Properties

Label 1682.2.a.r.1.1
Level 16821682
Weight 22
Character 1682.1
Self dual yes
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ28)+\Q(\zeta_{28})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x67x4+14x27 x^{6} - 7x^{4} + 14x^{2} - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 58)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.563661.56366 of defining polynomial
Character χ\chi == 1682.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q20.246980q3+1.00000q43.43143q5+0.246980q6+1.57064q71.00000q82.93900q9+3.43143q104.37431q110.246980q124.54503q131.57064q14+0.847493q15+1.00000q16+2.21432q17+2.93900q180.423299q193.43143q200.387917q21+4.37431q226.15540q23+0.246980q24+6.77471q25+4.54503q26+1.46681q27+1.57064q280.847493q30+7.46854q311.00000q32+1.08036q332.21432q345.38955q352.93900q361.58863q37+0.423299q38+1.12253q39+3.43143q40+4.56642q41+0.387917q42+9.26439q434.37431q44+10.0850q45+6.15540q464.31029q470.246980q484.53308q496.77471q500.546892q514.54503q52+6.53728q531.46681q54+15.0101q551.57064q56+0.104546q5714.5556q59+0.847493q606.16373q617.46854q624.61612q63+1.00000q64+15.5959q651.08036q668.23637q67+2.21432q68+1.52026q69+5.38955q70+12.6713q71+2.93900q72+8.64084q73+1.58863q741.67322q750.423299q766.87048q771.12253q78+6.44491q793.43143q80+8.45473q814.56642q82+0.615687q830.387917q847.59829q859.26439q86+4.37431q885.06665q8910.0850q907.13862q916.15540q921.84458q93+4.31029q94+1.45252q95+0.246980q96+8.13902q97+4.53308q98+12.8561q99+O(q100)q-1.00000 q^{2} -0.246980 q^{3} +1.00000 q^{4} -3.43143 q^{5} +0.246980 q^{6} +1.57064 q^{7} -1.00000 q^{8} -2.93900 q^{9} +3.43143 q^{10} -4.37431 q^{11} -0.246980 q^{12} -4.54503 q^{13} -1.57064 q^{14} +0.847493 q^{15} +1.00000 q^{16} +2.21432 q^{17} +2.93900 q^{18} -0.423299 q^{19} -3.43143 q^{20} -0.387917 q^{21} +4.37431 q^{22} -6.15540 q^{23} +0.246980 q^{24} +6.77471 q^{25} +4.54503 q^{26} +1.46681 q^{27} +1.57064 q^{28} -0.847493 q^{30} +7.46854 q^{31} -1.00000 q^{32} +1.08036 q^{33} -2.21432 q^{34} -5.38955 q^{35} -2.93900 q^{36} -1.58863 q^{37} +0.423299 q^{38} +1.12253 q^{39} +3.43143 q^{40} +4.56642 q^{41} +0.387917 q^{42} +9.26439 q^{43} -4.37431 q^{44} +10.0850 q^{45} +6.15540 q^{46} -4.31029 q^{47} -0.246980 q^{48} -4.53308 q^{49} -6.77471 q^{50} -0.546892 q^{51} -4.54503 q^{52} +6.53728 q^{53} -1.46681 q^{54} +15.0101 q^{55} -1.57064 q^{56} +0.104546 q^{57} -14.5556 q^{59} +0.847493 q^{60} -6.16373 q^{61} -7.46854 q^{62} -4.61612 q^{63} +1.00000 q^{64} +15.5959 q^{65} -1.08036 q^{66} -8.23637 q^{67} +2.21432 q^{68} +1.52026 q^{69} +5.38955 q^{70} +12.6713 q^{71} +2.93900 q^{72} +8.64084 q^{73} +1.58863 q^{74} -1.67322 q^{75} -0.423299 q^{76} -6.87048 q^{77} -1.12253 q^{78} +6.44491 q^{79} -3.43143 q^{80} +8.45473 q^{81} -4.56642 q^{82} +0.615687 q^{83} -0.387917 q^{84} -7.59829 q^{85} -9.26439 q^{86} +4.37431 q^{88} -5.06665 q^{89} -10.0850 q^{90} -7.13862 q^{91} -6.15540 q^{92} -1.84458 q^{93} +4.31029 q^{94} +1.45252 q^{95} +0.246980 q^{96} +8.13902 q^{97} +4.53308 q^{98} +12.8561 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q2+8q3+6q46q58q6+2q76q8+2q9+6q10+2q11+8q128q132q148q15+6q16+12q172q18+4q196q20++24q99+O(q100) 6 q - 6 q^{2} + 8 q^{3} + 6 q^{4} - 6 q^{5} - 8 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9} + 6 q^{10} + 2 q^{11} + 8 q^{12} - 8 q^{13} - 2 q^{14} - 8 q^{15} + 6 q^{16} + 12 q^{17} - 2 q^{18} + 4 q^{19} - 6 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 −0.246980 −0.142594 −0.0712969 0.997455i 0.522714π-0.522714\pi
−0.0712969 + 0.997455i 0.522714π0.522714\pi
44 1.00000 0.500000
55 −3.43143 −1.53458 −0.767291 0.641299i 0.778396π-0.778396\pi
−0.767291 + 0.641299i 0.778396π0.778396\pi
66 0.246980 0.100829
77 1.57064 0.593648 0.296824 0.954932i 0.404073π-0.404073\pi
0.296824 + 0.954932i 0.404073π0.404073\pi
88 −1.00000 −0.353553
99 −2.93900 −0.979667
1010 3.43143 1.08511
1111 −4.37431 −1.31890 −0.659451 0.751747i 0.729211π-0.729211\pi
−0.659451 + 0.751747i 0.729211π0.729211\pi
1212 −0.246980 −0.0712969
1313 −4.54503 −1.26056 −0.630282 0.776366i 0.717061π-0.717061\pi
−0.630282 + 0.776366i 0.717061π0.717061\pi
1414 −1.57064 −0.419772
1515 0.847493 0.218822
1616 1.00000 0.250000
1717 2.21432 0.537052 0.268526 0.963272i 0.413464π-0.413464\pi
0.268526 + 0.963272i 0.413464π0.413464\pi
1818 2.93900 0.692729
1919 −0.423299 −0.0971114 −0.0485557 0.998820i 0.515462π-0.515462\pi
−0.0485557 + 0.998820i 0.515462π0.515462\pi
2020 −3.43143 −0.767291
2121 −0.387917 −0.0846504
2222 4.37431 0.932605
2323 −6.15540 −1.28349 −0.641744 0.766919i 0.721789π-0.721789\pi
−0.641744 + 0.766919i 0.721789π0.721789\pi
2424 0.246980 0.0504145
2525 6.77471 1.35494
2626 4.54503 0.891353
2727 1.46681 0.282288
2828 1.57064 0.296824
2929 0 0
3030 −0.847493 −0.154730
3131 7.46854 1.34139 0.670694 0.741734i 0.265996π-0.265996\pi
0.670694 + 0.741734i 0.265996π0.265996\pi
3232 −1.00000 −0.176777
3333 1.08036 0.188067
3434 −2.21432 −0.379753
3535 −5.38955 −0.911001
3636 −2.93900 −0.489834
3737 −1.58863 −0.261169 −0.130584 0.991437i 0.541685π-0.541685\pi
−0.130584 + 0.991437i 0.541685π0.541685\pi
3838 0.423299 0.0686681
3939 1.12253 0.179748
4040 3.43143 0.542557
4141 4.56642 0.713155 0.356577 0.934266i 0.383944π-0.383944\pi
0.356577 + 0.934266i 0.383944π0.383944\pi
4242 0.387917 0.0598569
4343 9.26439 1.41281 0.706403 0.707810i 0.250317π-0.250317\pi
