Properties

Label 169.10.a.b.1.3
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.150341\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.15034 q^{2} -136.532 q^{3} -502.075 q^{4} -2554.62 q^{5} +430.124 q^{6} -9399.91 q^{7} +3194.68 q^{8} -1041.89 q^{9} +8047.92 q^{10} -44094.1 q^{11} +68549.6 q^{12} +29612.9 q^{14} +348788. q^{15} +246998. q^{16} +28289.4 q^{17} +3282.30 q^{18} -273836. q^{19} +1.28261e6 q^{20} +1.28339e6 q^{21} +138911. q^{22} -1.12921e6 q^{23} -436178. q^{24} +4.57295e6 q^{25} +2.82962e6 q^{27} +4.71947e6 q^{28} -1.63691e6 q^{29} -1.09880e6 q^{30} -6.65402e6 q^{31} -2.41381e6 q^{32} +6.02028e6 q^{33} -89121.2 q^{34} +2.40132e7 q^{35} +523105. q^{36} +1.71193e7 q^{37} +862677. q^{38} -8.16119e6 q^{40} +5.15179e6 q^{41} -4.04313e6 q^{42} -1.97275e7 q^{43} +2.21386e7 q^{44} +2.66162e6 q^{45} +3.55739e6 q^{46} -4.82947e7 q^{47} -3.37233e7 q^{48} +4.80048e7 q^{49} -1.44063e7 q^{50} -3.86242e6 q^{51} -3.06731e7 q^{53} -8.91427e6 q^{54} +1.12644e8 q^{55} -3.00298e7 q^{56} +3.73875e7 q^{57} +5.15683e6 q^{58} +1.15154e7 q^{59} -1.75118e8 q^{60} -3.62567e7 q^{61} +2.09624e7 q^{62} +9.79364e6 q^{63} -1.18859e8 q^{64} -1.89659e7 q^{66} +6.48390e7 q^{67} -1.42034e7 q^{68} +1.54174e8 q^{69} -7.56497e7 q^{70} +1.47071e8 q^{71} -3.32850e6 q^{72} +3.37321e8 q^{73} -5.39317e7 q^{74} -6.24356e8 q^{75} +1.37486e8 q^{76} +4.14481e8 q^{77} -2.04060e8 q^{79} -6.30986e8 q^{80} -3.65828e8 q^{81} -1.62299e7 q^{82} -7.61700e8 q^{83} -6.44360e8 q^{84} -7.22685e7 q^{85} +6.21484e7 q^{86} +2.23491e8 q^{87} -1.40867e8 q^{88} +8.29058e8 q^{89} -8.38502e6 q^{90} +5.66948e8 q^{92} +9.08490e8 q^{93} +1.52145e8 q^{94} +6.99547e8 q^{95} +3.29563e8 q^{96} -1.00647e9 q^{97} -1.51231e8 q^{98} +4.59410e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} + 161 q^{3} + 361 q^{4} - 1803 q^{5} - 5693 q^{6} - 10099 q^{7} - 23151 q^{8} + 61060 q^{9} + 84505 q^{10} - 121746 q^{11} + 113389 q^{12} + 8475 q^{14} - 105973 q^{15} - 322463 q^{16} - 495669 q^{17}+ \cdots - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.15034 −0.139227 −0.0696134 0.997574i \(-0.522177\pi\)
−0.0696134 + 0.997574i \(0.522177\pi\)
\(3\) −136.532 −0.973174 −0.486587 0.873632i \(-0.661758\pi\)
−0.486587 + 0.873632i \(0.661758\pi\)
\(4\) −502.075 −0.980616
\(5\) −2554.62 −1.82794 −0.913968 0.405787i \(-0.866998\pi\)
−0.913968 + 0.405787i \(0.866998\pi\)
\(6\) 430.124 0.135492
\(7\) −9399.91 −1.47973 −0.739865 0.672755i \(-0.765111\pi\)
