
\(816\) −0.546892 −0.0191451
\(817\) −3.92160 −0.137200
\(818\) −6.65711 −0.232760
\(819\) 20.9804 0.733115
\(820\) −15.6694 −0.547197
\(821\) −18.0676 −0.630563 −0.315281 0.948998i \(-0.602099\pi\)
−0.315281 + 0.948998i \(0.602099\pi\)
\(822\) −1.77728 −0.0619898
\(823\) −11.9594 −0.416879 −0.208440 0.978035i \(-0.566838\pi\)
−0.208440 + 0.978035i \(0.566838\pi\)
\(824\) 0.486918 0.0169626
\(825\) 7.31916 0.254820
\(826\) 22.8617 0.795460
\(827\) 24.3798 0.847767 0.423884 0.905717i \(-0.360667\pi\)
0.423884 + 0.905717i \(0.360667\pi\)
\(828\) 18.0907 0.628696
\(829\) 38.6656 1.34291 0.671456 0.741044i \(-0.265669\pi\)
0.671456 + 0.741044i \(0.265669\pi\)
\(830\) 2.11269 0.0733324
\(831\) 5.12219 0.177687
\(832\) −4.54503 −0.157570
\(833\) −10.0377 −0.347785
\(834\) 1.38419 0.0479307
\(835\) −50.9980 −1.76486
\(836\) 1.85164 0.0640402
\(837\) 10.9549 0.378658
\(838\) 23.1279 0.798939
\(839\) 29.7333 1.02651 0.513254 0.858237i \(-0.328440\pi\)
0.513254 + 0.858237i \(0.328440\pi\)
\(840\) −1.33111 −0.0459277
\(841\) 0 0
\(842\) 1.62673 0.0560609
\(843\) −4.61748 −0.159034
\(844\) 1.81599 0.0625091
\(845\) −26.2754 −0.903900
\(846\) −12.6680 −0.435533
\(847\) 12.7765 0.439005
\(848\) 6.53728 0.224491
\(849\) 2.12167 0.0728157
\(850\) −15.0014 −0.514544
\(851\) 9.77862 0.335207
\(852\) −3.12956 −0.107217
\(853\) 40.4719 1.38573 0.692865 0.721067i \(-0.256348\pi\)
0.692865 + 0.721067i \(0.256348\pi\)
\(854\) 9.68102 0.331278
\(855\) −4.26896 −0.145995
\(856\) 5.41656 0.185134
\(857\) 21.9116 0.748487 0.374243 0.927331i \(-0.377902\pi\)
0.374243 + 0.927331i \(0.377902\pi\)
\(858\) 4.91028 0.167634
\(859\) 7.88078 0.268889 0.134444 0.990921i \(-0.457075\pi\)
0.134444 + 0.990921i \(0.457075\pi\)
\(860\) −31.7901 −1.08403
\(861\) −1.77139 −0.0603689
\(862\) 0.392815 0.0133793
\(863\) 25.5643 0.870218 0.435109 0.900378i \(-0.356710\pi\)
0.435109 + 0.900378i \(0.356710\pi\)
\(864\) −1.46681 −0.0499020
\(865\) 0.628402 0.0213663
\(866\) 36.9800 1.25663
\(867\) 2.98766 0.101466
\(868\) 11.7304 0.398156
\(869\) −28.1920 −0.956348
\(870\) 0 0
\(871\) 37.4345 1.26842
\(872\) −6.88139 −0.233033
\(873\) −23.9206 −0.809589
\(874\) −2.60557 −0.0881347
\(875\) −9.56492 −0.323353
\(876\) −2.13411 −0.0721050
\(877\) 50.5828 1.70806 0.854029 0.520225i \(-0.174152\pi\)
0.854029 + 0.520225i \(0.174152\pi\)
\(878\) 13.6888 0.461976
\(879\) −1.89935 −0.0640634
\(880\) 15.0101 0.505991
\(881\) −38.2432 −1.28845 −0.644223 0.764838i \(-0.722819\pi\)
−0.644223 + 0.764838i \(0.722819\pi\)