0.706403 + 0.707810i 0.250317π0.250317\pi
4444 −4.37431 −0.659451
4545 10.0850 1.50338
4646 6.15540 0.907564
4747 −4.31029 −0.628721 −0.314361 0.949304i 0.601790π-0.601790\pi
−0.314361 + 0.949304i 0.601790π0.601790\pi
4848 −0.246980 −0.0356484
4949 −4.53308 −0.647583
5050 −6.77471 −0.958089
5151 −0.546892 −0.0765802
5252 −4.54503 −0.630282
5353 6.53728 0.897964 0.448982 0.893541i 0.351787π-0.351787\pi
0.448982 + 0.893541i 0.351787π0.351787\pi
5454 −1.46681 −0.199608
5555 15.0101 2.02396
5656 −1.57064 −0.209886
5757 0.104546 0.0138475
5858 0 0
5959 −14.5556 −1.89498 −0.947490 0.319787i 0.896389π-0.896389\pi
−0.947490 + 0.319787i 0.896389π0.896389\pi
6060 0.847493 0.109411
6161 −6.16373 −0.789184 −0.394592 0.918856i 0.629114π-0.629114\pi
−0.394592 + 0.918856i 0.629114π0.629114\pi
6262 −7.46854 −0.948505
6363 −4.61612 −0.581577
6464 1.00000 0.125000
6565 15.5959 1.93444
6666 −1.08036 −0.132984
6767 −8.23637 −1.00623 −0.503116 0.864219i 0.667813π-0.667813\pi
−0.503116 + 0.864219i 0.667813π0.667813\pi
6868 2.21432 0.268526
6969 1.52026 0.183017
7070 5.38955 0.644175
7171 12.6713 1.50381 0.751904 0.659272i 0.229135π-0.229135\pi
0.751904 + 0.659272i 0.229135π0.229135\pi
7272 2.93900 0.346365
7373 8.64084 1.01133 0.505667 0.862729i 0.331246π-0.331246\pi
0.505667 + 0.862729i 0.331246π0.331246\pi
7474 1.58863 0.184674
7575 −1.67322 −0.193206
7676 −0.423299 −0.0485557
7777 −6.87048 −0.782963
7878 −1.12253 −0.127101
7979 6.44491 0.725109 0.362554 0.931963i 0.381905π-0.381905\pi
0.362554 + 0.931963i 0.381905π0.381905\pi
8080 −3.43143 −0.383646
8181 8.45473 0.939415
8282 −4.56642 −0.504277
8383 0.615687 0.0675804 0.0337902 0.999429i 0.489242π-0.489242\pi
0.0337902 + 0.999429i 0.489242π0.489242\pi
8484 −0.387917 −0.0423252
8585 −7.59829 −0.824150
8686 −9.26439 −0.999005
8787 0 0
8888 4.37431 0.466303
8989 −5.06665 −0.537063 −0.268532 0.963271i 0.586538π-0.586538\pi
−0.268532 + 0.963271i 0.586538π0.586538\pi
9090 −10.0850 −1.06305
9191 −7.13862 −0.748330
9292 −6.15540 −0.641744
9393 −1.84458 −0.191274
9494 4.31029 0.444573
9595 1.45252 0.149025
9696 0.246980 0.0252073
9797 8.13902 0.826392 0.413196 0.910642i 0.364412π-0.364412\pi
0.413196 + 0.910642i 0.364412π0.364412\pi
9898 4.53308 0.457910
9999 12.8561 1.29209
100100 6.77471 0.677471
101101 16.1534 1.60732 0.803662 0.595086i 0.202882π-0.202882\pi
0.803662 + 0.595086i 0.202882π0.202882\pi
102102 0.546892 0.0541504
103103 −0.486918 −0.0479774 −0.0239887 0.999712i 0.507637π-0.507637\pi
−0.0239887 + 0.999712i 0.507637π0.507637\pi
104104 4.54503 0.445677
105105 1.33111 0.129903
106106 −6.53728 −0.634957
107107 −5.41656 −0.523638 −0.261819 0.965117i 0.584322π-0.584322\pi
−0.261819 + 0.965117i 0.584322π0.584322\pi
108108 1.46681 0.141144
109109 6.88139 0.659117 0.329559 0.944135i 0.393100π-0.393100\pi
0.329559 + 0.944135i 0.393100π0.393100\pi
110110 −15.0101 −1.43116
111111 0.392358 0.0372410
112112 1.57064 0.148412
113113 5.15909 0.485326 0.242663 0.970111i 0.421979π-0.421979\pi
0.242663 + 0.970111i 0.421979π0.421979\pi
114114 −0.104546 −0.00979164
115115 21.1218 1.96962
116116 0 0
117117 13.3578 1.23493
118118 14.5556 1.33995
119119 3.47791 0.318819
120120 −0.847493 −0.0773652
121121 8.13455 0.739504
122122 6.16373 0.558037
123123 −1.12781 −0.101691
124124 7.46854 0.670694
125125 −6.08981 −0.544689
126126 4.61612 0.411237
127127 −14.6339 −1.29855 −0.649276 0.760553i 0.724928π-0.724928\pi
−0.649276 + 0.760553i 0.724928π0.724928\pi
128128 −1.00000 −0.0883883
129129 −2.28812 −0.201457
130130 −15.5959 −1.36785
131131 −12.7288 −1.11212 −0.556059 0.831143i 0.687687π-0.687687\pi
−0.556059 + 0.831143i 0.687687π0.687687\pi
132132 1.08036 0.0940336
133133 −0.664851 −0.0576499
134134 8.23637 0.711514
135135 −5.03326 −0.433194
136136 −2.21432 −0.189876
137137 −7.19607 −0.614802 −0.307401 0.951580i 0.599459π-0.599459\pi
−0.307401 + 0.951580i 0.599459π0.599459\pi
138138 −1.52026 −0.129413
139139 5.60448 0.475366 0.237683 0.971343i 0.423612π-0.423612\pi
0.237683 + 0.971343i 0.423612π0.423612\pi
140140 −5.38955 −0.455501
141141 1.06455 0.0896517
142142 −12.6713 −1.06335
143143 19.8813 1.66256
144144 −2.93900 −0.244917
145145 0 0
146146 −8.64084 −0.715121
147147 1.11958 0.0923412
148148 −1.58863 −0.130584
149149 15.4995 1.26977 0.634884 0.772607i 0.281048π-0.281048\pi
0.634884 + 0.772607i 0.281048π0.281048\pi
150150 1.67322 0.136618
151151 2.02651 0.164915 0.0824575 0.996595i 0.473723π-0.473723\pi
0.0824575 + 0.996595i 0.473723π0.473723\pi
152152 0.423299 0.0343341
153153 −6.50789 −0.526132
154154 6.87048 0.553639
155155 −25.6278 −2.05847
156156 1.12253 0.0898742
157157 −0.631946 −0.0504348 −0.0252174 0.999682i 0.508028π-0.508028\pi
−0.0252174 + 0.999682i 0.508028π0.508028\pi
158158 −6.44491 −0.512729
159159 −1.61457 −0.128044
160160 3.43143 0.271278
161161 −9.66793 −0.761940
162162 −8.45473 −0.664266
163163 24.3103 1.90413 0.952065 0.305897i 0.0989563π-0.0989563\pi
0.952065 + 0.305897i 0.0989563π0.0989563\pi
164164 4.56642 0.356577
165165 −3.70719 −0.288605
166166 −0.615687 −0.0477866
167167 14.8620 1.15006 0.575029 0.818133i 0.304991π-0.304991\pi
0.575029 + 0.818133i 0.304991π0.304991\pi
168168 0.387917 0.0299284
169169 7.65727 0.589020
170170 7.59829 0.582762
171171 1.24408 0.0951368
172172 9.26439 0.706403
173173 −0.183131 −0.0139232 −0.00696160 0.999976i 0.502216π-0.502216\pi
−0.00696160 + 0.999976i 0.502216π0.502216\pi