−0.739865 + 0.672755i \(0.765111\pi\)
\(8\) 3194.68 0.275755
\(9\) −1041.89 −0.0529333
\(10\) 8047.92 0.254498
\(11\) −44094.1 −0.908058 −0.454029 0.890987i \(-0.650014\pi\)
−0.454029 + 0.890987i \(0.650014\pi\)
\(12\) 68549.6 0.954309
\(13\) 0 0
\(14\) 29612.9 0.206018
\(15\) 348788. 1.77890
\(16\) 246998. 0.942223
\(17\) 28289.4 0.0821492 0.0410746 0.999156i \(-0.486922\pi\)
0.0410746 + 0.999156i \(0.486922\pi\)
\(18\) 3282.30 0.00736973
\(19\) −273836. −0.482058 −0.241029 0.970518i \(-0.577485\pi\)
−0.241029 + 0.970518i \(0.577485\pi\)
\(20\) 1.28261e6 1.79250
\(21\) 1.28339e6 1.44003
\(22\) 138911. 0.126426
\(23\) −1.12921e6 −0.841393 −0.420697 0.907201i \(-0.638214\pi\)
−0.420697 + 0.907201i \(0.638214\pi\)
\(24\) −436178. −0.268357
\(25\) 4.57295e6 2.34135
\(26\) 0 0
\(27\) 2.82962e6 1.02469
\(28\) 4.71947e6 1.45105
\(29\) −1.63691e6 −0.429768 −0.214884 0.976640i \(-0.568937\pi\)
−0.214884 + 0.976640i \(0.568937\pi\)
\(30\) −1.09880e6 −0.247670
\(31\) −6.65402e6 −1.29407 −0.647033 0.762462i \(-0.723991\pi\)
−0.647033 + 0.762462i \(0.723991\pi\)
\(32\) −2.41381e6 −0.406937
\(33\) 6.02028e6 0.883698
\(34\) −89121.2 −0.0114374
\(35\) 2.40132e7 2.70485
\(36\) 523105. 0.0519073
\(37\) 1.71193e7 1.50169 0.750843 0.660481i \(-0.229648\pi\)
0.750843 + 0.660481i \(0.229648\pi\)
\(38\) 862677. 0.0671154
\(39\) 0 0
\(40\) −8.16119e6 −0.504062
\(41\) 5.15179e6 0.284728 0.142364 0.989814i \(-0.454530\pi\)
0.142364 + 0.989814i \(0.454530\pi\)
\(42\) −4.04313e6 −0.200491
\(43\) −1.97275e7 −0.879962 −0.439981 0.898007i \(-0.645015\pi\)
−0.439981 + 0.898007i \(0.645015\pi\)
\(44\) 2.21386e7 0.890456
\(45\) 2.66162e6 0.0967587
\(46\) 3.55739e6 0.117144
\(47\) −4.82947e7 −1.44364 −0.721821 0.692080i \(-0.756695\pi\)
−0.721821 + 0.692080i \(0.756695\pi\)
\(48\) −3.37233e7 −0.916947
\(49\) 4.80048e7 1.18960
\(50\) −1.44063e7 −0.325978
\(51\) −3.86242e6 −0.0799454
\(52\) 0 0
\(53\) −3.06731e7 −0.533970 −0.266985 0.963701i \(-0.586027\pi\)
−0.266985 + 0.963701i \(0.586027\pi\)
\(54\) −8.91427e6 −0.142664
\(55\) 1.12644e8 1.65987
\(56\) −3.00298e7 −0.408043
\(57\) 3.73875e7 0.469126
\(58\) 5.15683e6 0.0598352
\(59\) 1.15154e7 0.123722 0.0618609 0.998085i \(-0.480296\pi\)
0.0618609 + 0.998085i \(0.480296\pi\)
\(60\) −1.75118e8 −1.74442
\(61\) −3.62567e7 −0.335277 −0.167639 0.985849i \(-0.553614\pi\)
−0.167639 + 0.985849i \(0.553614\pi\)
\(62\) 2.09624e7 0.180169
\(63\) 9.79364e6 0.0783271