\(882\) −13.3227 −0.448599
\(883\) −17.4595 −0.587559 −0.293779 0.955873i \(-0.594913\pi\)
−0.293779 + 0.955873i \(0.594913\pi\)
\(884\) −10.0641 −0.338494
\(885\) −12.3358 −0.414663
\(886\) 4.37363 0.146935
\(887\) 4.18979 0.140679 0.0703397 0.997523i \(-0.477592\pi\)
0.0703397 + 0.997523i \(0.477592\pi\)
\(888\) −0.392358 −0.0131667
\(889\) −22.9847 −0.770882
\(890\) −17.3858 −0.582775
\(891\) −36.9836 −1.23900
\(892\) 20.9351 0.700958
\(893\) 1.82454 0.0610560
\(894\) 3.82806 0.128029
\(895\) 27.2651 0.911373
\(896\) −1.57064 −0.0524715
\(897\) −6.90961 −0.230705
\(898\) 19.7322 0.658471
\(899\) 0 0
\(900\) −19.9109 −0.663696
\(901\) 14.4756 0.482253
\(902\) 19.9749 0.665092
\(903\) −3.59381 −0.119595
\(904\) −5.15909 −0.171589
\(905\) −6.16777 −0.205023
\(906\) 0.500506 0.0166282
\(907\) 18.1221 0.601735 0.300867 0.953666i \(-0.402724\pi\)
0.300867 + 0.953666i \(0.402724\pi\)
\(908\) 2.77986 0.0922530
\(909\) −47.4749 −1.57464
\(910\) −24.4957 −0.812023
\(911\) 3.83336 0.127005 0.0635025 0.997982i \(-0.479773\pi\)
0.0635025 + 0.997982i \(0.479773\pi\)
\(912\) 0.104546 0.00346187
\(913\) −2.69320 −0.0891320
\(914\) −36.3594 −1.20266
\(915\) −5.22372 −0.172691
\(916\) −24.0260 −0.793842
\(917\) −19.9924 −0.660206
\(918\) −3.24799 −0.107200
\(919\) 39.2248 1.29391 0.646954 0.762529i \(-0.276043\pi\)
0.646954 + 0.762529i \(0.276043\pi\)
\(920\) −21.1218 −0.696366
\(921\) −3.63211 −0.119682
\(922\) 8.77942 0.289135
\(923\) −57.5915 −1.89565
\(924\) 1.69687 0.0558228
\(925\) −10.7625 −0.353869
\(926\) 9.83531 0.323208
\(927\) 1.43105 0.0470019
\(928\) 0 0
\(929\) −16.8372 −0.552409 −0.276204 0.961099i \(-0.589077\pi\)
−0.276204 + 0.961099i \(0.589077\pi\)
\(930\) −6.32953 −0.207554
\(931\) 1.91885 0.0628876
\(932\) −3.18472 −0.104319
\(933\) −4.18212 −0.136916
\(934\) −4.43077 −0.144979
\(935\) 33.2372 1.08697
\(936\) −13.3578 −0.436615
\(937\) 25.4711 0.832105 0.416053 0.909341i \(-0.363413\pi\)
0.416053 + 0.909341i \(0.363413\pi\)
\(938\) 12.9364 0.422388
\(939\) −3.99966 −0.130524
\(940\) 14.7905 0.482412
\(941\) −29.5773 −0.964194 −0.482097 0.876118i \(-0.660125\pi\)
−0.482097 + 0.876118i \(0.660125\pi\)
\(942\) −0.156078 −0.00508529
\(943\) −28.1081 −0.915326
\(944\) −14.5556 −0.473745
\(945\) −7.90546 −0.257165
\(946\) 40.5253 1.31759
\(947\) −46.5543 −1.51281 −0.756406 0.654103i \(-0.773046\pi\)
−0.756406 + 0.654103i \(0.773046\pi\)
\(948\) −1.59176 −0.0516980
\(949\) −39.2729 −1.27485
\(950\) 2.86773 0.0930414
\(951\) 2.66460 0.0864056
