Properties

Label 169.10.a.b.1.3
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 11
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x51438x34164x2+396957x59580 x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 13)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 0.1503410.150341 of defining polynomial
Character χ\chi == 169.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3.15034q2136.532q3502.075q42554.62q5+430.124q69399.91q7+3194.68q81041.89q9+8047.92q1044094.1q11+68549.6q12+29612.9q14+348788.q15+246998.q16+28289.4q17+3282.30q18273836.q19+1.28261e6q20+1.28339e6q21+138911.q221.12921e6q23436178.q24+4.57295e6q25+2.82962e6q27+4.71947e6q281.63691e6q291.09880e6q306.65402e6q312.41381e6q32+6.02028e6q3389121.2q34+2.40132e7q35+523105.q36+1.71193e7q37+862677.q388.16119e6q40+5.15179e6q414.04313e6q421.97275e7q43+2.21386e7q44+2.66162e6q45+3.55739e6q464.82947e7q473.37233e7q48+4.80048e7q491.44063e7q503.86242e6q513.06731e7q538.91427e6q54+1.12644e8q553.00298e7q56+3.73875e7q57+5.15683e6q58+1.15154e7q591.75118e8q603.62567e7q61+2.09624e7q62+9.79364e6q631.18859e8q641.89659e7q66+6.48390e7q671.42034e7q68+1.54174e8q697.56497e7q70+1.47071e8q713.32850e6q72+3.37321e8q735.39317e7q746.24356e8q75+1.37486e8q76+4.14481e8q772.04060e8q796.30986e8q803.65828e8q811.62299e7q827.61700e8q836.44360e8q847.22685e7q85+6.21484e7q86+2.23491e8q871.40867e8q88+8.29058e8q898.38502e6q90+5.66948e8q92+9.08490e8q93+1.52145e8q94+6.99547e8q95+3.29563e8q961.00647e9q971.51231e8q98+4.59410e7q99+O(q100)q-3.15034 q^{2} -136.532 q^{3} -502.075 q^{4} -2554.62 q^{5} +430.124 q^{6} -9399.91 q^{7} +3194.68 q^{8} -1041.89 q^{9} +8047.92 q^{10} -44094.1 q^{11} +68549.6 q^{12} +29612.9 q^{14} +348788. q^{15} +246998. q^{16} +28289.4 q^{17} +3282.30 q^{18} -273836. q^{19} +1.28261e6 q^{20} +1.28339e6 q^{21} +138911. q^{22} -1.12921e6 q^{23} -436178. q^{24} +4.57295e6 q^{25} +2.82962e6 q^{27} +4.71947e6 q^{28} -1.63691e6 q^{29} -1.09880e6 q^{30} -6.65402e6 q^{31} -2.41381e6 q^{32} +6.02028e6 q^{33} -89121.2 q^{34} +2.40132e7 q^{35} +523105. q^{36} +1.71193e7 q^{37} +862677. q^{38} -8.16119e6 q^{40} +5.15179e6 q^{41} -4.04313e6 q^{42} -1.97275e7 q^{43} +2.21386e7 q^{44} +2.66162e6 q^{45} +3.55739e6 q^{46} -4.82947e7 q^{47} -3.37233e7 q^{48} +4.80048e7 q^{49} -1.44063e7 q^{50} -3.86242e6 q^{51} -3.06731e7 q^{53} -8.91427e6 q^{54} +1.12644e8 q^{55} -3.00298e7 q^{56} +3.73875e7 q^{57} +5.15683e6 q^{58} +1.15154e7 q^{59} -1.75118e8 q^{60} -3.62567e7 q^{61} +2.09624e7 q^{62} +9.79364e6 q^{63} -1.18859e8 q^{64} -1.89659e7 q^{66} +6.48390e7 q^{67} -1.42034e7 q^{68} +1.54174e8 q^{69} -7.56497e7 q^{70} +1.47071e8 q^{71} -3.32850e6 q^{72} +3.37321e8 q^{73} -5.39317e7 q^{74} -6.24356e8 q^{75} +1.37486e8 q^{76} +4.14481e8 q^{77} -2.04060e8 q^{79} -6.30986e8 q^{80} -3.65828e8 q^{81} -1.62299e7 q^{82} -7.61700e8 q^{83} -6.44360e8 q^{84} -7.22685e7 q^{85} +6.21484e7 q^{86} +2.23491e8 q^{87} -1.40867e8 q^{88} +8.29058e8 q^{89} -8.38502e6 q^{90} +5.66948e8 q^{92} +9.08490e8 q^{93} +1.52145e8 q^{94} +6.99547e8 q^{95} +3.29563e8 q^{96} -1.00647e9 q^{97} -1.51231e8 q^{98} +4.59410e7 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q15q2+161q3+361q41803q55693q610099q723151q8+61060q9+84505q10121746q11+113389q12+8475q14105973q15322463q16495669q17+3016199848q99+O(q100) 5 q - 15 q^{2} + 161 q^{3} + 361 q^{4} - 1803 q^{5} - 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9} + 84505 q^{10} - 121746 q^{11} + 113389 q^{12} + 8475 q^{14} - 105973 q^{15} - 322463 q^{16} - 495669 q^{17}+ \cdots - 3016199848 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −3.15034 −0.139227 −0.0696134 0.997574i 0.522177π-0.522177\pi
−0.0696134 + 0.997574i 0.522177π0.522177\pi
33 −136.532 −0.973174 −0.486587 0.873632i 0.661758π-0.661758\pi
−0.486587 + 0.873632i 0.661758π0.661758\pi
44 −502.075 −0.980616
55 −2554.62 −1.82794 −0.913968 0.405787i 0.866998π-0.866998\pi
−0.913968 + 0.405787i 0.866998π0.866998\pi
66 430.124 0.135492
77 −9399.91 −1.47973 −0.739865 0.672755i 0.765111π-0.765111\pi
−0.739865 + 0.672755i 0.765111π0.765111\pi
88 3194.68 0.275755
99 −1041.89 −0.0529333
1010 8047.92 0.254498
1111 −44094.1 −0.908058 −0.454029 0.890987i 0.650014π-0.650014\pi
−0.454029 + 0.890987i 0.650014π0.650014\pi
1212 68549.6 0.954309
1313 0 0
1414 29612.9 0.206018
1515 348788. 1.77890
1616 246998. 0.942223
1717 28289.4 0.0821492 0.0410746 0.999156i 0.486922π-0.486922\pi
0.0410746 + 0.999156i 0.486922π0.486922\pi
1818 3282.30 0.00736973
1919 −273836. −0.482058 −0.241029 0.970518i 0.577485π-0.577485\pi
−0.241029 + 0.970518i 0.577485π0.577485\pi
2020 1.28261e6 1.79250
2121 1.28339e6 1.44003
2222 138911. 0.126426
2323 −1.12921e6 −0.841393 −0.420697 0.907201i 0.638214π-0.638214\pi
−0.420697 + 0.907201i 0.638214π0.638214\pi
2424 −436178. −0.268357
2525 4.57295e6 2.34135
2626 0 0
2727 2.82962e6 1.02469
2828 4.71947e6 1.45105
2929 −1.63691e6 −0.429768 −0.214884 0.976640i 0.568937π-0.568937\pi
−0.214884 + 0.976640i 0.568937π0.568937\pi
3030 −1.09880e6 −0.247670
3131 −6.65402e6 −1.29407 −0.647033 0.762462i 0.723991π-0.723991\pi
−0.647033 + 0.762462i 0.723991π0.723991\pi
3232 −2.41381e6 −0.406937
3333 6.02028e6 0.883698
3434 −89121.2 −0.0114374
3535 2.40132e7 2.70485
3636 523105. 0.0519073
3737 1.71193e7 1.50169 0.750843 0.660481i 0.229648π-0.229648\pi
0.750843 + 0.660481i 0.229648π0.229648\pi
3838 862677. 0.0671154
3939 0 0
4040 −8.16119e6 −0.504062
4141 5.15179e6 0.284728 0.142364 0.989814i 0.454530π-0.454530\pi
0.142364 + 0.989814i 0.454530π0.454530\pi
4242 −4.04313e6 −0.200491
4343 −1.97275e7 −0.879962 −0.439981 0.898007i 0.645015π-0.645015\pi