174174 0 0
175175 10.6407 0.804359
176176 −4.37431 −0.329726
177177 3.59494 0.270212
178178 5.06665 0.379761
179179 −7.94570 −0.593890 −0.296945 0.954895i 0.595968π-0.595968\pi
−0.296945 + 0.954895i 0.595968π0.595968\pi
180180 10.0850 0.751690
181181 1.79743 0.133602 0.0668011 0.997766i 0.478721π-0.478721\pi
0.0668011 + 0.997766i 0.478721π0.478721\pi
182182 7.13862 0.529150
183183 1.52231 0.112533
184184 6.15540 0.453782
185185 5.45126 0.400785
186186 1.84458 0.135251
187187 −9.68612 −0.708319
188188 −4.31029 −0.314361
189189 2.30384 0.167580
190190 −1.45252 −0.105377
191191 −20.0665 −1.45196 −0.725981 0.687715i 0.758614π-0.758614\pi
−0.725981 + 0.687715i 0.758614π0.758614\pi
192192 −0.246980 −0.0178242
193193 7.08658 0.510103 0.255051 0.966927i 0.417908π-0.417908\pi
0.255051 + 0.966927i 0.417908π0.417908\pi
194194 −8.13902 −0.584348
195195 −3.85188 −0.275839
196196 −4.53308 −0.323791
197197 4.62674 0.329641 0.164821 0.986324i 0.447295π-0.447295\pi
0.164821 + 0.986324i 0.447295π0.447295\pi
198198 −12.8561 −0.913642
199199 3.58103 0.253852 0.126926 0.991912i 0.459489π-0.459489\pi
0.126926 + 0.991912i 0.459489π0.459489\pi
200200 −6.77471 −0.479045
201201 2.03421 0.143482
202202 −16.1534 −1.13655
203203 0 0
204204 −0.546892 −0.0382901
205205 −15.6694 −1.09439
206206 0.486918 0.0339252
207207 18.0907 1.25739
208208 −4.54503 −0.315141
209209 1.85164 0.128080
210210 −1.33111 −0.0918553
211211 1.81599 0.125018 0.0625091 0.998044i 0.480090π-0.480090\pi
0.0625091 + 0.998044i 0.480090π0.480090\pi
212212 6.53728 0.448982
213213 −3.12956 −0.214434
214214 5.41656 0.370268
215215 −31.7901 −2.16807
216216 −1.46681 −0.0998039
217217 11.7304 0.796312
218218 −6.88139 −0.466066
219219 −2.13411 −0.144210
220220 15.0101 1.01198
221221 −10.0641 −0.676988
222222 −0.392358 −0.0263334
223223 20.9351 1.40192 0.700958 0.713203i 0.252756π-0.252756\pi
0.700958 + 0.713203i 0.252756π0.252756\pi
224224 −1.57064 −0.104943
225225 −19.9109 −1.32739
226226 −5.15909 −0.343177
227227 2.77986 0.184506 0.0922530 0.995736i 0.470593π-0.470593\pi
0.0922530 + 0.995736i 0.470593π0.470593\pi
228228 0.104546 0.00692374
229229 −24.0260 −1.58768 −0.793842 0.608124i 0.791922π-0.791922\pi
−0.793842 + 0.608124i 0.791922π0.791922\pi
230230 −21.1218 −1.39273
231231 1.69687 0.111646
232232 0 0
233233 −3.18472 −0.208638 −0.104319 0.994544i 0.533266π-0.533266\pi
−0.104319 + 0.994544i 0.533266π0.533266\pi
234234 −13.3578 −0.873229
235235 14.7905 0.964824
236236 −14.5556 −0.947490
237237 −1.59176 −0.103396
238238 −3.47791 −0.225439
239239 12.8020 0.828094 0.414047 0.910255i 0.364115π-0.364115\pi
0.414047 + 0.910255i 0.364115π0.364115\pi
240240 0.847493 0.0547055
241241 0.472390 0.0304293 0.0152146 0.999884i 0.495157π-0.495157\pi
0.0152146 + 0.999884i 0.495157π0.495157\pi
242242 −8.13455 −0.522909
243243 −6.48858 −0.416243
244244 −6.16373 −0.394592
245245 15.5549 0.993769
246246 1.12781 0.0719067
247247 1.92390 0.122415
248248 −7.46854 −0.474253
249249 −0.152062 −0.00963655
250250 6.08981 0.385153
251251 0.992245 0.0626300 0.0313150 0.999510i 0.490031π-0.490031\pi
0.0313150 + 0.999510i 0.490031π0.490031\pi
252252 −4.61612 −0.290788
253253 26.9256 1.69280
254254 14.6339 0.918215
255255 1.87662 0.117519
256256 1.00000 0.0625000
257257 −21.2077 −1.32290 −0.661450 0.749989i 0.730059π-0.730059\pi
−0.661450 + 0.749989i 0.730059π0.730059\pi
258258 2.28812 0.142452
259259 −2.49517 −0.155042
260260 15.5959 0.967219
261261 0 0
262262 12.7288 0.786386
263263 4.59716 0.283473 0.141737 0.989904i 0.454731π-0.454731\pi
0.141737 + 0.989904i 0.454731π0.454731\pi
264264 −1.08036 −0.0664918
265265 −22.4322 −1.37800
266266 0.664851 0.0407647
267267 1.25136 0.0765819
268268 −8.23637 −0.503116
269269 2.23745 0.136420 0.0682098 0.997671i 0.478271π-0.478271\pi
0.0682098 + 0.997671i 0.478271π0.478271\pi
270270 5.03326 0.306315
271271 5.66146 0.343909 0.171955 0.985105i 0.444992π-0.444992\pi
0.171955 + 0.985105i 0.444992π0.444992\pi
272272 2.21432 0.134263
273273 1.76309 0.106707
274274 7.19607 0.434730
275275 −29.6347 −1.78704
276276 1.52026 0.0915087
277277 −20.7393 −1.24611 −0.623053 0.782180i 0.714108π-0.714108\pi
−0.623053 + 0.782180i 0.714108π0.714108\pi
278278 −5.60448 −0.336135
279279 −21.9500 −1.31411
280280 5.38955 0.322087
281281 18.6958 1.11530 0.557648 0.830077i 0.311704π-0.311704\pi
0.557648 + 0.830077i 0.311704π0.311704\pi
282282 −1.06455 −0.0633933
283283 −8.59049 −0.510651 −0.255326 0.966855i 0.582183π-0.582183\pi
−0.255326 + 0.966855i 0.582183π0.582183\pi
284284 12.6713 0.751904
285285 −0.358743 −0.0212501
286286 −19.8813 −1.17561
287287 7.17222 0.423363
288288 2.93900 0.173182
289289 −12.0968 −0.711575
290290 0 0
291291 −2.01017 −0.117838
292292 8.64084 0.505667
293293 7.69030 0.449272 0.224636 0.974443i 0.427881π-0.427881\pi
0.224636 + 0.974443i 0.427881π0.427881\pi
294294 −1.11958 −0.0652951
295295 49.9466 2.90800
296296 1.58863 0.0923370
297297 −6.41628 −0.372311
298298 −15.4995 −0.897862
299299 27.9764 1.61792
300300 −1.67322 −0.0966032
301301 14.5511 0.838709
302302 −2.02651 −0.116612
303303 −3.98956 −0.229194
304304 −0.423299 −0.0242778
305305 21.1504 1.21107
306306 6.50789 0.372031
307307 14.7061 0.839322 0.419661 0.907681i 0.362149π-0.362149\pi
0.419661 + 0.907681i 0.362149π0.362149\pi
308308 −6.87048 −0.391482
309309 0.120259 0.00684128
310310 25.6278 1.45556