\(64\) −1.18859e8 −0.885567
\(65\) 0 0
\(66\) −1.89659e7 −0.123034
\(67\) 6.48390e7 0.393097 0.196548 0.980494i \(-0.437027\pi\)
0.196548 + 0.980494i \(0.437027\pi\)
\(68\) −1.42034e7 −0.0805568
\(69\) 1.54174e8 0.818822
\(70\) −7.56497e7 −0.376588
\(71\) 1.47071e8 0.686853 0.343427 0.939180i \(-0.388412\pi\)
0.343427 + 0.939180i \(0.388412\pi\)
\(72\) −3.32850e6 −0.0145966
\(73\) 3.37321e8 1.39024 0.695122 0.718892i \(-0.255350\pi\)
0.695122 + 0.718892i \(0.255350\pi\)
\(74\) −5.39317e7 −0.209075
\(75\) −6.24356e8 −2.27854
\(76\) 1.37486e8 0.472714
\(77\) 4.14481e8 1.34368
\(78\) 0 0
\(79\) −2.04060e8 −0.589436 −0.294718 0.955584i \(-0.595226\pi\)
−0.294718 + 0.955584i \(0.595226\pi\)
\(80\) −6.30986e8 −1.72232
\(81\) −3.65828e8 −0.944265
\(82\) −1.62299e7 −0.0396418
\(83\) −7.61700e8 −1.76170 −0.880851 0.473394i \(-0.843029\pi\)
−0.880851 + 0.473394i \(0.843029\pi\)
\(84\) −6.44360e8 −1.41212
\(85\) −7.22685e7 −0.150163
\(86\) 6.21484e7 0.122514
\(87\) 2.23491e8 0.418239
\(88\) −1.40867e8 −0.250401
\(89\) 8.29058e8 1.40065 0.700326 0.713823i \(-0.253038\pi\)
0.700326 + 0.713823i \(0.253038\pi\)
\(90\) −8.38502e6 −0.0134714
\(91\) 0 0
\(92\) 5.66948e8 0.825084
\(93\) 9.08490e8 1.25935
\(94\) 1.52145e8 0.200994
\(95\) 6.99547e8 0.881172
\(96\) 3.29563e8 0.396021
\(97\) −1.00647e9 −1.15432 −0.577161 0.816631i \(-0.695839\pi\)
−0.577161 + 0.816631i \(0.695839\pi\)
\(98\) −1.51231e8 −0.165625
\(99\) 4.59410e7 0.0480665
\(100\) −2.29596e9 −2.29596
\(101\) 1.59054e9 1.52089 0.760446 0.649401i \(-0.224980\pi\)
0.760446 + 0.649401i \(0.224980\pi\)
\(102\) 1.21679e7 0.0111305
\(103\) 1.13889e9 0.997040 0.498520 0.866878i \(-0.333877\pi\)
0.498520 + 0.866878i \(0.333877\pi\)
\(104\) 0 0
\(105\) −3.27858e9 −2.63229
\(106\) 9.66309e7 0.0743429
\(107\) −7.21432e8 −0.532069 −0.266035 0.963963i \(-0.585714\pi\)
−0.266035 + 0.963963i \(0.585714\pi\)
\(108\) −1.42068e9 −1.00482
\(109\) 6.86462e8 0.465798 0.232899 0.972501i \(-0.425179\pi\)
0.232899 + 0.972501i \(0.425179\pi\)
\(110\) −3.54866e8 −0.231098
\(111\) −2.33734e9 −1.46140
\(112\) −2.32176e9 −1.39424
\(113\) −8.33795e8 −0.481068 −0.240534 0.970641i \(-0.577323\pi\)
−0.240534 + 0.970641i \(0.577323\pi\)
\(114\) −1.17783e8 −0.0653149
\(115\) 2.88470e9 1.53801
\(116\) 8.21852e8 0.421437
\(117\) 0 0
\(118\) −3.62775e7 −0.0172254
\(119\) −2.65918e8 −0.121559
\(120\) 1.11427e9 0.490540
\(121\) −4.13658e8 −0.175431
\(122\) 1.14221e8 0.0466796