−0.439981 + 0.898007i 0.645015π0.645015\pi
4444 2.21386e7 0.890456
4545 2.66162e6 0.0967587
4646 3.55739e6 0.117144
4747 −4.82947e7 −1.44364 −0.721821 0.692080i 0.756695π-0.756695\pi
−0.721821 + 0.692080i 0.756695π0.756695\pi
4848 −3.37233e7 −0.916947
4949 4.80048e7 1.18960
5050 −1.44063e7 −0.325978
5151 −3.86242e6 −0.0799454
5252 0 0
5353 −3.06731e7 −0.533970 −0.266985 0.963701i 0.586027π-0.586027\pi
−0.266985 + 0.963701i 0.586027π0.586027\pi
5454 −8.91427e6 −0.142664
5555 1.12644e8 1.65987
5656 −3.00298e7 −0.408043
5757 3.73875e7 0.469126
5858 5.15683e6 0.0598352
5959 1.15154e7 0.123722 0.0618609 0.998085i 0.480296π-0.480296\pi
0.0618609 + 0.998085i 0.480296π0.480296\pi
6060 −1.75118e8 −1.74442
6161 −3.62567e7 −0.335277 −0.167639 0.985849i 0.553614π-0.553614\pi
−0.167639 + 0.985849i 0.553614π0.553614\pi
6262 2.09624e7 0.180169
6363 9.79364e6 0.0783271
6464 −1.18859e8 −0.885567
6565 0 0
6666 −1.89659e7 −0.123034
6767 6.48390e7 0.393097 0.196548 0.980494i 0.437027π-0.437027\pi
0.196548 + 0.980494i 0.437027π0.437027\pi
6868 −1.42034e7 −0.0805568
6969 1.54174e8 0.818822
7070 −7.56497e7 −0.376588
7171 1.47071e8 0.686853 0.343427 0.939180i 0.388412π-0.388412\pi
0.343427 + 0.939180i 0.388412π0.388412\pi
7272 −3.32850e6 −0.0145966
7373 3.37321e8 1.39024 0.695122 0.718892i 0.255350π-0.255350\pi
0.695122 + 0.718892i 0.255350π0.255350\pi
7474 −5.39317e7 −0.209075
7575 −6.24356e8 −2.27854
7676 1.37486e8 0.472714
7777 4.14481e8 1.34368
7878 0 0
7979 −2.04060e8 −0.589436 −0.294718 0.955584i 0.595226π-0.595226\pi
−0.294718 + 0.955584i 0.595226π0.595226\pi
8080 −6.30986e8 −1.72232
8181 −3.65828e8 −0.944265
8282 −1.62299e7 −0.0396418
8383 −7.61700e8 −1.76170 −0.880851 0.473394i 0.843029π-0.843029\pi
−0.880851 + 0.473394i 0.843029π0.843029\pi
8484 −6.44360e8 −1.41212
8585 −7.22685e7 −0.150163
8686 6.21484e7 0.122514
8787 2.23491e8 0.418239
8888 −1.40867e8 −0.250401
8989 8.29058e8 1.40065 0.700326 0.713823i 0.253038π-0.253038\pi
0.700326 + 0.713823i 0.253038π0.253038\pi
9090 −8.38502e6 −0.0134714
9191 0 0
9292 5.66948e8 0.825084
9393 9.08490e8 1.25935
9494 1.52145e8 0.200994
9595 6.99547e8 0.881172
9696 3.29563e8 0.396021
9797 −1.00647e9 −1.15432 −0.577161 0.816631i 0.695839π-0.695839\pi
−0.577161 + 0.816631i 0.695839π0.695839\pi
9898 −1.51231e8 −0.165625
9999 4.59410e7 0.0480665
100100 −2.29596e9 −2.29596
101101 1.59054e9 1.52089 0.760446 0.649401i 0.224980π-0.224980\pi
0.760446 + 0.649401i 0.224980π0.224980\pi
102102 1.21679e7 0.0111305
103103 1.13889e9 0.997040 0.498520 0.866878i 0.333877π-0.333877\pi
0.498520 + 0.866878i 0.333877π0.333877\pi
104104 0 0
105105 −3.27858e9 −2.63229
106106 9.66309e7 0.0743429
107107 −7.21432e8 −0.532069 −0.266035 0.963963i 0.585714π-0.585714\pi
−0.266035 + 0.963963i 0.585714π0.585714\pi
108108 −1.42068e9 −1.00482
109109 6.86462e8 0.465798 0.232899 0.972501i 0.425179π-0.425179\pi
0.232899 + 0.972501i 0.425179π0.425179\pi
110110 −3.54866e8 −0.231098
111111 −2.33734e9 −1.46140
112112 −2.32176e9 −1.39424
113113 −8.33795e8 −0.481068 −0.240534 0.970641i 0.577323π-0.577323\pi
−0.240534 + 0.970641i 0.577323π0.577323\pi
114114 −1.17783e8 −0.0653149
115115 2.88470e9 1.53801
116116 8.21852e8 0.421437
117117 0 0
118118 −3.62775e7 −0.0172254
119119 −2.65918e8 −0.121559
120120 1.11427e9 0.490540
121121 −4.13658e8 −0.175431
122122 1.14221e8 0.0466796
123123 −7.03386e8 −0.277090
124124 3.34082e9 1.26898
125125 −6.69264e9 −2.45190
126126 −3.08533e7 −0.0109052
127127 −4.01307e8 −0.136886 −0.0684431 0.997655i 0.521803π-0.521803\pi
−0.0684431 + 0.997655i 0.521803π0.521803\pi
128128 1.61031e9 0.530232
129129 2.69344e9 0.856356
130130 0 0
131131 −3.78377e9 −1.12255 −0.561273 0.827631i 0.689688π-0.689688\pi
−0.561273 + 0.827631i 0.689688π0.689688\pi
132132 −3.02263e9 −0.866568
133133 2.57404e9 0.713317
134134 −2.04265e8 −0.0547296
135135 −7.22860e9 −1.87306
136136 9.03756e7 0.0226530
137137 −1.45518e9 −0.352919 −0.176459 0.984308i 0.556464π-0.556464\pi
−0.176459 + 0.984308i 0.556464π0.556464\pi
138138 −4.85700e8 −0.114002
139139 1.50381e9 0.341685 0.170842 0.985298i 0.445351π-0.445351\pi
0.170842 + 0.985298i 0.445351π0.445351\pi
140140 −1.20564e10 −2.65242
141141 6.59380e9 1.40491
142142 −4.63323e8 −0.0956283
143143 0 0
144144 −2.57344e8 −0.0498750
145145 4.18168e9 0.785588
146146 −1.06268e9 −0.193559
147147 −6.55421e9 −1.15769
148148 −8.59520e9 −1.47258
149149 4.28624e9 0.712423 0.356212 0.934405i 0.384068π-0.384068\pi
0.356212 + 0.934405i 0.384068π0.384068\pi
150150 1.96693e9 0.317233
151151 −4.79918e8 −0.0751226 −0.0375613 0.999294i 0.511959π-0.511959\pi
−0.0375613 + 0.999294i 0.511959π0.511959\pi
152152 −8.74820e8 −0.132930
153153 −2.94743e7 −0.00434843
154154 −1.30576e9 −0.187076
155155 1.69985e10 2.36547
156156 0 0
157157 −8.24624e9 −1.08320 −0.541598 0.840637i 0.682181π-0.682181\pi
−0.541598 + 0.840637i 0.682181π0.682181\pi
158158 6.42860e8 0.0820652
159159 4.18788e9 0.519646
160160 6.16635e9 0.743855
161161 1.06145e10 1.24504
162162 1.15248e9 0.131467
163163 5.93537e9 0.658573 0.329286 0.944230i 0.393192π-0.393192\pi
0.329286 + 0.944230i 0.393192π0.393192\pi
164164 −2.58659e9 −0.279209
165165 −1.53795e10 −1.61534
166166 2.39961e9 0.245276
167167 7.41172e9 0.737386 0.368693 0.929551i 0.379805π-0.379805\pi
0.368693 + 0.929551i 0.379805π0.379805\pi
168168 4.10004e9 0.397096
169169 0 0
170170 2.27671e8 0.0209068
171171 2.85306e8 0.0255169
172172 9.90469e9 0.862905
173173 5.63923e9 0.478643 0.239322 0.970940i 0.423075π-0.423075\pi
0.239322 + 0.970940i 0.423075π0.423075\pi
174174 −7.04074e8 −0.0582300