311311 16.9331 0.960186 0.480093 0.877218i 0.340603π-0.340603\pi
0.480093 + 0.877218i 0.340603π0.340603\pi
312312 −1.12253 −0.0635507
313313 16.1943 0.915356 0.457678 0.889118i 0.348681π-0.348681\pi
0.457678 + 0.889118i 0.348681π0.348681\pi
314314 0.631946 0.0356628
315315 15.8399 0.892478
316316 6.44491 0.362554
317317 −10.7887 −0.605956 −0.302978 0.952997i 0.597981π-0.597981\pi
−0.302978 + 0.952997i 0.597981π0.597981\pi
318318 1.61457 0.0905408
319319 0 0
320320 −3.43143 −0.191823
321321 1.33778 0.0746676
322322 9.66793 0.538773
323323 −0.937319 −0.0521538
324324 8.45473 0.469707
325325 −30.7913 −1.70799
326326 −24.3103 −1.34642
327327 −1.69956 −0.0939860
328328 −4.56642 −0.252138
329329 −6.76994 −0.373239
330330 3.70719 0.204074
331331 26.4094 1.45159 0.725796 0.687910i 0.241471π-0.241471\pi
0.725796 + 0.687910i 0.241471π0.241471\pi
332332 0.615687 0.0337902
333333 4.66897 0.255858
334334 −14.8620 −0.813213
335335 28.2625 1.54415
336336 −0.387917 −0.0211626
337337 −20.6226 −1.12338 −0.561691 0.827347i 0.689849π-0.689849\pi
−0.561691 + 0.827347i 0.689849π0.689849\pi
338338 −7.65727 −0.416500
339339 −1.27419 −0.0692045
340340 −7.59829 −0.412075
341341 −32.6697 −1.76916
342342 −1.24408 −0.0672719
343343 −18.1144 −0.978083
344344 −9.26439 −0.499502
345345 −5.21666 −0.280855
346346 0.183131 0.00984519
347347 5.27973 0.283431 0.141715 0.989907i 0.454738π-0.454738\pi
0.141715 + 0.989907i 0.454738π0.454738\pi
348348 0 0
349349 −20.1993 −1.08124 −0.540622 0.841266i 0.681811π-0.681811\pi
−0.540622 + 0.841266i 0.681811π0.681811\pi
350350 −10.6407 −0.568767
351351 −6.66670 −0.355842
352352 4.37431 0.233151
353353 −12.7715 −0.679757 −0.339878 0.940469i 0.610386π-0.610386\pi
−0.339878 + 0.940469i 0.610386π0.610386\pi
354354 −3.59494 −0.191069
355355 −43.4808 −2.30772
356356 −5.06665 −0.268532
357357 −0.858973 −0.0454617
358358 7.94570 0.419943
359359 −2.41249 −0.127327 −0.0636633 0.997971i 0.520278π-0.520278\pi
−0.0636633 + 0.997971i 0.520278π0.520278\pi
360360 −10.0850 −0.531525
361361 −18.8208 −0.990569
362362 −1.79743 −0.0944710
363363 −2.00907 −0.105449
364364 −7.13862 −0.374165
365365 −29.6505 −1.55198
366366 −1.52231 −0.0795726
367367 26.3208 1.37393 0.686967 0.726688i 0.258942π-0.258942\pi
0.686967 + 0.726688i 0.258942π0.258942\pi
368368 −6.15540 −0.320872
369369 −13.4207 −0.698654
370370 −5.45126 −0.283398
371371 10.2677 0.533074
372372 −1.84458 −0.0956368
373373 −23.8819 −1.23656 −0.618278 0.785960i 0.712169π-0.712169\pi
−0.618278 + 0.785960i 0.712169π0.712169\pi
374374 9.68612 0.500857
375375 1.50406 0.0776693
376376 4.31029 0.222286
377377 0 0
378378 −2.30384 −0.118497
379379 5.55826 0.285509 0.142754 0.989758i 0.454404π-0.454404\pi
0.142754 + 0.989758i 0.454404π0.454404\pi
380380 1.45252 0.0745127
381381 3.61429 0.185165
382382 20.0665 1.02669
383383 23.2565 1.18835 0.594176 0.804335i 0.297478π-0.297478\pi
0.594176 + 0.804335i 0.297478π0.297478\pi
384384 0.246980 0.0126036
385385 23.5756 1.20152
386386 −7.08658 −0.360697
387387 −27.2281 −1.38408
388388 8.13902 0.413196
389389 −23.8652 −1.21001 −0.605006 0.796221i 0.706829π-0.706829\pi
−0.605006 + 0.796221i 0.706829π0.706829\pi
390390 3.85188 0.195048
391391 −13.6300 −0.689300
392392 4.53308 0.228955
393393 3.14374 0.158581
394394 −4.62674 −0.233092
395395 −22.1152 −1.11274
396396 12.8561 0.646043
397397 −6.97686 −0.350159 −0.175079 0.984554i 0.556018π-0.556018\pi
−0.175079 + 0.984554i 0.556018π0.556018\pi
398398 −3.58103 −0.179501
399399 0.164205 0.00822052
400400 6.77471 0.338736
401401 8.70652 0.434783 0.217391 0.976085i 0.430245π-0.430245\pi
0.217391 + 0.976085i 0.430245π0.430245\pi
402402 −2.03421 −0.101457
403403 −33.9447 −1.69091
404404 16.1534 0.803662
405405 −29.0118 −1.44161
406406 0 0
407407 6.94914 0.344456
408408 0.546892 0.0270752
409409 6.65711 0.329173 0.164587 0.986363i 0.447371π-0.447371\pi
0.164587 + 0.986363i 0.447371π0.447371\pi
410410 15.6694 0.773854
411411 1.77728 0.0876669
412412 −0.486918 −0.0239887
413413 −22.8617 −1.12495
414414 −18.0907 −0.889110
415415 −2.11269 −0.103708
416416 4.54503 0.222838
417417 −1.38419 −0.0677842
418418 −1.85164 −0.0905666
419419 −23.1279 −1.12987 −0.564935 0.825135i 0.691099π-0.691099\pi
−0.564935 + 0.825135i 0.691099π0.691099\pi
420420 1.33111 0.0649515
421421 −1.62673 −0.0792820 −0.0396410 0.999214i 0.512621π-0.512621\pi
−0.0396410 + 0.999214i 0.512621π0.512621\pi
422422 −1.81599 −0.0884012
423423 12.6680 0.615937
424424 −6.53728 −0.317478
425425 15.0014 0.727674
426426 3.12956 0.151628
427427 −9.68102 −0.468497
428428 −5.41656 −0.261819
429429 −4.91028 −0.237071
430430 31.7901 1.53306
431431 −0.392815 −0.0189212 −0.00946061 0.999955i 0.503011π-0.503011\pi
−0.00946061 + 0.999955i 0.503011π0.503011\pi
432432 1.46681 0.0705720
433433 −36.9800 −1.77714 −0.888572 0.458738i 0.848302π-0.848302\pi
−0.888572 + 0.458738i 0.848302π0.848302\pi
434434 −11.7304 −0.563078
435435 0 0
436436 6.88139 0.329559
437437 2.60557 0.124641
438438 2.13411 0.101972
439439 −13.6888 −0.653332 −0.326666 0.945140i 0.605925π-0.605925\pi
−0.326666 + 0.945140i 0.605925π0.605925\pi
440440 −15.0101 −0.715580
441441 13.3227 0.634415
442442 10.0641 0.478703
443443 −4.37363 −0.207797 −0.103899 0.994588i 0.533132π-0.533132\pi
−0.103899 + 0.994588i 0.533132π0.533132\pi
444444 0.392358 0.0186205
445445 17.3858 0.824168
446446 −20.9351 −0.991304
