169.2.a.a |
169 |
2 |
169.a |
1.a |
1 |
2 |
2 |
1.349 |
Q(3) |
None |
✓ |
|
|
|
13.2.e.a |
2 |
0 |
0 |
4 |
0 |
0 |
− |
1 |
SU(2) |
q+βq2+2q3+q4−βq5+2βq6+⋯ |
169.2.a.b |
169 |
2 |
169.a |
1.a |
1 |
3 |
3 |
1.349 |
Q(ζ14)+ |
None |
✓ |
✓ |
✓ |
✓ |
169.2.a.b |
1 |
1 |
−2 |
−2 |
−4 |
−3 |
+ |
1 |
SU(2) |
q+(−1−β2)q2+(−β1+β2)q3+(β1+⋯)q4+⋯ |
169.2.a.c |
169 |
2 |
169.a |
1.a |
1 |
3 |
3 |
1.349 |
Q(ζ14)+ |
None |
✓ |
✓ |
✓ |
|
169.2.a.b |
1 |
0 |
2 |
−2 |
4 |
3 |
− |
1 |
SU(2) |
q+(1−β1)q2+(−1−β2)q3+(1−2β1+⋯)q4+⋯ |
169.2.b.a |
169 |
2 |
169.b |
13.b |
2 |
2 |
2 |
1.349 |
Q(−3) |
None |
|
|
|
|
13.2.e.a |
2 |
0 |
0 |
4 |
0 |
0 |
|
2 |
SU(2)[C2] |
q−βq2+2q3−q4+βq5−2βq6+⋯ |
169.2.b.b |
169 |
2 |
169.b |
13.b |
2 |
6 |
6 |
1.349 |
6.0.153664.1 |
None |
|
✓ |
✓ |
|
169.2.a.b |
2 |
0 |
0 |
−4 |
0 |
0 |
|
1 |
SU(2)[C2] |
q+(β3+β5)q2+(−1+β4)q3+(1−2β2+⋯)q4+⋯ |
169.2.c.a |
169 |
2 |
169.c |
13.c |
3 |
4 |
2 |
1.349 |
Q(ζ12) |
None |
|
|
|
|
13.2.e.a |
4 |
0 |
0 |
−4 |
0 |
0 |
|
3 |
SU(2)[C3] |
q−β2q2−2β1q3+(β1−1)q4+⋯ |
169.2.c.b |
169 |
2 |
169.c |
13.c |
3 |
6 |
3 |
1.349 |
6.0.64827.1 |
None |
|
✓ |
|
|
169.2.a.b |
2 |
0 |
−2 |
2 |
8 |
−3 |
|
1 |
SU(2)[C3] |
q+(−1+β4+β5)q2+(1−β1−β5)q3+⋯ |
169.2.c.c |
169 |
2 |
169.c |
13.c |
3 |
6 |
3 |
1.349 |
6.0.64827.1 |
None |
|
✓ |
|
|
169.2.a.b |
2 |
0 |
2 |
2 |
−8 |
3 |
|
1 |
SU(2)[C3] |
q+(β1+β4)q2+(1−β4−β5)q3+(2β1+⋯)q4+⋯ |
169.2.e.a |
169 |
2 |
169.e |
13.e |
6 |
2 |
1 |
1.349 |
Q(−3) |
None |
|
|
|
|
13.2.e.a |
2 |
0 |
3 |
−2 |
0 |
0 |
|
1 |
SU(2)[C6] |
q+(1+ζ6)q2+(−2+2ζ6)q3+ζ6q4+⋯ |
169.2.e.b |
169 |
2 |
169.e |
13.e |
6 |
12 |
6 |
1.349 |
12.0.⋯.1 |
None |
|
✓ |
✓ |
|
169.2.a.b |
4 |
0 |
0 |
4 |
0 |
0 |
|
1 |
SU(2)[C6] |
q+(−β1+β8+β10)q2+(1−β3+β4+⋯)q3+⋯ |
169.2.g.a |
169 |
2 |
169.g |
169.g |
13 |
156 |
13 |
1.349 |
|
None |
|
✓ |
✓ |
✓ |
169.2.g.a |
2 |
0 |
−10 |
−9 |
−7 |
−5 |
|
|
SU(2)[C13] |
|
169.2.h.a |
169 |
2 |
169.h |
169.h |
26 |
168 |
14 |
1.349 |
|
None |
|
✓ |
✓ |
✓ |
169.2.h.a |
2 |
0 |
−13 |
−13 |
−13 |
−13 |
|
|
SU(2)[C26] |
|
169.2.i.a |
169 |
2 |
169.i |
169.i |
39 |
336 |
14 |