175175 −4.29853e10 −3.46457
176176 −1.08912e10 −0.855593
177177 −1.57223e9 −0.120403
178178 −2.61182e9 −0.195008
179179 1.23881e10 0.901916 0.450958 0.892545i 0.351082π-0.351082\pi
0.450958 + 0.892545i 0.351082π0.351082\pi
180180 −1.33633e9 −0.0948831
181181 −2.45852e10 −1.70263 −0.851314 0.524657i 0.824194π-0.824194\pi
−0.851314 + 0.524657i 0.824194π0.824194\pi
182182 0 0
183183 4.95022e9 0.326283
184184 −3.60746e9 −0.232018
185185 −4.37334e10 −2.74499
186186 −2.86205e9 −0.175335
187187 −1.24739e9 −0.0745962
188188 2.42476e10 1.41566
189189 −2.65982e10 −1.51626
190190 −2.20381e9 −0.122683
191191 −1.06604e10 −0.579592 −0.289796 0.957088i 0.593587π-0.593587\pi
−0.289796 + 0.957088i 0.593587π0.593587\pi
192192 1.62281e10 0.861810
193193 2.09640e10 1.08759 0.543797 0.839217i 0.316986π-0.316986\pi
0.543797 + 0.839217i 0.316986π0.316986\pi
194194 3.17071e9 0.160712
195195 0 0
196196 −2.41020e10 −1.16654
197197 −1.27051e10 −0.601009 −0.300504 0.953780i 0.597155π-0.597155\pi
−0.300504 + 0.953780i 0.597155π0.597155\pi
198198 −1.44730e8 −0.00669214
199199 2.57825e9 0.116543 0.0582715 0.998301i 0.481441π-0.481441\pi
0.0582715 + 0.998301i 0.481441π0.481441\pi
200200 1.46091e10 0.645638
201201 −8.85262e9 −0.382551
202202 −5.01075e9 −0.211749
203203 1.53868e10 0.635941
204204 1.93922e9 0.0783957
205205 −1.31608e10 −0.520465
206206 −3.58788e9 −0.138815
207207 1.17651e9 0.0445377
208208 0 0
209209 1.20746e10 0.437737
210210 1.03286e10 0.366485
211211 1.94301e10 0.674846 0.337423 0.941353i 0.390445π-0.390445\pi
0.337423 + 0.941353i 0.390445π0.390445\pi
212212 1.54002e10 0.523620
213213 −2.00799e10 −0.668427
214214 2.27276e9 0.0740783
215215 5.03962e10 1.60851
216216 9.03974e9 0.282562
217217 6.25472e10 1.91487
218218 −2.16259e9 −0.0648515
219219 −4.60553e10 −1.35295
220220 −5.65556e10 −1.62770
221221 0 0
222222 7.36343e9 0.203466
223223 −9.56077e9 −0.258893 −0.129447 0.991586i 0.541320π-0.541320\pi
−0.129447 + 0.991586i 0.541320π0.541320\pi
224224 2.26896e10 0.602158
225225 −4.76449e9 −0.123935
226226 2.62674e9 0.0669775
227227 2.02032e10 0.505015 0.252507 0.967595i 0.418745π-0.418745\pi
0.252507 + 0.967595i 0.418745π0.418745\pi
228228 −1.87714e10 −0.460033
229229 2.45816e10 0.590678 0.295339 0.955392i 0.404567π-0.404567\pi
0.295339 + 0.955392i 0.404567π0.404567\pi
230230 −9.08778e9 −0.214132
231231 −5.65901e10 −1.30763
232232 −5.22941e9 −0.118510
233233 7.93260e10 1.76325 0.881625 0.471951i 0.156450π-0.156450\pi
0.881625 + 0.471951i 0.156450π0.156450\pi
234234 0 0
235235 1.23375e11 2.63888
236236 −5.78161e9 −0.121324
237237 2.78609e10 0.573623
238238 8.37732e8 0.0169242
239239 2.62515e10 0.520431 0.260215 0.965551i 0.416206π-0.416206\pi
0.260215 + 0.965551i 0.416206π0.416206\pi
240240 8.61501e10 1.67612
241241 1.00766e11 1.92415 0.962074 0.272787i 0.0879454π-0.0879454\pi
0.962074 + 0.272787i 0.0879454π0.0879454\pi
242242 1.30316e9 0.0244247
243243 −5.74808e9 −0.105753
244244 1.82036e10 0.328778
245245 −1.22634e11 −2.17452
246246 2.21591e9 0.0385783
247247 0 0
248248 −2.12575e10 −0.356845
249249 1.03997e11 1.71444
250250 2.10841e10 0.341370
251251 −8.72780e10 −1.38795 −0.693973 0.720001i 0.744142π-0.744142\pi
−0.693973 + 0.720001i 0.744142π0.744142\pi
252252 −4.91715e9 −0.0768088
253253 4.97914e10 0.764034
254254 1.26425e9 0.0190582
255255 9.86700e9 0.146135
256256 5.57827e10 0.811744
257257 4.84205e10 0.692358 0.346179 0.938169i 0.387479π-0.387479\pi
0.346179 + 0.938169i 0.387479π0.387479\pi
258258 −8.48527e9 −0.119228
259259 −1.60920e11 −2.22209
260260 0 0
261261 1.70547e9 0.0227490
262262 1.19202e10 0.156288
263263 −4.40656e9 −0.0567935 −0.0283968 0.999597i 0.509040π-0.509040\pi
−0.0283968 + 0.999597i 0.509040π0.509040\pi
264264 1.92329e10 0.243684
265265 7.83582e10 0.976063
266266 −8.10909e9 −0.0993127
267267 −1.13193e11 −1.36308
268268 −3.25540e10 −0.385477
269269 1.41879e11 1.65209 0.826045 0.563604i 0.190586π-0.190586\pi
0.826045 + 0.563604i 0.190586π0.190586\pi
270270 2.27725e10 0.260780
271271 7.09707e10 0.799313 0.399657 0.916665i 0.369129π-0.369129\pi
0.399657 + 0.916665i 0.369129π0.369129\pi
272272 6.98743e9 0.0774029
273273 0 0
274274 4.58432e9 0.0491357
275275 −2.01640e11 −2.12608
276276 −7.74068e10 −0.802950
277277 1.22293e11 1.24808 0.624039 0.781393i 0.285491π-0.285491\pi
0.624039 + 0.781393i 0.285491π0.285491\pi
278278 −4.73751e9 −0.0475717
279279 6.93274e9 0.0684992
280280 7.67145e10 0.745876
281281 9.91936e10 0.949085 0.474543 0.880233i 0.342613π-0.342613\pi
0.474543 + 0.880233i 0.342613π0.342613\pi
282282 −2.07727e10 −0.195602
283283 1.89673e11 1.75779 0.878893 0.477019i 0.158283π-0.158283\pi
0.878893 + 0.477019i 0.158283π0.158283\pi
284284 −7.38406e10 −0.673539
285285 −9.55108e10 −0.857533
286286 0 0
287287 −4.84264e10 −0.421321
288288 2.51491e9 0.0215405
289289 −1.17788e11 −0.993252
290290 −1.31737e10 −0.109375
291291 1.37415e11 1.12336
292292 −1.69361e11 −1.36329
293293 −1.95772e11 −1.55183 −0.775917 0.630835i 0.782713π-0.782713\pi
−0.775917 + 0.630835i 0.782713π0.782713\pi
294294 2.06480e10 0.161181
295295 −2.94175e10 −0.226155
296296 5.46908e10 0.414097
297297 −1.24770e11 −0.930475
298298 −1.35031e10 −0.0991884
299299 0 0
300300 3.13474e11 2.23437
301301 1.85437e11 1.30211
302302 1.51190e9 0.0104591
303303 −2.17160e11 −1.48009
304304 −6.76370e10 −0.454207
305305 9.26220e10 0.612865
306306 9.28542e7 0.000605417 0
307307 7.17504e10 0.461001 0.230500 0.973072i 0.425964π-0.425964\pi
0.230500 + 0.973072i 0.425964π0.425964\pi
308308 −2.08101e11 −1.31763
309309 −1.55495e11 −0.970293
310310 −5.35510e10 −0.329337