447447 −3.82806 −0.181061
448448 1.57064 0.0742059
449449 −19.7322 −0.931218 −0.465609 0.884990i 0.654165π-0.654165\pi
−0.465609 + 0.884990i 0.654165π0.654165\pi
450450 19.9109 0.938609
451451 −19.9749 −0.940582
452452 5.15909 0.242663
453453 −0.500506 −0.0235158
454454 −2.77986 −0.130466
455455 24.4957 1.14837
456456 −0.104546 −0.00489582
457457 36.3594 1.70082 0.850412 0.526118i 0.176353π-0.176353\pi
0.850412 + 0.526118i 0.176353π0.176353\pi
458458 24.0260 1.12266
459459 3.24799 0.151603
460460 21.1218 0.984810
461461 −8.77942 −0.408898 −0.204449 0.978877i 0.565540π-0.565540\pi
−0.204449 + 0.978877i 0.565540π0.565540\pi
462462 −1.69687 −0.0789454
463463 −9.83531 −0.457086 −0.228543 0.973534i 0.573396π-0.573396\pi
−0.228543 + 0.973534i 0.573396π0.573396\pi
464464 0 0
465465 6.32953 0.293525
466466 3.18472 0.147529
467467 4.43077 0.205032 0.102516 0.994731i 0.467311π-0.467311\pi
0.102516 + 0.994731i 0.467311π0.467311\pi
468468 13.3578 0.617466
469469 −12.9364 −0.597347
470470 −14.7905 −0.682234
471471 0.156078 0.00719168
472472 14.5556 0.669976
473473 −40.5253 −1.86335
474474 1.59176 0.0731120
475475 −2.86773 −0.131580
476476 3.47791 0.159410
477477 −19.2131 −0.879706
478478 −12.8020 −0.585551
479479 −21.1257 −0.965259 −0.482629 0.875825i 0.660318π-0.660318\pi
−0.482629 + 0.875825i 0.660318π0.660318\pi
480480 −0.847493 −0.0386826
481481 7.22035 0.329220
482482 −0.472390 −0.0215168
483483 2.38778 0.108648
484484 8.13455 0.369752
485485 −27.9285 −1.26817
486486 6.48858 0.294328
487487 −20.8892 −0.946578 −0.473289 0.880907i 0.656933π-0.656933\pi
−0.473289 + 0.880907i 0.656933π0.656933\pi
488488 6.16373 0.279019
489489 −6.00415 −0.271517
490490 −15.5549 −0.702701
491491 9.03901 0.407925 0.203962 0.978979i 0.434618π-0.434618\pi
0.203962 + 0.978979i 0.434618π0.434618\pi
492492 −1.12781 −0.0508457
493493 0 0
494494 −1.92390 −0.0865605
495495 −44.1148 −1.98281
496496 7.46854 0.335347
497497 19.9021 0.892732
498498 0.152062 0.00681407
499499 −41.3877 −1.85277 −0.926385 0.376579i 0.877100π-0.877100\pi
−0.926385 + 0.376579i 0.877100π0.877100\pi
500500 −6.08981 −0.272345
501501 −3.67061 −0.163991
502502 −0.992245 −0.0442861
503503 40.0349 1.78507 0.892535 0.450979i 0.148925π-0.148925\pi
0.892535 + 0.450979i 0.148925π0.148925\pi
504504 4.61612 0.205618
505505 −55.4293 −2.46657
506506 −26.9256 −1.19699
507507 −1.89119 −0.0839906
508508 −14.6339 −0.649276
509509 −21.0580 −0.933377 −0.466689 0.884422i 0.654553π-0.654553\pi
−0.466689 + 0.884422i 0.654553π0.654553\pi
510510 −1.87662 −0.0830982
511511 13.5717 0.600376
512512 −1.00000 −0.0441942
513513 −0.620900 −0.0274134
514514 21.2077 0.935432
515515 1.67082 0.0736253
516516 −2.28812 −0.100729
517517 18.8545 0.829222
518518 2.49517 0.109631
519519 0.0452297 0.00198536
520520 −15.5959 −0.683927
521521 12.1752 0.533406 0.266703 0.963779i 0.414066π-0.414066\pi
0.266703 + 0.963779i 0.414066π0.414066\pi
522522 0 0
523523 24.2771 1.06156 0.530781 0.847509i 0.321899π-0.321899\pi
0.530781 + 0.847509i 0.321899π0.321899\pi
524524 −12.7288 −0.556059
525525 −2.62803 −0.114696
526526 −4.59716 −0.200446
527527 16.5377 0.720395
528528 1.08036 0.0470168
529529 14.8889 0.647344
530530 22.4322 0.974393
531531 42.7790 1.85645
532532 −0.664851 −0.0288250
533533 −20.7545 −0.898977
534534 −1.25136 −0.0541516
535535 18.5865 0.803566
536536 8.23637 0.355757
537537 1.96243 0.0846850
538538 −2.23745 −0.0964632
539539 19.8291 0.854098
540540 −5.03326 −0.216597
541541 −12.3846 −0.532458 −0.266229 0.963910i 0.585778π-0.585778\pi
−0.266229 + 0.963910i 0.585778π0.585778\pi
542542 −5.66146 −0.243180
543543 −0.443929 −0.0190508
544544 −2.21432 −0.0949382
545545 −23.6130 −1.01147
546546 −1.76309 −0.0754534
547547 32.2704 1.37978 0.689891 0.723914i 0.257659π-0.257659\pi
0.689891 + 0.723914i 0.257659π0.257659\pi
548548 −7.19607 −0.307401
549549 18.1152 0.773138
550550 29.6347 1.26363
551551 0 0
552552 −1.52026 −0.0647064
553553 10.1226 0.430459
554554 20.7393 0.881130
555555 −1.34635 −0.0571494
556556 5.60448 0.237683
557557 39.2120 1.66147 0.830733 0.556671i 0.187922π-0.187922\pi
0.830733 + 0.556671i 0.187922π0.187922\pi
558558 21.9500 0.929219
559559 −42.1069 −1.78093
560560 −5.38955 −0.227750
561561 2.39227 0.101002
562562 −18.6958 −0.788634
563563 42.8169 1.80452 0.902259 0.431195i 0.141908π-0.141908\pi
0.902259 + 0.431195i 0.141908π0.141908\pi
564564 1.06455 0.0448258
565565 −17.7031 −0.744773
566566 8.59049 0.361085
567567 13.2794 0.557681
568568 −12.6713 −0.531677
569569 36.8744 1.54586 0.772929 0.634493i 0.218791π-0.218791\pi
0.772929 + 0.634493i 0.218791π0.218791\pi
570570 0.358743 0.0150261
571571 −18.8019 −0.786834 −0.393417 0.919360i 0.628707π-0.628707\pi
−0.393417 + 0.919360i 0.628707π0.628707\pi
572572 19.8813 0.831280
573573 4.95602 0.207041
574574 −7.17222 −0.299363
575575 −41.7011 −1.73905
576576 −2.93900 −0.122458
577577 −6.13904 −0.255572 −0.127786 0.991802i 0.540787π-0.540787\pi
−0.127786 + 0.991802i 0.540787π0.540787\pi
578578 12.0968 0.503160
579579 −1.75024 −0.0727375
580580 0 0
581581 0.967025 0.0401190
582582 2.01017 0.0833243
583583 −28.5961 −1.18433
584584 −8.64084 −0.357561
585585 −45.8365 −1.89511
586586 −7.69030 −0.317683
587587 −29.5333 −1.21897 −0.609484 0.792798i 0.708623π-0.708623\pi
−0.609484 + 0.792798i 0.708623π0.708623\pi
588588 1.11958 0.0461706
589589 −3.16142 −0.130264
590590 −49.9466 −2.05627