\(123\) −7.03386e8 −0.277090
\(124\) 3.34082e9 1.26898
\(125\) −6.69264e9 −2.45190
\(126\) −3.08533e7 −0.0109052
\(127\) −4.01307e8 −0.136886 −0.0684431 0.997655i \(-0.521803\pi\)
−0.0684431 + 0.997655i \(0.521803\pi\)
\(128\) 1.61031e9 0.530232
\(129\) 2.69344e9 0.856356
\(130\) 0 0
\(131\) −3.78377e9 −1.12255 −0.561273 0.827631i \(-0.689688\pi\)
−0.561273 + 0.827631i \(0.689688\pi\)
\(132\) −3.02263e9 −0.866568
\(133\) 2.57404e9 0.713317
\(134\) −2.04265e8 −0.0547296
\(135\) −7.22860e9 −1.87306
\(136\) 9.03756e7 0.0226530
\(137\) −1.45518e9 −0.352919 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(138\) −4.85700e8 −0.114002
\(139\) 1.50381e9 0.341685 0.170842 0.985298i \(-0.445351\pi\)
0.170842 + 0.985298i \(0.445351\pi\)
\(140\) −1.20564e10 −2.65242
\(141\) 6.59380e9 1.40491
\(142\) −4.63323e8 −0.0956283
\(143\) 0 0
\(144\) −2.57344e8 −0.0498750
\(145\) 4.18168e9 0.785588
\(146\) −1.06268e9 −0.193559
\(147\) −6.55421e9 −1.15769
\(148\) −8.59520e9 −1.47258
\(149\) 4.28624e9 0.712423 0.356212 0.934405i \(-0.384068\pi\)
0.356212 + 0.934405i \(0.384068\pi\)
\(150\) 1.96693e9 0.317233
\(151\) −4.79918e8 −0.0751226 −0.0375613 0.999294i \(-0.511959\pi\)
−0.0375613 + 0.999294i \(0.511959\pi\)
\(152\) −8.74820e8 −0.132930
\(153\) −2.94743e7 −0.00434843
\(154\) −1.30576e9 −0.187076
\(155\) 1.69985e10 2.36547
\(156\) 0 0
\(157\) −8.24624e9 −1.08320 −0.541598 0.840637i \(-0.682181\pi\)
−0.541598 + 0.840637i \(0.682181\pi\)
\(158\) 6.42860e8 0.0820652
\(159\) 4.18788e9 0.519646
\(160\) 6.16635e9 0.743855
\(161\) 1.06145e10 1.24504
\(162\) 1.15248e9 0.131467
\(163\) 5.93537e9 0.658573 0.329286 0.944230i \(-0.393192\pi\)
0.329286 + 0.944230i \(0.393192\pi\)
\(164\) −2.58659e9 −0.279209
\(165\) −1.53795e10 −1.61534
\(166\) 2.39961e9 0.245276
\(167\) 7.41172e9 0.737386 0.368693 0.929551i \(-0.379805\pi\)
0.368693 + 0.929551i \(0.379805\pi\)
\(168\) 4.10004e9 0.397096
\(169\) 0 0
\(170\) 2.27671e8 0.0209068
\(171\) 2.85306e8 0.0255169
\(172\) 9.90469e9 0.862905
\(173\) 5.63923e9 0.478643 0.239322 0.970940i \(-0.423075\pi\)
0.239322 + 0.970940i \(0.423075\pi\)
\(174\) −7.04074e8 −0.0582300
\(175\) −4.29853e10 −3.46457
\(176\) −1.08912e10 −0.855593
\(177\) −1.57223e9 −0.120403
\(178\) −2.61182e9 −0.195008
\(179\) 1.23881e10 0.901916 0.450958 0.892545i \(-0.351082\pi\)
0.450958 + 0.892545i \(0.351082\pi\)
\(180\) −1.33633e9 −0.0948831
\(181\) −2.45852e10 −1.70263 −0.851314 0.524657i \(-0.824194\pi\)