311311 2.11023e10 0.127911 0.0639554 0.997953i 0.479628π-0.479628\pi
0.0639554 + 0.997953i 0.479628π0.479628\pi
312312 0 0
313313 −1.44667e11 −0.851963 −0.425982 0.904732i 0.640071π-0.640071\pi
−0.425982 + 0.904732i 0.640071π0.640071\pi
314314 2.59785e10 0.150810
315315 −2.50190e10 −0.143177
316316 1.02454e11 0.578010
317317 −5.78709e10 −0.321880 −0.160940 0.986964i 0.551453π-0.551453\pi
−0.160940 + 0.986964i 0.551453π0.551453\pi
318318 −1.31933e10 −0.0723485
319319 7.21781e10 0.390254
320320 3.03639e11 1.61876
321321 9.84988e10 0.517796
322322 −3.34392e10 −0.173342
323323 −7.74665e9 −0.0396007
324324 1.83673e11 0.925961
325325 0 0
326326 −1.86984e10 −0.0916909
327327 −9.37244e10 −0.453302
328328 1.64583e10 0.0785151
329329 4.53966e11 2.13620
330330 4.84507e10 0.224899
331331 1.00283e11 0.459199 0.229600 0.973285i 0.426258π-0.426258\pi
0.229600 + 0.973285i 0.426258π0.426258\pi
332332 3.82431e11 1.72755
333333 −1.78364e10 −0.0794892
334334 −2.33495e10 −0.102664
335335 −1.65639e11 −0.718555
336336 3.16996e11 1.35683
337337 −5.73297e10 −0.242128 −0.121064 0.992645i 0.538631π-0.538631\pi
−0.121064 + 0.992645i 0.538631π0.538631\pi
338338 0 0
339339 1.13840e11 0.468163
340340 3.62843e10 0.147253
341341 2.93403e11 1.17509
342342 −8.98812e8 −0.00355264
343343 −7.19204e10 −0.280562
344344 −6.30231e10 −0.242654
345345 −3.93855e11 −1.49675
346346 −1.77655e10 −0.0666399
347347 −2.34072e10 −0.0866695 −0.0433347 0.999061i 0.513798π-0.513798\pi
−0.0433347 + 0.999061i 0.513798π0.513798\pi
348348 −1.12210e11 −0.410131
349349 −3.92804e11 −1.41730 −0.708649 0.705562i 0.750695π-0.750695\pi
−0.708649 + 0.705562i 0.750695π0.750695\pi
350350 1.35418e11 0.482360
351351 0 0
352352 1.06435e11 0.369523
353353 −2.16422e11 −0.741849 −0.370925 0.928663i 0.620959π-0.620959\pi
−0.370925 + 0.928663i 0.620959π0.620959\pi
354354 4.95306e9 0.0167633
355355 −3.75710e11 −1.25552
356356 −4.16250e11 −1.37350
357357 3.63064e10 0.118298
358358 −3.90267e10 −0.125571
359359 −3.49576e11 −1.11075 −0.555376 0.831600i 0.687426π-0.687426\pi
−0.555376 + 0.831600i 0.687426π0.687426\pi
360360 8.50304e9 0.0266817
361361 −2.47701e11 −0.767620
362362 7.74517e10 0.237051
363363 5.64778e10 0.170725
364364 0 0
365365 −8.61727e11 −2.54128
366366 −1.55949e10 −0.0454273
367367 −1.83237e9 −0.00527248 −0.00263624 0.999997i 0.500839π-0.500839\pi
−0.00263624 + 0.999997i 0.500839π0.500839\pi
368368 −2.78913e11 −0.792780
369369 −5.36758e9 −0.0150716
370370 1.37775e11 0.382175
371371 2.88325e11 0.790132
372372 −4.56130e11 −1.23494
373373 5.52030e10 0.147663 0.0738317 0.997271i 0.476477π-0.476477\pi
0.0738317 + 0.997271i 0.476477π0.476477\pi
374374 3.92972e9 0.0103858
375375 9.13763e11 2.38612
376376 −1.54286e11 −0.398091
377377 0 0
378378 8.37934e10 0.211104
379379 −2.25258e11 −0.560795 −0.280397 0.959884i 0.590466π-0.590466\pi
−0.280397 + 0.959884i 0.590466π0.590466\pi
380380 −3.51225e11 −0.864091
381381 5.47914e10 0.133214
382382 3.35838e10 0.0806947
383383 −4.64079e11 −1.10204 −0.551020 0.834492i 0.685761π-0.685761\pi
−0.551020 + 0.834492i 0.685761π0.685761\pi
384384 −2.19860e11 −0.516008
385385 −1.05884e12 −2.45616
386386 −6.60438e10 −0.151422
387387 2.05538e10 0.0465793
388388 5.05322e11 1.13195
389389 −2.63061e11 −0.582482 −0.291241 0.956650i 0.594068π-0.594068\pi
−0.291241 + 0.956650i 0.594068π0.594068\pi
390390 0 0
391391 −3.19446e10 −0.0691198
392392 1.53360e11 0.328039
393393 5.16608e11 1.09243
394394 4.00255e10 0.0836765
395395 5.21296e11 1.07745
396396 −2.30659e10 −0.0471348
397397 1.80382e10 0.0364449 0.0182224 0.999834i 0.494199π-0.494199\pi
0.0182224 + 0.999834i 0.494199π0.494199\pi
398398 −8.12236e9 −0.0162259
399399 −3.51440e11 −0.694181
400400 1.12951e12 2.20607
401401 −7.18792e10 −0.138821 −0.0694103 0.997588i 0.522112π-0.522112\pi
−0.0694103 + 0.997588i 0.522112π0.522112\pi
402402 2.78888e10 0.0532614
403403 0 0
404404 −7.98571e11 −1.49141
405405 9.34549e11 1.72606
406406 −4.84737e10 −0.0885399
407407 −7.54862e11 −1.36362
408408 −1.23392e10 −0.0220453
409409 −5.31862e11 −0.939819 −0.469910 0.882715i 0.655713π-0.655713\pi
−0.469910 + 0.882715i 0.655713π0.655713\pi
410410 4.14612e10 0.0724626
411411 1.98680e11 0.343451
412412 −5.71806e11 −0.977713
413413 −1.08244e11 −0.183075
414414 −3.70640e9 −0.00620084
415415 1.94585e12 3.22028
416416 0 0
417417 −2.05319e11 −0.332519
418418 −3.80390e10 −0.0609446
419419 1.45942e11 0.231322 0.115661 0.993289i 0.463101π-0.463101\pi
0.115661 + 0.993289i 0.463101π0.463101\pi
420420 1.64609e12 2.58127
421421 −3.66247e11 −0.568204 −0.284102 0.958794i 0.591695π-0.591695\pi
−0.284102 + 0.958794i 0.591695π0.591695\pi
422422 −6.12115e10 −0.0939565
423423 5.03176e10 0.0764168
424424 −9.79910e10 −0.147245
425425 1.29366e11 0.192340
426426 6.32587e10 0.0930629
427427 3.40810e11 0.496120
428428 3.62213e11 0.521756
429429 0 0
430430 −1.58765e11 −0.223948
431431 −7.66389e11 −1.06980 −0.534899 0.844916i 0.679650π-0.679650\pi
−0.534899 + 0.844916i 0.679650π0.679650\pi
432432 6.98911e11 0.965484
433433 −1.24176e12 −1.69763 −0.848813 0.528694i 0.822682π-0.822682\pi
−0.848813 + 0.528694i 0.822682π0.822682\pi
434434 −1.97045e11 −0.266601
435435 −5.70935e11 −0.764513
436436 −3.44656e11 −0.456769
437437 3.09218e11 0.405601
438438 1.45090e11 0.188367
439439 −1.48429e12 −1.90734 −0.953671 0.300852i 0.902729π-0.902729\pi
−0.953671 + 0.300852i 0.902729π0.902729\pi
440440 3.59861e11 0.457717
441441 −5.00155e10 −0.0629696
442442 0 0
443443 1.03343e12 1.27487 0.637433 0.770506i 0.279996π-0.279996\pi
0.637433 + 0.770506i 0.279996π0.279996\pi
444444 1.17352e12 1.43307
