Properties

Label 1682.2.b.b
Level $1682$
Weight $2$
Character orbit 1682.b
Analytic conductor $13.431$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 2 i q^{3} - q^{4} - 2 q^{6} - q^{7} - i q^{8} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + 2 i q^{3} - q^{4} - 2 q^{6} - q^{7} - i q^{8} - q^{9} + 6 i q^{11} - 2 i q^{12} + 4 q^{13} - i q^{14} + q^{16} + 3 i q^{17} - i q^{18} + 4 i q^{19} - 2 i q^{21} - 6 q^{22} + 9 q^{23} + 2 q^{24} - 5 q^{25} + 4 i q^{26} + 4 i q^{27} + q^{28} - 5 i q^{31} + i q^{32} - 12 q^{33} - 3 q^{34} + q^{36} + 2 i q^{37} - 4 q^{38} + 8 i q^{39} - 6 i q^{41} + 2 q^{42} + 4 i q^{43} - 6 i q^{44} + 9 i q^{46} - 9 i q^{47} + 2 i q^{48} - 6 q^{49} - 5 i q^{50} - 6 q^{51} - 4 q^{52} - 12 q^{53} - 4 q^{54} + i q^{56} - 8 q^{57} + 6 q^{59} - 2 i q^{61} + 5 q^{62} + q^{63} - q^{64} - 12 i q^{66} - 8 q^{67} - 3 i q^{68} + 18 i q^{69} - 3 q^{71} + i q^{72} + 11 i q^{73} - 2 q^{74} - 10 i q^{75} - 4 i q^{76} - 6 i q^{77} - 8 q^{78} - 11 i q^{79} - 11 q^{81} + 6 q^{82} + 2 i q^{84} - 4 q^{86} + 6 q^{88} - 3 i q^{89} - 4 q^{91} - 9 q^{92} + 10 q^{93} + 9 q^{94} - 2 q^{96} + 17 i q^{97} - 6 i q^{98} - 6 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{7} - 2 q^{9} + 8 q^{13} + 2 q^{16} - 12 q^{22} + 18 q^{23} + 4 q^{24} - 10 q^{25} + 2 q^{28} - 24 q^{33} - 6 q^{34} + 2 q^{36} - 8 q^{38} + 4 q^{42} - 12 q^{49} - 12 q^{51} - 8 q^{52} - 24 q^{53} - 8 q^{54} - 16 q^{57} + 12 q^{59} + 10 q^{62} + 2 q^{63} - 2 q^{64} - 16 q^{67} - 6 q^{71} - 4 q^{74} - 16 q^{78} - 22 q^{81} + 12 q^{82} - 8 q^{86} + 12 q^{88} - 8 q^{91} - 18 q^{92} + 20 q^{93} + 18 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1681.1
1.00000i
1.00000i
1.00000i 2.00000i −1.00000 0 −2.00000 −1.00000 1.00000i −1.00000 0
1681.2 1.00000i 2.00000i −1.00000 0 −2.00000 −1.00000 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.b.b 2
29.b even 2 1 inner 1682.2.b.b 2
29.c odd 4 1 1682.2.a.b 1
29.c odd 4 1 1682.2.a.i yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.2.a.b 1 29.c odd 4 1
1682.2.a.i yes 1 29.c odd 4 1
1682.2.b.b 2 1.a even 1 1 trivial
1682.2.b.b 2 29.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1682, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 36 \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 25 \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 36 \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 81 \) Copy content Toggle raw display
$53$ \( (T + 12)^{2} \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( (T + 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( T^{2} + 121 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 9 \) Copy content Toggle raw display
$97$ \( T^{2} + 289 \) Copy content Toggle raw display
show more
show less