−0.851314 + 0.524657i \(0.824194\pi\)
\(182\) 0 0
\(183\) 4.95022e9 0.326283
\(184\) −3.60746e9 −0.232018
\(185\) −4.37334e10 −2.74499
\(186\) −2.86205e9 −0.175335
\(187\) −1.24739e9 −0.0745962
\(188\) 2.42476e10 1.41566
\(189\) −2.65982e10 −1.51626
\(190\) −2.20381e9 −0.122683
\(191\) −1.06604e10 −0.579592 −0.289796 0.957088i \(-0.593587\pi\)
−0.289796 + 0.957088i \(0.593587\pi\)
\(192\) 1.62281e10 0.861810
\(193\) 2.09640e10 1.08759 0.543797 0.839217i \(-0.316986\pi\)
0.543797 + 0.839217i \(0.316986\pi\)
\(194\) 3.17071e9 0.160712
\(195\) 0 0
\(196\) −2.41020e10 −1.16654
\(197\) −1.27051e10 −0.601009 −0.300504 0.953780i \(-0.597155\pi\)
−0.300504 + 0.953780i \(0.597155\pi\)
\(198\) −1.44730e8 −0.00669214
\(199\) 2.57825e9 0.116543 0.0582715 0.998301i \(-0.481441\pi\)
0.0582715 + 0.998301i \(0.481441\pi\)
\(200\) 1.46091e10 0.645638
\(201\) −8.85262e9 −0.382551
\(202\) −5.01075e9 −0.211749
\(203\) 1.53868e10 0.635941
\(204\) 1.93922e9 0.0783957
\(205\) −1.31608e10 −0.520465
\(206\) −3.58788e9 −0.138815
\(207\) 1.17651e9 0.0445377
\(208\) 0 0
\(209\) 1.20746e10 0.437737
\(210\) 1.03286e10 0.366485
\(211\) 1.94301e10 0.674846 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(212\) 1.54002e10 0.523620
\(213\) −2.00799e10 −0.668427
\(214\) 2.27276e9 0.0740783
\(215\) 5.03962e10 1.60851
\(216\) 9.03974e9 0.282562
\(217\) 6.25472e10 1.91487
\(218\) −2.16259e9 −0.0648515
\(219\) −4.60553e10 −1.35295
\(220\) −5.65556e10 −1.62770
\(221\) 0 0
\(222\) 7.36343e9 0.203466
\(223\) −9.56077e9 −0.258893 −0.129447 0.991586i \(-0.541320\pi\)
−0.129447 + 0.991586i \(0.541320\pi\)
\(224\) 2.26896e10 0.602158
\(225\) −4.76449e9 −0.123935
\(226\) 2.62674e9 0.0669775
\(227\) 2.02032e10 0.505015 0.252507 0.967595i \(-0.418745\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(228\) −1.87714e10 −0.460033
\(229\) 2.45816e10 0.590678 0.295339 0.955392i \(-0.404567\pi\)
0.295339 + 0.955392i \(0.404567\pi\)
\(230\) −9.08778e9 −0.214132
\(231\) −5.65901e10 −1.30763
\(232\) −5.22941e9 −0.118510
\(233\) 7.93260e10 1.76325 0.881625 0.471951i \(-0.156450\pi\)
0.881625 + 0.471951i \(0.156450\pi\)
\(234\) 0 0
\(235\) 1.23375e11 2.63888
\(236\) −5.78161e9 −0.121324
\(237\) 2.78609e10 0.573623
\(238\) 8.37732e8 0.0169242
\(239\) 2.62515e10 0.520431 0.260215 0.965551i \(-0.416206\pi\)
0.260215 + 0.965551i \(0.416206\pi\)
\(240\) 8.61501e10 1.67612
\(241\) 1.00766e11 1.92415 0.962074 0.272787i \(-0.0879454\pi\)