445445 −2.11793e12 −2.56030
446446 3.01197e10 0.0360449
447447 −5.85211e11 −0.693312
448448 1.11726e12 1.31040
449449 5.83072e11 0.677039 0.338519 0.940959i 0.390074π-0.390074\pi
0.338519 + 0.940959i 0.390074π0.390074\pi
450450 1.50098e10 0.0172551
451451 −2.27163e11 −0.258550
452452 4.18628e11 0.471743
453453 6.55244e10 0.0731073
454454 −6.36470e10 −0.0703116
455455 0 0
456456 1.19441e11 0.129364
457457 −7.39681e11 −0.793271 −0.396635 0.917976i 0.629822π-0.629822\pi
−0.396635 + 0.917976i 0.629822π0.629822\pi
458458 −7.74405e10 −0.0822382
459459 8.00482e10 0.0841772
460460 −1.44834e12 −1.50820
461461 −1.45843e12 −1.50394 −0.751971 0.659197i 0.770896π-0.770896\pi
−0.751971 + 0.659197i 0.770896π0.770896\pi
462462 1.78278e11 0.182058
463463 1.63194e12 1.65040 0.825200 0.564841i 0.191063π-0.191063\pi
0.825200 + 0.564841i 0.191063π0.191063\pi
464464 −4.04314e11 −0.404937
465465 −2.32084e12 −2.30201
466466 −2.49904e11 −0.245492
467467 −8.24440e11 −0.802109 −0.401054 0.916054i 0.631356π-0.631356\pi
−0.401054 + 0.916054i 0.631356π0.631356\pi
468468 0 0
469469 −6.09481e11 −0.581677
470470 −3.88672e11 −0.367403
471471 1.12588e12 1.05414
472472 3.67882e10 0.0341169
473473 8.69866e11 0.799056
474474 −8.77712e10 −0.0798637
475475 −1.25224e12 −1.12867
476476 1.33511e11 0.119202
477477 3.19579e10 0.0282648
478478 −8.27011e10 −0.0724579
479479 1.80073e11 0.156293 0.0781463 0.996942i 0.475100π-0.475100\pi
0.0781463 + 0.996942i 0.475100π0.475100\pi
480480 −8.41907e11 −0.723900
481481 0 0
482482 −3.17448e11 −0.267893
483483 −1.44922e12 −1.21164
484484 2.07688e11 0.172031
485485 2.57114e12 2.11003
486486 1.81084e10 0.0147237
487487 7.22045e11 0.581680 0.290840 0.956772i 0.406065π-0.406065\pi
0.290840 + 0.956772i 0.406065π0.406065\pi
488488 −1.15829e11 −0.0924543
489489 −8.10371e11 −0.640905
490490 3.86339e11 0.302751
491491 1.98313e12 1.53987 0.769937 0.638119i 0.220287π-0.220287\pi
0.769937 + 0.638119i 0.220287π0.220287\pi
492492 3.53153e11 0.271719
493493 −4.63072e10 −0.0353051
494494 0 0
495495 −1.17362e11 −0.0878625
496496 −1.64353e12 −1.21930
497497 −1.38245e12 −1.01636
498498 −3.27625e11 −0.238696
499499 8.27327e11 0.597344 0.298672 0.954356i 0.403456π-0.403456\pi
0.298672 + 0.954356i 0.403456π0.403456\pi
500500 3.36021e12 2.40437
501501 −1.01194e12 −0.717605
502502 2.74955e11 0.193239
503503 4.94554e11 0.344475 0.172238 0.985055i 0.444900π-0.444900\pi
0.172238 + 0.985055i 0.444900π0.444900\pi
504504 3.12876e10 0.0215991
505505 −4.06322e12 −2.78009
506506 −1.56860e11 −0.106374
507507 0 0
508508 2.01486e11 0.134233
509509 2.31118e12 1.52617 0.763087 0.646296i 0.223683π-0.223683\pi
0.763087 + 0.646296i 0.223683π0.223683\pi
510510 −3.10844e10 −0.0203459
511511 −3.17079e12 −2.05719
512512 −1.00022e12 −0.643248
513513 −7.74852e11 −0.493959
514514 −1.52541e11 −0.0963947
515515 −2.90942e12 −1.82252
516516 −1.35231e12 −0.839756
517517 2.12951e12 1.31091
518518 5.06954e11 0.309374
519519 −7.69937e11 −0.465803
520520 0 0
521521 2.20997e12 1.31406 0.657031 0.753864i 0.271812π-0.271812\pi
0.657031 + 0.753864i 0.271812π0.271812\pi
522522 −5.37283e9 −0.00316727
523523 2.43867e12 1.42527 0.712633 0.701537i 0.247503π-0.247503\pi
0.712633 + 0.701537i 0.247503π0.247503\pi
524524 1.89974e12 1.10079
525525 5.86889e12 3.37162
526526 1.38822e10 0.00790718
527527 −1.88238e11 −0.106307
528528 1.48700e12 0.832641
529529 −5.26040e11 −0.292057
530530 −2.46855e11 −0.135894
531531 −1.19978e10 −0.00654900
532532 −1.29236e12 −0.699490
533533 0 0
534534 3.56598e11 0.189777
535535 1.84298e12 0.972588
536536 2.07140e11 0.108398
537537 −1.69138e12 −0.877720
538538 −4.46968e11 −0.230015
539539 −2.11673e12 −1.08023
540540 3.62930e12 1.83675
541541 1.84418e12 0.925585 0.462792 0.886467i 0.346848π-0.346848\pi
0.462792 + 0.886467i 0.346848π0.346848\pi
542542 −2.23582e11 −0.111286
543543 3.35667e12 1.65695
544544 −6.82851e10 −0.0334296
545545 −1.75365e12 −0.851448
546546 0 0
547547 −2.62022e12 −1.25140 −0.625698 0.780065i 0.715186π-0.715186\pi
−0.625698 + 0.780065i 0.715186π0.715186\pi
548548 7.30611e11 0.346078
549549 3.77754e10 0.0177473
550550 6.35235e11 0.296007
551551 4.48245e11 0.207173
552552 4.92536e11 0.225794
553553 1.91815e12 0.872206
554554 −3.85264e11 −0.173766
555555 5.97102e12 2.67135
556556 −7.55025e11 −0.335062
557557 −2.45908e12 −1.08249 −0.541245 0.840865i 0.682047π-0.682047\pi
−0.541245 + 0.840865i 0.682047π0.682047\pi
558558 −2.18405e10 −0.00953692
559559 0 0
560560 5.93122e12 2.54858
561561 1.70310e11 0.0725950
562562 −3.12494e11 −0.132138
563563 −1.30659e12 −0.548091 −0.274046 0.961717i 0.588362π-0.588362\pi
−0.274046 + 0.961717i 0.588362π0.588362\pi
564564 −3.31058e12 −1.37768
565565 2.13003e12 0.879361
566566 −5.97534e11 −0.244731
567567 3.43875e12 1.39726
568568 4.69845e11 0.189403
569569 −2.68810e12 −1.07508 −0.537539 0.843239i 0.680646π-0.680646\pi
−0.537539 + 0.843239i 0.680646π0.680646\pi
570570 3.00892e11 0.119391
571571 2.99602e12 1.17946 0.589729 0.807601i 0.299235π-0.299235\pi
0.589729 + 0.807601i 0.299235π0.299235\pi
572572 0 0
573573 1.45549e12 0.564044
574574 1.52560e11 0.0586592
575575 −5.16381e12 −1.97000
576576 1.23837e11 0.0468760
577577 −6.04343e11 −0.226982 −0.113491 0.993539i 0.536203π-0.536203\pi
−0.113491 + 0.993539i 0.536203π0.536203\pi
578578 3.71071e11 0.138287
579579 −2.86227e12 −1.05842
580580 −2.09952e12 −0.770360
581581 7.15991e12 2.60684
582582 −4.32905e11 −0.156401
583583 1.35250e12 0.484876
584584 1.07763e12 0.383366
585585 0 0
586586 6.16747e11 0.216057
587587 7.41276e11 0.257697 0.128848 0.991664i 0.458872π-0.458872\pi