\(952\) −3.47791 −0.112720
\(953\) 4.54252 0.147147 0.0735734 0.997290i \(-0.476560\pi\)
0.0735734 + 0.997290i \(0.476560\pi\)
\(954\) 19.2131 0.622046
\(955\) 68.8568 2.22816
\(956\) 12.8020 0.414047
\(957\) 0 0
\(958\) 21.1257 0.682541
\(959\) −11.3025 −0.364975
\(960\) 0.847493 0.0273527
\(961\) 24.7790 0.799324
\(962\) −7.22035 −0.232793
\(963\) 15.9193 0.512991
\(964\) 0.472390 0.0152146
\(965\) −24.3171 −0.782795
\(966\) −2.38778 −0.0768256
\(967\) 0.591500 0.0190213 0.00951067 0.999955i \(-0.496973\pi\)
0.00951067 + 0.999955i \(0.496973\pi\)
\(968\) −8.13455 −0.261454
\(969\) 0.231499 0.00743681
\(970\) 27.9285 0.896729
\(971\) −32.3652 −1.03865 −0.519324 0.854577i \(-0.673816\pi\)
−0.519324 + 0.854577i \(0.673816\pi\)
\(972\) −6.48858 −0.208121
\(973\) 8.80264 0.282200
\(974\) 20.8892 0.669332
\(975\) 7.60481 0.243549
\(976\) −6.16373 −0.197296
\(977\) −31.9020 −1.02063 −0.510317 0.859986i \(-0.670472\pi\)
−0.510317 + 0.859986i \(0.670472\pi\)
\(978\) 6.00415 0.191991
\(979\) 22.1631 0.708334
\(980\) 15.5549 0.496884
\(981\) −20.2244 −0.645716
\(982\) −9.03901 −0.288446
\(983\) −15.1053 −0.481786 −0.240893 0.970552i \(-0.577440\pi\)
−0.240893 + 0.970552i \(0.577440\pi\)
\(984\) 1.12781 0.0359533
\(985\) −15.8763 −0.505862
\(986\) 0 0
\(987\) 1.67204 0.0532215
\(988\) 1.92390 0.0612075
\(989\) −57.0260 −1.81332
\(990\) 44.1148 1.40206
\(991\) −49.9779 −1.58760 −0.793801 0.608178i \(-0.791901\pi\)
−0.793801 + 0.608178i \(0.791901\pi\)
\(992\) −7.46854 −0.237126
\(993\) −6.52259 −0.206988
\(994\) −19.9021 −0.631257
\(995\) −12.2881 −0.389558
\(996\) −0.152062 −0.00481827
\(997\) −0.167080 −0.00529147 −0.00264574 0.999997i \(-0.500842\pi\)
−0.00264574 + 0.999997i \(0.500842\pi\)
\(998\) 41.3877 1.31011
\(999\) −2.33022 −0.0737248
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.r.1.1 6
29.8 odd 28 58.2.e.a.35.1 yes 12
29.11 odd 28 58.2.e.a.5.1 12
29.12 odd 4 1682.2.b.j.1681.2 12
29.17 odd 4 1682.2.b.j.1681.12 12
29.28 even 2 1682.2.a.s.1.5 6
87.8 even 28 522.2.n.a.325.2 12
87.11 even 28 522.2.n.a.469.2 12
116.11 even 28 464.2.y.c.353.1 12
116.95 even 28 464.2.y.c.209.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.e.a.5.1 12 29.11 odd 28
58.2.e.a.35.1 yes 12 29.8 odd 28
464.2.y.c.209.1 12 116.95 even 28
464.2.y.c.353.1 12 116.11 even 28
522.2.n.a.325.2 12 87.8 even 28
522.2.n.a.469.2 12 87.11 even 28
1682.2.a.r.1.1 6 1.1 even 1 trivial
1682.2.a.s.1.5 6 29.28 even 2
1682.2.b.j.1681.2 12 29.12 odd 4
1682.2.b.j.1681.12 12 29.17 odd 4