1.349 |
|
None |
|
✓ |
✓ |
✓ |
169.2.i.a |
2 |
0 |
−26 |
−26 |
−26 |
−26 |
|
|
SU(2)[C39] |
|
169.2.k.a |
169 |
2 |
169.k |
169.k |
78 |
360 |
15 |
1.349 |
|
None |
|
✓ |
✓ |
✓ |
169.2.k.a |
2 |
0 |
−23 |
−24 |
−26 |
−26 |
|
|
SU(2)[C78] |
|
169.3.d.a |
169 |
3 |
169.d |
13.d |
4 |
4 |
2 |
4.605 |
Q(ζ12) |
None |
|
|
|
|
13.3.f.a |
2 |
0 |
−2 |
4 |
−14 |
4 |
|
2 |
SU(2)[C4] |
q+β3q2+(−β3+β2−β1+1)q3+⋯ |
169.3.d.b |
169 |
3 |
169.d |
13.d |
4 |
4 |
2 |
4.605 |
Q(i,22) |
None |
|
✓ |
|
|
169.3.d.b |
4 |
0 |
0 |
−12 |
0 |
0 |
|
1 |
SU(2)[C4] |
q+β1q2−3q3+7β2q4−β1q5+⋯ |
169.3.d.c |
169 |
3 |
169.d |
13.d |
4 |
4 |
2 |
4.605 |
Q(ζ12) |
None |
|
|
|
|
13.3.f.a |
2 |
0 |
2 |
4 |
14 |
−4 |
|
2 |
SU(2)[C4] |
q+(β2−β1+1)q2+(−β3+β2−β1+1)q3+⋯ |
169.3.d.d |
169 |
3 |
169.d |
13.d |
4 |
4 |
2 |
4.605 |
Q(i,10) |
None |
|
|
|
|
13.3.d.a |
2 |
0 |
4 |
−4 |
−8 |
12 |
|
1 |
SU(2)[C4] |
q+(1+β1+β2)q2+(−1+β1−β3)q3+⋯ |
169.3.d.e |
169 |
3 |
169.d |
13.d |
4 |
24 |
12 |
4.605 |
|
None |
|
✓ |
✓ |
|
169.3.d.e |
4 |
0 |
0 |
12 |
0 |
0 |
|
|
SU(2)[C4] |
|
169.3.f.a |
169 |
3 |
169.f |
13.f |
12 |
4 |
1 |
4.605 |
Q(ζ12) |
None |
|
|
|
|
13.3.f.a |
2 |
0 |
−4 |
−2 |
14 |
20 |
|
1 |
SU(2)[C12] |
q+(−1−ζ12)q2+(−ζ12−ζ122+⋯)q3+⋯ |
169.3.f.b |
169 |
3 |
169.f |
13.f |
12 |
4 |
1 |
4.605 |
Q(ζ12) |
None |
|
|
|
|
13.3.f.a |
2 |
0 |
2 |
−2 |
14 |
−16 |
|
1 |
SU(2)[C12] |
q+(1−ζ122+ζ123)q2+(ζ12−ζ122+⋯)q3+⋯ |
169.3.f.c |
169 |
3 |
169.f |
13.f |
12 |
4 |
1 |
4.605 |
Q(ζ12) |
None |
|
|
|
|
13.3.f.a |
2 |
0 |
4 |
−2 |
−14 |
−20 |
|
1 |
SU(2)[C12] |
q+(1+ζ12)q2+(−ζ12−ζ122−ζ123)q3+⋯ |
169.3.f.d |
169 |
3 |
169.f |
13.f |
12 |
8 |
2 |
4.605 |
8.0.3317760000.2 |
None |
|
|
|
|
13.3.d.a |
4 |
0 |
−4 |
4 |
−16 |
−12 |
|
1 |
SU(2)[C12] |
q+(−1−β2−β3+β4+β7)q2+(1+⋯)q3+⋯ |
169.3.f.e |
169 |
3 |
169.f |
13.f |
12 |
8 |
2 |
4.605 |
8.0.⋯.9 |
None |
|
✓ |
|
|
169.3.d.b |
8 |
0 |
0 |
12 |
0 |
0 |
|
1 |
SU(2)[C12] |
q+β1q2+3β4q3+7β2q4+(β1−β5+⋯)q5+⋯ |
169.3.f.f |
169 |
3 |
169.f |
13.f |
12 |
8 |
2 |
4.605 |
8.0.3317760000.2 |
None |
|
|
|
|
13.3.d.a |
4 |
0 |
4 |
4 |
16 |
12 |
|