0.128848 + 0.991664i 0.458872π0.458872\pi
588588 3.29071e12 1.13525
589589 1.82211e12 0.623816
590590 9.26752e10 0.0314869
591591 1.73466e12 0.584886
592592 4.22845e12 1.41492
593593 5.55536e12 1.84487 0.922435 0.386152i 0.126196π-0.126196\pi
0.922435 + 0.386152i 0.126196π0.126196\pi
594594 3.93067e11 0.129547
595595 6.79318e11 0.222201
596596 −2.15201e12 −0.698614
597597 −3.52015e11 −0.113417
598598 0 0
599599 −3.35363e12 −1.06437 −0.532187 0.846627i 0.678630π-0.678630\pi
−0.532187 + 0.846627i 0.678630π0.678630\pi
600600 −1.99462e12 −0.628318
601601 1.88646e12 0.589809 0.294905 0.955527i 0.404712π-0.404712\pi
0.294905 + 0.955527i 0.404712π0.404712\pi
602602 −5.84189e11 −0.181288
603603 −6.75548e10 −0.0208079
604604 2.40955e11 0.0736664
605605 1.05674e12 0.320677
606606 6.84129e11 0.206068
607607 1.01740e12 0.304188 0.152094 0.988366i 0.451398π-0.451398\pi
0.152094 + 0.988366i 0.451398π0.451398\pi
608608 6.60987e11 0.196168
609609 −2.10080e12 −0.618881
610610 −2.91791e11 −0.0853272
611611 0 0
612612 1.47983e10 0.00426414
613613 5.21446e11 0.149155 0.0745774 0.997215i 0.476239π-0.476239\pi
0.0745774 + 0.997215i 0.476239π0.476239\pi
614614 −2.26038e11 −0.0641836
615615 1.79688e12 0.506503
616616 1.32413e12 0.370526
617617 −1.14541e12 −0.318183 −0.159092 0.987264i 0.550857π-0.550857\pi
−0.159092 + 0.987264i 0.550857π0.550857\pi
618618 4.89862e11 0.135091
619619 1.10612e12 0.302827 0.151414 0.988470i 0.451617π-0.451617\pi
0.151414 + 0.988470i 0.451617π0.451617\pi
620620 −8.53452e12 −2.31962
621621 −3.19523e12 −0.862165
622622 −6.64793e10 −0.0178086
623623 −7.79308e12 −2.07259
624624 0 0
625625 8.16561e12 2.14057
626626 4.55751e11 0.118616
627627 −1.64857e12 −0.425994
628628 4.14023e12 1.06220
629629 4.84295e11 0.123362
630630 7.88184e10 0.0199340
631631 −3.20443e12 −0.804671 −0.402336 0.915492i 0.631802π-0.631802\pi
−0.402336 + 0.915492i 0.631802π0.631802\pi
632632 −6.51908e11 −0.162540
633633 −2.65284e12 −0.656742
634634 1.82313e11 0.0448143
635635 1.02518e12 0.250219
636636 −2.10263e12 −0.509573
637637 0 0
638638 −2.27386e11 −0.0543338
639639 −1.53231e11 −0.0363574
640640 −4.11374e12 −0.969230
641641 −4.90467e12 −1.14749 −0.573745 0.819034i 0.694510π-0.694510\pi
−0.573745 + 0.819034i 0.694510π0.694510\pi
642642 −3.10305e11 −0.0720910
643643 −1.53529e12 −0.354194 −0.177097 0.984193i 0.556671π-0.556671\pi
−0.177097 + 0.984193i 0.556671π0.556671\pi
644644 −5.32926e12 −1.22090
645645 −6.88072e12 −1.56536
646646 2.44046e10 0.00551347
647647 −6.61326e11 −0.148370 −0.0741850 0.997244i 0.523636π-0.523636\pi
−0.0741850 + 0.997244i 0.523636π0.523636\pi
648648 −1.16870e12 −0.260385
649649 −5.07763e11 −0.112347
650650 0 0
651651 −8.53973e12 −1.86350
652652 −2.98000e12 −0.645807
653653 4.61469e12 0.993192 0.496596 0.867982i 0.334583π-0.334583\pi
0.496596 + 0.867982i 0.334583π0.334583\pi
654654 2.95264e11 0.0631118
655655 9.66610e12 2.05194
656656 1.27248e12 0.268278
657657 −3.51450e11 −0.0735902
658658 −1.43015e12 −0.297416
659659 −9.04687e12 −1.86859 −0.934294 0.356502i 0.883969π-0.883969\pi
−0.934294 + 0.356502i 0.883969π0.883969\pi
660660 7.72167e12 1.58403
661661 −3.59295e12 −0.732057 −0.366028 0.930604i 0.619283π-0.619283\pi
−0.366028 + 0.930604i 0.619283π0.619283\pi
662662 −3.15926e11 −0.0639328
663663 0 0
664664 −2.43339e12 −0.485797
665665 −6.57568e12 −1.30390
666666 5.61907e10 0.0110670
667667 1.84841e12 0.361604
668668 −3.72124e12 −0.723093
669669 1.30536e12 0.251948
670670 5.21819e11 0.100042
671671 1.59871e12 0.304451
672672 −3.09786e12 −0.586004
673673 2.13714e12 0.401573 0.200786 0.979635i 0.435650π-0.435650\pi
0.200786 + 0.979635i 0.435650π0.435650\pi
674674 1.80608e11 0.0337107
675675 1.29397e13 2.39915
676676 0 0
677677 −2.55166e12 −0.466847 −0.233423 0.972375i 0.574993π-0.574993\pi
−0.233423 + 0.972375i 0.574993π0.574993\pi
678678 −3.58635e11 −0.0651808
679679 9.46070e12 1.70809
680680 −2.30875e11 −0.0414083
681681 −2.75840e12 −0.491467
682682 −9.24320e11 −0.163604
683683 −7.63188e12 −1.34196 −0.670978 0.741477i 0.734126π-0.734126\pi
−0.670978 + 0.741477i 0.734126π0.734126\pi
684684 −1.43245e11 −0.0250223
685685 3.71743e12 0.645113
686686 2.26574e11 0.0390617
687687 −3.35619e12 −0.574832
688688 −4.87266e12 −0.829121
689689 0 0
690690 1.24078e12 0.208388
691691 2.36970e12 0.395405 0.197703 0.980262i 0.436652π-0.436652\pi
0.197703 + 0.980262i 0.436652π0.436652\pi
692692 −2.83132e12 −0.469365
693693 −4.31842e11 −0.0711255
694694 7.37405e10 0.0120667
695695 −3.84165e12 −0.624578
696696 7.13984e11 0.115331
697697 1.45741e11 0.0233902
698698 1.23747e12 0.197326
699699 −1.08306e13 −1.71595
700700 2.15819e13 3.39741
701701 −1.72803e12 −0.270284 −0.135142 0.990826i 0.543149π-0.543149\pi
−0.135142 + 0.990826i 0.543149π0.543149\pi
702702 0 0
703703 −4.68789e12 −0.723900
704704 5.24097e12 0.804146
705705 −1.68446e13 −2.56809
706706 6.81804e11 0.103285
707707 −1.49509e13 −2.25051
708708 7.89378e11 0.118069
709709 3.26440e12 0.485172 0.242586 0.970130i 0.422004π-0.422004\pi
0.242586 + 0.970130i 0.422004π0.422004\pi
710710 1.18361e12 0.174802
711711 2.12608e11 0.0312008
712712 2.64858e12 0.386236
713713 7.51378e12 1.08882
714714 −1.14378e11 −0.0164702
715715 0 0
716716 −6.21976e12 −0.884433
717717 −3.58418e12 −0.506469
718718 1.10128e12 0.154646
719719 −6.17850e11 −0.0862191 −0.0431095 0.999070i 0.513726π-0.513726\pi
−0.0431095 + 0.999070i 0.513726π0.513726\pi
720720 6.57416e11 0.0911683
721721 −1.07054e13 −1.47535
722722 7.80344e11 0.106873
723723 −1.37579e13 −1.87253
724724 1.23436e13 1.66962
725725 −7.48550e12 −1.00624