0.962074 + 0.272787i \(0.0879454\pi\)
\(242\) 1.30316e9 0.0244247
\(243\) −5.74808e9 −0.105753
\(244\) 1.82036e10 0.328778
\(245\) −1.22634e11 −2.17452
\(246\) 2.21591e9 0.0385783
\(247\) 0 0
\(248\) −2.12575e10 −0.356845
\(249\) 1.03997e11 1.71444
\(250\) 2.10841e10 0.341370
\(251\) −8.72780e10 −1.38795 −0.693973 0.720001i \(-0.744142\pi\)
−0.693973 + 0.720001i \(0.744142\pi\)
\(252\) −4.91715e9 −0.0768088
\(253\) 4.97914e10 0.764034
\(254\) 1.26425e9 0.0190582
\(255\) 9.86700e9 0.146135
\(256\) 5.57827e10 0.811744
\(257\) 4.84205e10 0.692358 0.346179 0.938169i \(-0.387479\pi\)
0.346179 + 0.938169i \(0.387479\pi\)
\(258\) −8.48527e9 −0.119228
\(259\) −1.60920e11 −2.22209
\(260\) 0 0
\(261\) 1.70547e9 0.0227490
\(262\) 1.19202e10 0.156288
\(263\) −4.40656e9 −0.0567935 −0.0283968 0.999597i \(-0.509040\pi\)
−0.0283968 + 0.999597i \(0.509040\pi\)
\(264\) 1.92329e10 0.243684
\(265\) 7.83582e10 0.976063
\(266\) −8.10909e9 −0.0993127
\(267\) −1.13193e11 −1.36308
\(268\) −3.25540e10 −0.385477
\(269\) 1.41879e11 1.65209 0.826045 0.563604i \(-0.190586\pi\)
0.826045 + 0.563604i \(0.190586\pi\)
\(270\) 2.27725e10 0.260780
\(271\) 7.09707e10 0.799313 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(272\) 6.98743e9 0.0774029
\(273\) 0 0
\(274\) 4.58432e9 0.0491357
\(275\) −2.01640e11 −2.12608
\(276\) −7.74068e10 −0.802950
\(277\) 1.22293e11 1.24808 0.624039 0.781393i \(-0.285491\pi\)
0.624039 + 0.781393i \(0.285491\pi\)
\(278\) −4.73751e9 −0.0475717
\(279\) 6.93274e9 0.0684992
\(280\) 7.67145e10 0.745876
\(281\) 9.91936e10 0.949085 0.474543 0.880233i \(-0.342613\pi\)
0.474543 + 0.880233i \(0.342613\pi\)
\(282\) −2.07727e10 −0.195602
\(283\) 1.89673e11 1.75779 0.878893 0.477019i \(-0.158283\pi\)
0.878893 + 0.477019i \(0.158283\pi\)
\(284\) −7.38406e10 −0.673539
\(285\) −9.55108e10 −0.857533
\(286\) 0 0
\(287\) −4.84264e10 −0.421321
\(288\) 2.51491e9 0.0215405
\(289\) −1.17788e11 −0.993252
\(290\) −1.31737e10 −0.109375
\(291\) 1.37415e11 1.12336
\(292\) −1.69361e11 −1.36329
\(293\) −1.95772e11 −1.55183 −0.775917 0.630835i \(-0.782713\pi\)
−0.775917 + 0.630835i \(0.782713\pi\)
\(294\) 2.06480e10 0.161181
\(295\) −2.94175e10 −0.226155
\(296\) 5.46908e10 0.414097
\(297\) −1.24770e11 −0.930475
\(298\) −1.35031e10 −0.0991884
\(299\) 0 0
\(300\) 3.13474e11 2.23437
\(301\) 1.85437e11 1.30211
\(302\) 1.51190e9 0.0104591
\(303\) −2.17160e11 −1.48009
\(304\) −6.76370e10 −0.454207