591591 −1.14271 −0.0470048
592592 −1.58863 −0.0652921
593593 18.0707 0.742074 0.371037 0.928618i 0.379002π-0.379002\pi
0.371037 + 0.928618i 0.379002π0.379002\pi
594594 6.41628 0.263263
595595 −11.9342 −0.489255
596596 15.4995 0.634884
597597 −0.884441 −0.0361978
598598 −27.9764 −1.14404
599599 10.6956 0.437010 0.218505 0.975836i 0.429882π-0.429882\pi
0.218505 + 0.975836i 0.429882π0.429882\pi
600600 1.67322 0.0683088
601601 4.26071 0.173798 0.0868989 0.996217i 0.472304π-0.472304\pi
0.0868989 + 0.996217i 0.472304π0.472304\pi
602602 −14.5511 −0.593057
603603 24.2067 0.985772
604604 2.02651 0.0824575
605605 −27.9131 −1.13483
606606 3.98956 0.162065
607607 10.6644 0.432856 0.216428 0.976299i 0.430559π-0.430559\pi
0.216428 + 0.976299i 0.430559π0.430559\pi
608608 0.423299 0.0171670
609609 0 0
610610 −21.1504 −0.856354
611611 19.5904 0.792543
612612 −6.50789 −0.263066
613613 −12.9410 −0.522681 −0.261340 0.965247i 0.584165π-0.584165\pi
−0.261340 + 0.965247i 0.584165π0.584165\pi
614614 −14.7061 −0.593490
615615 3.87001 0.156054
616616 6.87048 0.276819
617617 −13.1331 −0.528719 −0.264360 0.964424i 0.585161π-0.585161\pi
−0.264360 + 0.964424i 0.585161π0.585161\pi
618618 −0.120259 −0.00483752
619619 −22.1454 −0.890101 −0.445050 0.895506i 0.646814π-0.646814\pi
−0.445050 + 0.895506i 0.646814π0.646814\pi
620620 −25.6278 −1.02924
621621 −9.02881 −0.362314
622622 −16.9331 −0.678954
623623 −7.95789 −0.318826
624624 1.12253 0.0449371
625625 −12.9768 −0.519073
626626 −16.1943 −0.647254
627627 −0.457317 −0.0182635
628628 −0.631946 −0.0252174
629629 −3.51773 −0.140261
630630 −15.8399 −0.631077
631631 9.77633 0.389190 0.194595 0.980884i 0.437661π-0.437661\pi
0.194595 + 0.980884i 0.437661π0.437661\pi
632632 −6.44491 −0.256365
633633 −0.448513 −0.0178268
634634 10.7887 0.428476
635635 50.2154 1.99274
636636 −1.61457 −0.0640220
637637 20.6030 0.816319
638638 0 0
639639 −37.2410 −1.47323
640640 3.43143 0.135639
641641 8.50080 0.335762 0.167881 0.985807i 0.446308π-0.446308\pi
0.167881 + 0.985807i 0.446308π0.446308\pi
642642 −1.33778 −0.0527979
643643 40.2359 1.58675 0.793374 0.608734i 0.208322π-0.208322\pi
0.793374 + 0.608734i 0.208322π0.208322\pi
644644 −9.66793 −0.380970
645645 7.85151 0.309153
646646 0.937319 0.0368783
647647 21.2127 0.833956 0.416978 0.908916i 0.363089π-0.363089\pi
0.416978 + 0.908916i 0.363089π0.363089\pi
648648 −8.45473 −0.332133
649649 63.6707 2.49929
650650 30.7913 1.20773
651651 −2.89717 −0.113549
652652 24.3103 0.952065
653653 27.2722 1.06724 0.533622 0.845723i 0.320830π-0.320830\pi
0.533622 + 0.845723i 0.320830π0.320830\pi
654654 1.69956 0.0664582
655655 43.6779 1.70664
656656 4.56642 0.178289
657657 −25.3955 −0.990771
658658 6.76994 0.263920
659659 −18.3346 −0.714216 −0.357108 0.934063i 0.616237π-0.616237\pi
−0.357108 + 0.934063i 0.616237π0.616237\pi
660660 −3.70719 −0.144302
661661 −17.0116 −0.661673 −0.330837 0.943688i 0.607331π-0.607331\pi
−0.330837 + 0.943688i 0.607331π0.607331\pi
662662 −26.4094 −1.02643
663663 2.48564 0.0965342
664664 −0.615687 −0.0238933
665665 2.28139 0.0884686
666666 −4.66897 −0.180919
667667 0 0
668668 14.8620 0.575029
669669 −5.17053 −0.199904
670670 −28.2625 −1.09188
671671 26.9620 1.04086
672672 0.387917 0.0149642
673673 4.90116 0.188926 0.0944629 0.995528i 0.469887π-0.469887\pi
0.0944629 + 0.995528i 0.469887π0.469887\pi
674674 20.6226 0.794351
675675 9.93723 0.382484
676676 7.65727 0.294510
677677 37.4400 1.43894 0.719468 0.694525i 0.244386π-0.244386\pi
0.719468 + 0.694525i 0.244386π0.244386\pi
678678 1.27419 0.0489350
679679 12.7835 0.490586
680680 7.59829 0.291381
681681 −0.686570 −0.0263094
682682 32.6697 1.25099
683683 41.7713 1.59833 0.799167 0.601109i 0.205274π-0.205274\pi
0.799167 + 0.601109i 0.205274π0.205274\pi
684684 1.24408 0.0475684
685685 24.6928 0.943464
686686 18.1144 0.691609
687687 5.93393 0.226394
688688 9.26439 0.353202
689689 −29.7121 −1.13194
690690 5.21666 0.198595
691691 −1.25355 −0.0476872 −0.0238436 0.999716i 0.507590π-0.507590\pi
−0.0238436 + 0.999716i 0.507590π0.507590\pi
692692 −0.183131 −0.00696160
693693 20.1923 0.767043
694694 −5.27973 −0.200416
695695 −19.2314 −0.729488
696696 0 0
697697 10.1115 0.383001
698698 20.1993 0.764555
699699 0.786561 0.0297505
700700 10.6407 0.402179
701701 −36.1405 −1.36501 −0.682503 0.730882i 0.739109π-0.739109\pi
−0.682503 + 0.730882i 0.739109π0.739109\pi
702702 6.66670 0.251618
703703 0.672463 0.0253624
704704 −4.37431 −0.164863
705705 −3.65295 −0.137578
706706 12.7715 0.480661
707707 25.3712 0.954184
708708 3.59494 0.135106
709709 27.5004 1.03280 0.516400 0.856347i 0.327272π-0.327272\pi
0.516400 + 0.856347i 0.327272π0.327272\pi
710710 43.4808 1.63180
711711 −18.9416 −0.710365
712712 5.06665 0.189881
713713 −45.9718 −1.72166
714714 0.858973 0.0321462
715715 −68.2214 −2.55134
716716 −7.94570 −0.296945
717717 −3.16184 −0.118081
718718 2.41249 0.0900335
719719 −3.76398 −0.140373 −0.0701865 0.997534i 0.522359π-0.522359\pi
−0.0701865 + 0.997534i 0.522359π0.522359\pi
720720 10.0850 0.375845
721721 −0.764774 −0.0284817
722722 18.8208 0.700438
723723 −0.116671 −0.00433903
724724 1.79743 0.0668011
725725 0 0
726726 2.00907 0.0745635
727727 39.7913 1.47578 0.737890 0.674921i 0.235823π-0.235823\pi
0.737890 + 0.674921i 0.235823π0.235823\pi
728728 7.13862 0.264575
729729 −23.7616 −0.880061
730730 29.6505 1.09741
731731 20.5143 0.758750