726726 −1.77924e11 −0.0237695
727727 5.84000e12 0.775368 0.387684 0.921792i 0.373275π-0.373275\pi
0.387684 + 0.921792i 0.373275π0.373275\pi
728728 0 0
729729 7.98538e12 1.04718
730730 2.71473e12 0.353813
731731 −5.58079e11 −0.0722882
732732 −2.48538e12 −0.319958
733733 7.18908e10 0.00919826 0.00459913 0.999989i 0.498536π-0.498536\pi
0.00459913 + 0.999989i 0.498536π0.498536\pi
734734 5.77258e9 0.000734070 0
735735 1.67435e13 2.11618
736736 2.72569e12 0.342394
737737 −2.85902e12 −0.356954
738738 1.69097e10 0.00209837
739739 1.01033e13 1.24613 0.623067 0.782168i 0.285886π-0.285886\pi
0.623067 + 0.782168i 0.285886π0.285886\pi
740740 2.19574e13 2.69178
741741 0 0
742742 −9.08322e11 −0.110007
743743 6.09193e12 0.733340 0.366670 0.930351i 0.380498π-0.380498\pi
0.366670 + 0.930351i 0.380498π0.380498\pi
744744 2.90234e12 0.347272
745745 −1.09497e13 −1.30226
746746 −1.73908e11 −0.0205587
747747 7.93604e11 0.0932527
748748 6.26286e11 0.0731502
749749 6.78139e12 0.787319
750750 −2.87867e12 −0.332212
751751 −1.43572e13 −1.64698 −0.823491 0.567330i 0.807976π-0.807976\pi
−0.823491 + 0.567330i 0.807976π0.807976\pi
752752 −1.19287e13 −1.36023
753753 1.19163e13 1.35071
754754 0 0
755755 1.22601e12 0.137319
756756 1.33543e13 1.48687
757757 1.33786e13 1.48074 0.740370 0.672200i 0.234651π-0.234651\pi
0.740370 + 0.672200i 0.234651π0.234651\pi
758758 7.09640e11 0.0780776
759759 −6.79815e12 −0.743537
760760 2.23483e12 0.242987
761761 −1.00649e13 −1.08788 −0.543938 0.839126i 0.683067π-0.683067\pi
−0.543938 + 0.839126i 0.683067π0.683067\pi
762762 −1.72611e11 −0.0185469
763763 −6.45269e12 −0.689255
764764 5.35231e12 0.568357
765765 7.52956e10 0.00794865
766766 1.46201e12 0.153433
767767 0 0
768768 −7.61614e12 −0.789968
769769 −4.34623e12 −0.448172 −0.224086 0.974569i 0.571940π-0.571940\pi
−0.224086 + 0.974569i 0.571940π0.571940\pi
770770 3.33571e12 0.341963
771771 −6.61097e12 −0.673784
772772 −1.05255e13 −1.06651
773773 −2.50017e12 −0.251862 −0.125931 0.992039i 0.540192π-0.540192\pi
−0.125931 + 0.992039i 0.540192π0.540192\pi
774774 −6.47515e10 −0.00648509
775775 −3.04285e13 −3.02986
776776 −3.21534e12 −0.318310
777777 2.19708e13 2.16248
778778 8.28731e11 0.0810971
779779 −1.41075e12 −0.137256
780780 0 0
781781 −6.48495e12 −0.623702
782782 1.00636e11 0.00962332
783783 −4.63183e12 −0.440377
784784 1.18571e13 1.12087
785785 2.10660e13 1.98001
786786 −1.62749e12 −0.152096
787787 1.47010e13 1.36603 0.683013 0.730406i 0.260669π-0.260669\pi
0.683013 + 0.730406i 0.260669π0.260669\pi
788788 6.37893e12 0.589359
789789 6.01639e11 0.0552700
790790 −1.64226e12 −0.150010
791791 7.83761e12 0.711851
792792 1.46767e11 0.0132546
793793 0 0
794794 −5.68266e10 −0.00507410
795795 −1.06984e13 −0.949879
796796 −1.29448e12 −0.114284
797797 8.96898e12 0.787373 0.393687 0.919245i 0.371199π-0.371199\pi
0.393687 + 0.919245i 0.371199π0.371199\pi
798798 1.10715e12 0.0966485
799799 −1.36623e12 −0.118594
800800 −1.10382e13 −0.952782
801801 −8.63785e11 −0.0741411
802802 2.26444e11 0.0193275
803803 −1.48739e13 −1.26242
804804 4.44468e12 0.375136
805805 −2.71159e13 −2.27584
806806 0 0
807807 −1.93711e13 −1.60777
808808 5.08127e12 0.419393
809809 1.74450e13 1.43187 0.715934 0.698168i 0.246001π-0.246001\pi
0.715934 + 0.698168i 0.246001π0.246001\pi
810810 −2.94415e12 −0.240313
811811 8.34611e12 0.677470 0.338735 0.940882i 0.390001π-0.390001\pi
0.338735 + 0.940882i 0.390001π0.390001\pi
812812 −7.72534e12 −0.623614
813813 −9.68980e12 −0.777871
814814 2.37807e12 0.189852
815815 −1.51626e13 −1.20383
816816 −9.54010e11 −0.0753264
817817 5.40210e12 0.424193
818818 1.67555e12 0.130848
819819 0 0
820820 6.60774e12 0.510376
821821 −1.88288e13 −1.44637 −0.723183 0.690657i 0.757322π-0.757322\pi
−0.723183 + 0.690657i 0.757322π0.757322\pi
822822 −6.25909e11 −0.0478176
823823 4.02178e12 0.305576 0.152788 0.988259i 0.451175π-0.451175\pi
0.152788 + 0.988259i 0.451175π0.451175\pi
824824 3.63838e12 0.274938
825825 2.75304e13 2.06904
826826 3.41006e11 0.0254889
827827 −3.84013e12 −0.285477 −0.142738 0.989760i 0.545591π-0.545591\pi
−0.142738 + 0.989760i 0.545591π0.545591\pi
828828 −5.90695e11 −0.0436744
829829 1.81041e13 1.33132 0.665660 0.746255i 0.268150π-0.268150\pi
0.665660 + 0.746255i 0.268150π0.268150\pi
830830 −6.13010e12 −0.448349
831831 −1.66969e13 −1.21460
832832 0 0
833833 1.35803e12 0.0977249
834834 6.46824e11 0.0462955
835835 −1.89341e13 −1.34789
836836 −6.06234e12 −0.429252
837837 −1.88284e13 −1.32601
838838 −4.59766e11 −0.0322062
839839 −1.83543e13 −1.27882 −0.639410 0.768866i 0.720821π-0.720821\pi
−0.639410 + 0.768866i 0.720821π0.720821\pi
840840 −1.04740e13 −0.725867
841841 −1.18277e13 −0.815300
842842 1.15380e12 0.0791092
843843 −1.35431e13 −0.923625
844844 −9.75538e12 −0.661764
845845 0 0
846846 −1.58518e11 −0.0106393
847847 3.88835e12 0.259591
848848 −7.57621e12 −0.503119
849849 −2.58965e13 −1.71063
850850 −4.07546e11 −0.0267789
851851 −1.93313e13 −1.26351
852852 1.00816e13 0.655470
853853 1.20116e13 0.776835 0.388418 0.921483i 0.373022π-0.373022\pi
0.388418 + 0.921483i 0.373022π0.373022\pi
854854 −1.07367e12 −0.0690732
855855 −7.28848e11 −0.0466433
856856 −2.30475e12 −0.146721
857857 −6.17723e12 −0.391183 −0.195592 0.980685i 0.562663π-0.562663\pi
−0.195592 + 0.980685i 0.562663π0.562663\pi
858858 0 0
859859 2.76160e13 1.73058 0.865291 0.501269i 0.167133π-0.167133\pi
0.865291 + 0.501269i 0.167133π0.167133\pi
860860 −2.53027e13 −1.57733
861861 6.61177e12 0.410019
862862 2.41439e12 0.148944
863863 −9.27582e12 −0.569251 −0.284626 0.958639i 0.591869π-0.591869\pi