1 |
SU(2)[C12] |
q+(1+β2−β3−β4+β7)q2+(1+β3+⋯)q3+⋯ |
169.3.f.g |
169 |
3 |
169.f |
13.f |
12 |
48 |
12 |
4.605 |
|
None |
|
✓ |
✓ |
|
169.3.d.e |
8 |
0 |
0 |
−12 |
0 |
0 |
|
|
SU(2)[C12] |
|
169.3.j.a |
169 |
3 |
169.j |
169.j |
52 |
720 |
30 |
4.605 |
|
None |
|
✓ |
✓ |
✓ |
169.3.j.a |
2 |
0 |
−22 |
−22 |
−34 |
−14 |
|
|
SU(2)[C52] |
|
169.3.l.a |
169 |
3 |
169.l |
169.l |
156 |
1392 |
29 |
4.605 |
|
None |
|
✓ |
✓ |
✓ |
169.3.l.a |
2 |
0 |
−50 |
−50 |
−38 |
−68 |
|
|
SU(2)[C156] |
|
169.4.a.a |
169 |
4 |
169.a |
1.a |
1 |
1 |
1 |
9.971 |
Q |
None |
✓ |
|
|
|
13.4.c.a |
1 |
0 |
−4 |
2 |
−17 |
−20 |
+ |
1 |
SU(2) |
q−4q2+2q3+8q4−17q5−8q6+⋯ |
169.4.a.b |
169 |
4 |
169.a |
1.a |
1 |
1 |
1 |
9.971 |
Q |
None |
✓ |
|
|
|
13.4.b.a |
1 |
1 |
−3 |
−1 |
9 |
−15 |
− |
1 |
SU(2) |
q−3q2−q3+q4+9q5+3q6−15q7+⋯ |
169.4.a.c |
169 |
4 |
169.a |
1.a |
1 |
1 |
1 |
9.971 |
Q |
None |
✓ |
|
|
|
13.4.b.a |
1 |
1 |
3 |
−1 |
−9 |
15 |
− |
1 |
SU(2) |
q+3q2−q3+q4−9q5−3q6+15q7+⋯ |
169.4.a.d |
169 |
4 |
169.a |
1.a |
1 |
1 |
1 |
9.971 |
Q |
None |
✓ |
|
|
|
13.4.c.a |
1 |
0 |
4 |
2 |
17 |
20 |
+ |
1 |
SU(2) |
q+4q2+2q3+8q4+17q5+8q6+⋯ |
169.4.a.e |
169 |
4 |
169.a |
1.a |
1 |
1 |
1 |
9.971 |
Q |
None |
✓ |
|
|
|
13.4.a.a |
1 |
0 |
5 |
−7 |
7 |
13 |
+ |
1 |
SU(2) |
q+5q2−7q3+17q4+7q5−35q6+⋯ |
169.4.a.f |
169 |
4 |
169.a |
1.a |
1 |
2 |
2 |
9.971 |
Q(17) |
None |
✓ |
|
|
|
13.4.c.b |
1 |
0 |
−5 |
5 |
−15 |
15 |
+ |
1 |
SU(2) |
q+(−2−β)q2+(1+3β)q3+5βq4+⋯ |
169.4.a.g |
169 |
4 |
169.a |
1.a |
1 |
2 |
2 |
9.971 |
Q(17) |
None |
✓ |
|
|
|
13.4.a.b |
1 |
0 |
−1 |
5 |
3 |
9 |
+ |
1 |
SU(2) |
q−βq2+(4−3β)q3+(−4+β)q4+⋯ |
169.4.a.h |
169 |
4 |
169.a |
1.a |
1 |
2 |
2 |
9.971 |
Q(3) |
None |
✓ |
|
|
|
13.4.e.a |
2 |
1 |
0 |
−14 |
0 |
0 |
− |
1 |
SU(2) |
q+2βq2−7q3+4q4+8βq5−14βq6+⋯ |
169.4.a.i |
169 |
4 |
169.a |
1.a |
1 |
2 |
2 |
9.971 |
Q(3) |
None |
✓ |
|
|
|
13.4.e.b |
2 |
1 |
0 |
4 |
0 |
0 |
− |
1 |
SU(2) |
q+βq2+2q3−5q4+βq5+2βq6+⋯ |
169.4.a.j |
169 |
4 |
169.a |
1.a |
1 |
2 |
2 |
9.971 |
Q(17) |
None |
✓ |
|
|
|
13.4.c.b |
1 |
0 |
5 |
5 |
15 |
−15 |
+ |
1 |
SU(2) |