732732 1.52231 0.0562664
733733 45.6514 1.68617 0.843087 0.537777i 0.180736π-0.180736\pi
0.843087 + 0.537777i 0.180736π0.180736\pi
734734 −26.3208 −0.971518
735735 −3.84175 −0.141705
736736 6.15540 0.226891
737737 36.0284 1.32712
738738 13.4207 0.494023
739739 47.5516 1.74922 0.874608 0.484831i 0.161119π-0.161119\pi
0.874608 + 0.484831i 0.161119π0.161119\pi
740740 5.45126 0.200392
741741 −0.475165 −0.0174556
742742 −10.2677 −0.376940
743743 19.1947 0.704185 0.352092 0.935965i 0.385470π-0.385470\pi
0.352092 + 0.935965i 0.385470π0.385470\pi
744744 1.84458 0.0676254
745745 −53.1854 −1.94856
746746 23.8819 0.874377
747747 −1.80950 −0.0662063
748748 −9.68612 −0.354159
749749 −8.50748 −0.310857
750750 −1.50406 −0.0549205
751751 3.63323 0.132578 0.0662892 0.997800i 0.478884π-0.478884\pi
0.0662892 + 0.997800i 0.478884π0.478884\pi
752752 −4.31029 −0.157180
753753 −0.245064 −0.00893064
754754 0 0
755755 −6.95382 −0.253076
756756 2.30384 0.0837898
757757 40.3662 1.46714 0.733568 0.679616i 0.237854π-0.237854\pi
0.733568 + 0.679616i 0.237854π0.237854\pi
758758 −5.55826 −0.201885
759759 −6.65007 −0.241382
760760 −1.45252 −0.0526884
761761 28.6289 1.03780 0.518899 0.854836i 0.326342π-0.326342\pi
0.518899 + 0.854836i 0.326342π0.326342\pi
762762 −3.61429 −0.130932
763763 10.8082 0.391283
764764 −20.0665 −0.725981
765765 22.3314 0.807393
766766 −23.2565 −0.840291
767767 66.1556 2.38874
768768 −0.246980 −0.00891211
769769 −42.7668 −1.54221 −0.771106 0.636707i 0.780296π-0.780296\pi
−0.771106 + 0.636707i 0.780296π0.780296\pi
770770 −23.5756 −0.849604
771771 5.23787 0.188637
772772 7.08658 0.255051
773773 45.5294 1.63758 0.818788 0.574095i 0.194646π-0.194646\pi
0.818788 + 0.574095i 0.194646π0.194646\pi
774774 27.2281 0.978692
775775 50.5972 1.81751
776776 −8.13902 −0.292174
777777 0.616255 0.0221080
778778 23.8652 0.855608
779779 −1.93296 −0.0692555
780780 −3.85188 −0.137919
781781 −55.4282 −1.98338
782782 13.6300 0.487409
783783 0 0
784784 −4.53308 −0.161896
785785 2.16848 0.0773963
786786 −3.14374 −0.112134
787787 −32.6352 −1.16332 −0.581659 0.813433i 0.697596π-0.697596\pi
−0.581659 + 0.813433i 0.697596π0.697596\pi
788788 4.62674 0.164821
789789 −1.13541 −0.0404215
790790 22.1152 0.786825
791791 8.10309 0.288113
792792 −12.8561 −0.456821
793793 28.0143 0.994817
794794 6.97686 0.247600
795795 5.54030 0.196494
796796 3.58103 0.126926
797797 10.1161 0.358330 0.179165 0.983819i 0.442660π-0.442660\pi
0.179165 + 0.983819i 0.442660π0.442660\pi
798798 −0.164205 −0.00581278
799799 −9.54438 −0.337656
800800 −6.77471 −0.239522
801801 14.8909 0.526143
802802 −8.70652 −0.307438
803803 −37.7977 −1.33385
804804 2.03421 0.0717412
805805 33.1748 1.16926
806806 33.9447 1.19565
807807 −0.552604 −0.0194526
808808 −16.1534 −0.568275
809809 −8.02875 −0.282276 −0.141138 0.989990i 0.545076π-0.545076\pi
−0.141138 + 0.989990i 0.545076π0.545076\pi
810810 29.0118 1.01937
811811 6.02885 0.211702 0.105851 0.994382i 0.466243π-0.466243\pi
0.105851 + 0.994382i 0.466243π0.466243\pi
812812 0 0
813813 −1.39826 −0.0490393
814814 −6.94914 −0.243567
815815 −83.4191 −2.92204
816816 −0.546892 −0.0191451
817817 −3.92160 −0.137200
818818 −6.65711 −0.232760
819819 20.9804 0.733115
820820 −15.6694 −0.547197
821821 −18.0676 −0.630563 −0.315281 0.948998i 0.602099π-0.602099\pi
−0.315281 + 0.948998i 0.602099π0.602099\pi
822822 −1.77728 −0.0619898
823823 −11.9594 −0.416879 −0.208440 0.978035i 0.566838π-0.566838\pi
−0.208440 + 0.978035i 0.566838π0.566838\pi
824824 0.486918 0.0169626
825825 7.31916 0.254820
826826 22.8617 0.795460
827827 24.3798 0.847767 0.423884 0.905717i 0.360667π-0.360667\pi
0.423884 + 0.905717i 0.360667π0.360667\pi
828828 18.0907 0.628696
829829 38.6656 1.34291 0.671456 0.741044i 0.265669π-0.265669\pi
0.671456 + 0.741044i 0.265669π0.265669\pi
830830 2.11269 0.0733324
831831 5.12219 0.177687
832832 −4.54503 −0.157570
833833 −10.0377 −0.347785
834834 1.38419 0.0479307
835835 −50.9980 −1.76486
836836 1.85164 0.0640402
837837 10.9549 0.378658
838838 23.1279 0.798939
839839 29.7333 1.02651 0.513254 0.858237i 0.328440π-0.328440\pi
0.513254 + 0.858237i 0.328440π0.328440\pi
840840 −1.33111 −0.0459277
841841 0 0
842842 1.62673 0.0560609
843843 −4.61748 −0.159034
844844 1.81599 0.0625091
845845 −26.2754 −0.903900
846846 −12.6680 −0.435533
847847 12.7765 0.439005
848848 6.53728 0.224491
849849 2.12167 0.0728157
850850 −15.0014 −0.514544
851851 9.77862 0.335207
852852 −3.12956 −0.107217
853853 40.4719 1.38573 0.692865 0.721067i 0.256348π-0.256348\pi
0.692865 + 0.721067i 0.256348π0.256348\pi
854854 9.68102 0.331278
855855 −4.26896 −0.145995
856856 5.41656 0.185134
857857 21.9116 0.748487 0.374243 0.927331i 0.377902π-0.377902\pi
0.374243 + 0.927331i 0.377902π0.377902\pi
858858 4.91028 0.167634
859859 7.88078 0.268889 0.134444 0.990921i 0.457075π-0.457075\pi
0.134444 + 0.990921i 0.457075π0.457075\pi
860860 −31.7901 −1.08403
861861 −1.77139 −0.0603689
862862 0.392815 0.0133793
863863 25.5643 0.870218 0.435109 0.900378i 0.356710π-0.356710\pi
0.435109 + 0.900378i 0.356710π0.356710\pi
864864 −1.46681 −0.0499020
865865 0.628402 0.0213663
866866 36.9800 1.25663
867867 2.98766 0.101466
868868 11.7304 0.398156
869869 −28.1920 −0.956348
870870 0 0
871871 37.4345 1.26842
872872 −6.88139 −0.233033
873873 −23.9206 −0.809589
874874 −2.60557 −0.0881347
875875 −9.56492 −0.323353
876876 −2.13411 −0.0721050