−0.284626 + 0.958639i 0.591869π0.591869\pi
864864 −6.83016e12 −0.416983
865865 −1.44061e13 −0.874929
866866 3.91197e12 0.236355
867867 1.60818e13 0.966606
868868 −3.14034e13 −1.87775
869869 8.99785e12 0.535242
870870 1.79864e12 0.106441
871871 0 0
872872 2.19303e12 0.128446
873873 1.04862e12 0.0611021
874874 −9.74143e11 −0.0564704
875875 6.29103e13 3.62815
876876 2.31232e13 1.32672
877877 2.19078e13 1.25055 0.625274 0.780405i 0.284987π-0.284987\pi
0.625274 + 0.780405i 0.284987π0.284987\pi
878878 4.67602e12 0.265553
879879 2.67292e13 1.51020
880880 2.78228e13 1.56397
881881 2.92416e12 0.163534 0.0817672 0.996651i 0.473944π-0.473944\pi
0.0817672 + 0.996651i 0.473944π0.473944\pi
882882 1.57566e11 0.00876706
883883 3.35851e13 1.85919 0.929594 0.368585i 0.120158π-0.120158\pi
0.929594 + 0.368585i 0.120158π0.120158\pi
884884 0 0
885885 4.01645e12 0.220089
886886 −3.25566e12 −0.177495
887887 −3.31699e13 −1.79924 −0.899619 0.436676i 0.856156π-0.856156\pi
−0.899619 + 0.436676i 0.856156π0.856156\pi
888888 −7.46708e12 −0.402988
889889 3.77225e12 0.202555
890890 6.67219e12 0.356462
891891 1.61308e13 0.857447
892892 4.80023e12 0.253875
893893 1.32248e13 0.695920
894894 1.84361e12 0.0965275
895895 −3.16469e13 −1.64864
896896 −1.51368e13 −0.784601
897897 0 0
898898 −1.83688e12 −0.0942619
899899 1.08920e13 0.556148
900900 2.39213e12 0.121533
901901 −8.67724e11 −0.0438652
902902 7.15642e11 0.0359970
903903 −2.53181e13 −1.26718
904904 −2.66371e12 −0.132657
905905 6.28057e13 3.11229
906906 −2.06424e11 −0.0101785
907907 2.27086e13 1.11418 0.557092 0.830451i 0.311917π-0.311917\pi
0.557092 + 0.830451i 0.311917π0.311917\pi
908908 −1.01435e13 −0.495226
909909 −1.65716e12 −0.0805059
910910 0 0
911911 4.92090e12 0.236707 0.118354 0.992972i 0.462238π-0.462238\pi
0.118354 + 0.992972i 0.462238π0.462238\pi
912912 9.23465e12 0.442022
913913 3.35865e13 1.59973
914914 2.33025e12 0.110444
915915 −1.26459e13 −0.596424
916916 −1.23418e13 −0.579229
917917 3.55671e13 1.66107
918918 −2.52179e11 −0.0117197
919919 −9.41621e12 −0.435468 −0.217734 0.976008i 0.569867π-0.569867\pi
−0.217734 + 0.976008i 0.569867π0.569867\pi
920920 9.21569e12 0.424114
921921 −9.79626e12 −0.448634
922922 4.59455e12 0.209389
923923 0 0
924924 2.84125e13 1.28229
925925 7.82858e13 3.51597
926926 −5.14116e12 −0.229780
927927 −1.18659e12 −0.0527766
928928 3.95118e12 0.174889
929929 3.87518e13 1.70695 0.853476 0.521131i 0.174490π-0.174490\pi
0.853476 + 0.521131i 0.174490π0.174490\pi
930930 7.31145e12 0.320502
931931 −1.31454e13 −0.573458
932932 −3.98276e13 −1.72907
933933 −2.88114e12 −0.124479
934934 2.59727e12 0.111675
935935 3.18662e12 0.136357
936936 0 0
937937 1.41425e13 0.599373 0.299687 0.954038i 0.403118π-0.403118\pi
0.299687 + 0.954038i 0.403118π0.403118\pi
938938 1.92007e12 0.0809850
939939 1.97518e13 0.829108
940940 −6.19433e13 −2.58773
941941 2.29704e13 0.955027 0.477514 0.878624i 0.341538π-0.341538\pi
0.477514 + 0.878624i 0.341538π0.341538\pi
942942 −3.54690e12 −0.146764
943943 −5.81744e12 −0.239568
944944 2.84429e12 0.116574
945945 6.79482e13 2.77163
946946 −2.74038e12 −0.111250
947947 1.50510e12 0.0608120 0.0304060 0.999538i 0.490320π-0.490320\pi
0.0304060 + 0.999538i 0.490320π0.490320\pi
948948 −1.39882e13 −0.562504
949949 0 0
950950 3.94498e12 0.157141
951951 7.90126e12 0.313245
952952 −8.49523e11 −0.0335204
953953 2.42253e13 0.951373 0.475686 0.879615i 0.342200π-0.342200\pi
0.475686 + 0.879615i 0.342200π0.342200\pi
954954 −1.00678e11 −0.00393522
955955 2.72332e13 1.05946
956956 −1.31802e13 −0.510343
957957 −9.85465e12 −0.379785
958958 −5.67291e11 −0.0217601
959959 1.36786e13 0.522225
960960 −4.14565e13 −1.57533
961961 1.78364e13 0.674608
962962 0 0
963963 7.51650e11 0.0281642
964964 −5.05923e13 −1.88685
965965 −5.35551e13 −1.98805
966966 4.56554e12 0.168692
967967 −2.41172e13 −0.886967 −0.443484 0.896282i 0.646258π-0.646258\pi
−0.443484 + 0.896282i 0.646258π0.646258\pi
968968 −1.32151e12 −0.0483760
969969 1.05767e12 0.0385383
970970 −8.09996e12 −0.293772
971971 3.13584e13 1.13206 0.566028 0.824386i 0.308479π-0.308479\pi
0.566028 + 0.824386i 0.308479π0.308479\pi
972972 2.88597e12 0.103703
973973 −1.41357e13 −0.505602
974974 −2.27469e12 −0.0809854
975975 0 0
976976 −8.95534e12 −0.315906
977977 −4.44366e13 −1.56033 −0.780163 0.625576i 0.784864π-0.784864\pi
−0.780163 + 0.625576i 0.784864π0.784864\pi
978978 2.55294e12 0.0892312
979979 −3.65566e13 −1.27187
980980 6.15714e13 2.13237
981981 −7.15216e11 −0.0246562
982982 −6.24755e12 −0.214392
983983 −1.53216e13 −0.523376 −0.261688 0.965153i 0.584279π-0.584279\pi
−0.261688 + 0.965153i 0.584279π0.584279\pi
984984 −2.24710e12 −0.0764089
985985 3.24567e13 1.09861
986986 1.45883e11 0.00491541
987987 −6.19812e13 −2.07889
988988 0 0
989989 2.22765e13 0.740394
990990 3.69730e11 0.0122328
991991 2.32887e13 0.767034 0.383517 0.923534i 0.374713π-0.374713\pi
0.383517 + 0.923534i 0.374713π0.374713\pi
992992 1.60615e13 0.526604
993993 −1.36919e13 −0.446881
994994 4.35520e12 0.141504
995995 −6.58644e12 −0.213033
996996 −5.22142e13 −1.68121
997997 −1.12247e13 −0.359788 −0.179894 0.983686i 0.557575π-0.557575\pi
−0.179894 + 0.983686i 0.557575π0.557575\pi
998998 −2.60636e12 −0.0831663
999999 4.84412e13 1.53876
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.b.1.3 5
13.12 even 2 13.10.a.b.1.3 5
39.38 odd 2 117.10.a.e.1.3 5
52.51 odd 2 208.10.a.h.1.4 5
65.64 even 2 325.10.a.b.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.3 5 13.12 even 2
117.10.a.e.1.3 5 39.38 odd 2
169.10.a.b.1.3 5 1.1 even 1 trivial
208.10.a.h.1.4 5 52.51 odd 2
325.10.a.b.1.3 5 65.64 even 2