q+(3−β)q2+(4−3β)q3+(5−5β)q4+⋯ |
169.4.a.k |
169 |
4 |
169.a |
1.a |
1 |
9 |
9 |
9.971 |
Q[x]/(x9−⋯) |
None |
✓ |
✓ |
✓ |
|
169.4.a.k |
1 |
1 |
−5 |
1 |
−30 |
−38 |
− |
132 |
SU(2) |
q+(−1+β1)q2+β2q3+(5+β5+β6+⋯)q4+⋯ |
169.4.a.l |
169 |
4 |
169.a |
1.a |
1 |
9 |
9 |
9.971 |
Q[x]/(x9−⋯) |
None |
✓ |
✓ |
✓ |
|
169.4.a.k |
1 |
0 |
5 |
1 |
30 |
38 |
+ |
132 |
SU(2) |
q+(1−β1)q2+β2q3+(5+β5+β6+⋯)q4+⋯ |
169.4.b.a |
169 |
4 |
169.b |
13.b |
2 |
2 |
2 |
9.971 |
Q(−1) |
None |
|
|
|
|
13.4.a.a |
2 |
0 |
0 |
−14 |
0 |
0 |
|
1 |
SU(2)[C2] |
q+5iq2−7q3−17q4+7iq5+⋯ |
169.4.b.b |
169 |
4 |
169.b |
13.b |
2 |
2 |
2 |
9.971 |
Q(−3) |
None |
|
|
|
|
13.4.e.a |
2 |
0 |
0 |
−14 |
0 |
0 |
|
2 |
SU(2)[C2] |
q−2βq2−7q3−4q4−8βq5+⋯ |
169.4.b.c |
169 |
4 |
169.b |
13.b |
2 |
2 |
2 |
9.971 |
Q(−1) |
None |
|
|
|
|
13.4.c.a |
2 |
0 |
0 |
4 |
0 |
0 |
|
1 |
SU(2)[C2] |
q+4iq2+2q3−8q4+17iq5+⋯ |
169.4.b.d |
169 |
4 |
169.b |
13.b |
2 |
2 |
2 |
9.971 |
Q(−3) |
None |
|
|
|
|
13.4.e.b |
2 |
0 |
0 |
4 |
0 |
0 |
|
2 |
SU(2)[C2] |
q−βq2+2q3+5q4−βq5−2βq6+⋯ |
169.4.b.e |
169 |
4 |
169.b |
13.b |
2 |
4 |
4 |
9.971 |
Q(i,17) |
None |
|
|
|
|
13.4.c.b |
2 |
0 |
0 |
10 |
0 |
0 |
|
1 |
SU(2)[C2] |
q+(β1+3β2)q2+(1+3β3)q3−5β3q4+⋯ |
169.4.b.f |
169 |
4 |
169.b |
13.b |
2 |
4 |
4 |
9.971 |
Q(i,17) |
None |
|
|
|
|
13.4.a.b |
2 |
0 |
0 |
10 |
0 |
0 |
|
2 |
SU(2)[C2] |
q+β1q2+(1+3β3)q3+(3+β3)q4+⋯ |
169.4.b.g |
169 |
4 |
169.b |
13.b |
2 |
18 |
18 |
9.971 |
Q[x]/(x18+⋯) |
None |
|
✓ |
✓ |
|
169.4.a.k |
2 |
0 |
0 |
2 |
0 |
0 |
|
1310 |
SU(2)[C2] |
q+β9q2−β2q3+(−4+β1)q4+(−β9+⋯)q5+⋯ |
169.4.c.a |
169 |
4 |
169.c |
13.c |
3 |
2 |
1 |
9.971 |
Q(−3) |
None |
|
|
|
|
13.4.a.a |
2 |
0 |
−5 |
7 |
14 |
−13 |
|
1 |
SU(2)[C3] |
q+(−5+5ζ6)q2+(7−7ζ6)q3−17ζ6q4+⋯ |
169.4.c.b |
169 |
4 |
169.c |
13.c |
3 |
2 |
1 |
9.971 |
Q(−3) |
None |
|
|
|
|
13.4.b.a |
2 |
0 |
−3 |
1 |
−18 |
−15 |
|
1 |
SU(2)[C3] |
q+(−3+3ζ6)q2+(1−ζ6)q3−ζ6q4+⋯ |
169.4.c.c |
169 |
4 |
169.c |
13.c |
3 |
2 |
1 |
9.971 |
Q(−3) |
None |
|
|
|
|
13.4.b.a |
2 |
0 |
3 |
1 |
18 |
15 |
|
1 |
SU(2)[C3] |
q+(3−3ζ6)q2+(1−ζ6)q3−ζ6q4+⋯ |