877877 50.5828 1.70806 0.854029 0.520225i 0.174152π-0.174152\pi
0.854029 + 0.520225i 0.174152π0.174152\pi
878878 13.6888 0.461976
879879 −1.89935 −0.0640634
880880 15.0101 0.505991
881881 −38.2432 −1.28845 −0.644223 0.764838i 0.722819π-0.722819\pi
−0.644223 + 0.764838i 0.722819π0.722819\pi
882882 −13.3227 −0.448599
883883 −17.4595 −0.587559 −0.293779 0.955873i 0.594913π-0.594913\pi
−0.293779 + 0.955873i 0.594913π0.594913\pi
884884 −10.0641 −0.338494
885885 −12.3358 −0.414663
886886 4.37363 0.146935
887887 4.18979 0.140679 0.0703397 0.997523i 0.477592π-0.477592\pi
0.0703397 + 0.997523i 0.477592π0.477592\pi
888888 −0.392358 −0.0131667
889889 −22.9847 −0.770882
890890 −17.3858 −0.582775
891891 −36.9836 −1.23900
892892 20.9351 0.700958
893893 1.82454 0.0610560
894894 3.82806 0.128029
895895 27.2651 0.911373
896896 −1.57064 −0.0524715
897897 −6.90961 −0.230705
898898 19.7322 0.658471
899899 0 0
900900 −19.9109 −0.663696
901901 14.4756 0.482253
902902 19.9749 0.665092
903903 −3.59381 −0.119595
904904 −5.15909 −0.171589
905905 −6.16777 −0.205023
906906 0.500506 0.0166282
907907 18.1221 0.601735 0.300867 0.953666i 0.402724π-0.402724\pi
0.300867 + 0.953666i 0.402724π0.402724\pi
908908 2.77986 0.0922530
909909 −47.4749 −1.57464
910910 −24.4957 −0.812023
911911 3.83336 0.127005 0.0635025 0.997982i 0.479773π-0.479773\pi
0.0635025 + 0.997982i 0.479773π0.479773\pi
912912 0.104546 0.00346187
913913 −2.69320 −0.0891320
914914 −36.3594 −1.20266
915915 −5.22372 −0.172691
916916 −24.0260 −0.793842
917917 −19.9924 −0.660206
918918 −3.24799 −0.107200
919919 39.2248 1.29391 0.646954 0.762529i 0.276043π-0.276043\pi
0.646954 + 0.762529i 0.276043π0.276043\pi
920920 −21.1218 −0.696366
921921 −3.63211 −0.119682
922922 8.77942 0.289135
923923 −57.5915 −1.89565
924924 1.69687 0.0558228
925925 −10.7625 −0.353869
926926 9.83531 0.323208
927927 1.43105 0.0470019
928928 0 0
929929 −16.8372 −0.552409 −0.276204 0.961099i 0.589077π-0.589077\pi
−0.276204 + 0.961099i 0.589077π0.589077\pi
930930 −6.32953 −0.207554
931931 1.91885 0.0628876
932932 −3.18472 −0.104319
933933 −4.18212 −0.136916
934934 −4.43077 −0.144979
935935 33.2372 1.08697
936936 −13.3578 −0.436615
937937 25.4711 0.832105 0.416053 0.909341i 0.363413π-0.363413\pi
0.416053 + 0.909341i 0.363413π0.363413\pi
938938 12.9364 0.422388
939939 −3.99966 −0.130524
940940 14.7905 0.482412
941941 −29.5773 −0.964194 −0.482097 0.876118i 0.660125π-0.660125\pi
−0.482097 + 0.876118i 0.660125π0.660125\pi
942942 −0.156078 −0.00508529
943943 −28.1081 −0.915326
944944 −14.5556 −0.473745
945945 −7.90546 −0.257165
946946 40.5253 1.31759
947947 −46.5543 −1.51281 −0.756406 0.654103i 0.773046π-0.773046\pi
−0.756406 + 0.654103i 0.773046π0.773046\pi
948948 −1.59176 −0.0516980
949949 −39.2729 −1.27485
950950 2.86773 0.0930414
951951 2.66460 0.0864056
952952 −3.47791 −0.112720
953953 4.54252 0.147147 0.0735734 0.997290i 0.476560π-0.476560\pi
0.0735734 + 0.997290i 0.476560π0.476560\pi
954954 19.2131 0.622046
955955 68.8568 2.22816
956956 12.8020 0.414047
957957 0 0
958958 21.1257 0.682541
959959 −11.3025 −0.364975
960960 0.847493 0.0273527
961961 24.7790 0.799324
962962 −7.22035 −0.232793
963963 15.9193 0.512991
964964 0.472390 0.0152146
965965 −24.3171 −0.782795
966966 −2.38778 −0.0768256
967967 0.591500 0.0190213 0.00951067 0.999955i 0.496973π-0.496973\pi
0.00951067 + 0.999955i 0.496973π0.496973\pi
968968 −8.13455 −0.261454
969969 0.231499 0.00743681
970970 27.9285 0.896729
971971 −32.3652 −1.03865 −0.519324 0.854577i 0.673816π-0.673816\pi
−0.519324 + 0.854577i 0.673816π0.673816\pi
972972 −6.48858 −0.208121
973973 8.80264 0.282200
974974 20.8892 0.669332
975975 7.60481 0.243549
976976 −6.16373 −0.197296
977977 −31.9020 −1.02063 −0.510317 0.859986i 0.670472π-0.670472\pi
−0.510317 + 0.859986i 0.670472π0.670472\pi
978978 6.00415 0.191991
979979 22.1631 0.708334
980980 15.5549 0.496884
981981 −20.2244 −0.645716
982982 −9.03901 −0.288446
983983 −15.1053 −0.481786 −0.240893 0.970552i 0.577440π-0.577440\pi
−0.240893 + 0.970552i 0.577440π0.577440\pi
984984 1.12781 0.0359533
985985 −15.8763 −0.505862
986986 0 0
987987 1.67204 0.0532215
988988 1.92390 0.0612075
989989 −57.0260 −1.81332
990990 44.1148 1.40206
991991 −49.9779 −1.58760 −0.793801 0.608178i 0.791901π-0.791901\pi
−0.793801 + 0.608178i 0.791901π0.791901\pi
992992 −7.46854 −0.237126
993993 −6.52259 −0.206988
994994 −19.9021 −0.631257
995995 −12.2881 −0.389558
996996 −0.152062 −0.00481827
997997 −0.167080 −0.00529147 −0.00264574 0.999997i 0.500842π-0.500842\pi
−0.00264574 + 0.999997i 0.500842π0.500842\pi
998998 41.3877 1.31011
999999 −2.33022 −0.0737248
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.r.1.1 6
29.8 odd 28 58.2.e.a.35.1 yes 12
29.11 odd 28 58.2.e.a.5.1 12
29.12 odd 4 1682.2.b.j.1681.2 12
29.17 odd 4 1682.2.b.j.1681.12 12
29.28 even 2 1682.2.a.s.1.5 6
87.8 even 28 522.2.n.a.325.2 12
87.11 even 28 522.2.n.a.469.2 12
116.11 even 28 464.2.y.c.353.1 12
116.95 even 28 464.2.y.c.209.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.e.a.5.1 12 29.11 odd 28
58.2.e.a.35.1 yes 12 29.8 odd 28
464.2.y.c.209.1 12 116.95 even 28
464.2.y.c.353.1 12 116.11 even 28
522.2.n.a.325.2 12 87.8 even 28
522.2.n.a.469.2 12 87.11 even 28
1682.2.a.r.1.1 6 1.1 even 1 trivial
1682.2.a.s.1.5 6 29.28 even 2
1682.2.b.j.1681.2 12 29.12 odd 4
1682.2.b.j.1681.12 12 29.17 odd 4