\(305\) 9.26220e10 0.612865
\(306\) 9.28542e7 0.000605417 0
\(307\) 7.17504e10 0.461001 0.230500 0.973072i \(-0.425964\pi\)
0.230500 + 0.973072i \(0.425964\pi\)
\(308\) −2.08101e11 −1.31763
\(309\) −1.55495e11 −0.970293
\(310\) −5.35510e10 −0.329337
\(311\) 2.11023e10 0.127911 0.0639554 0.997953i \(-0.479628\pi\)
0.0639554 + 0.997953i \(0.479628\pi\)
\(312\) 0 0
\(313\) −1.44667e11 −0.851963 −0.425982 0.904732i \(-0.640071\pi\)
−0.425982 + 0.904732i \(0.640071\pi\)
\(314\) 2.59785e10 0.150810
\(315\) −2.50190e10 −0.143177
\(316\) 1.02454e11 0.578010
\(317\) −5.78709e10 −0.321880 −0.160940 0.986964i \(-0.551453\pi\)
−0.160940 + 0.986964i \(0.551453\pi\)
\(318\) −1.31933e10 −0.0723485
\(319\) 7.21781e10 0.390254
\(320\) 3.03639e11 1.61876
\(321\) 9.84988e10 0.517796
\(322\) −3.34392e10 −0.173342
\(323\) −7.74665e9 −0.0396007
\(324\) 1.83673e11 0.925961
\(325\) 0 0
\(326\) −1.86984e10 −0.0916909
\(327\) −9.37244e10 −0.453302
\(328\) 1.64583e10 0.0785151
\(329\) 4.53966e11 2.13620
\(330\) 4.84507e10 0.224899
\(331\) 1.00283e11 0.459199 0.229600 0.973285i \(-0.426258\pi\)
0.229600 + 0.973285i \(0.426258\pi\)
\(332\) 3.82431e11 1.72755
\(333\) −1.78364e10 −0.0794892
\(334\) −2.33495e10 −0.102664
\(335\) −1.65639e11 −0.718555
\(336\) 3.16996e11 1.35683
\(337\) −5.73297e10 −0.242128 −0.121064 0.992645i \(-0.538631\pi\)
−0.121064 + 0.992645i \(0.538631\pi\)
\(338\) 0 0
\(339\) 1.13840e11 0.468163
\(340\) 3.62843e10 0.147253
\(341\) 2.93403e11 1.17509
\(342\) −8.98812e8 −0.00355264
\(343\) −7.19204e10 −0.280562
\(344\) −6.30231e10 −0.242654
\(345\) −3.93855e11 −1.49675
\(346\) −1.77655e10 −0.0666399
\(347\) −2.34072e10 −0.0866695 −0.0433347 0.999061i \(-0.513798\pi\)
−0.0433347 + 0.999061i \(0.513798\pi\)
\(348\) −1.12210e11 −0.410131
\(349\) −3.92804e11 −1.41730 −0.708649 0.705562i \(-0.750695\pi\)
−0.708649 + 0.705562i \(0.750695\pi\)
\(350\) 1.35418e11 0.482360
\(351\) 0 0
\(352\) 1.06435e11 0.369523
\(353\) −2.16422e11 −0.741849 −0.370925 0.928663i \(-0.620959\pi\)
−0.370925 + 0.928663i \(0.620959\pi\)
\(354\) 4.95306e9 0.0167633
\(355\) −3.75710e11 −1.25552
\(356\) −4.16250e11 −1.37350
\(357\) 3.63064e10 0.118298
\(358\) −3.90267e10 −0.125571
\(359\) −3.49576e11 −1.11075 −0.555376 0.831600i \(-0.687426\pi\)
−0.555376 + 0.831600i \(0.687426\pi\)
\(360\) 8.50304e9 0.0266817
\(361\) −2.47701e11 −0.767620
\(362\) 7.74517e10 0.237051
\(363\) 5.64778e10 0.170725
\(364\) 0 0
\(365\) −8.61727e11 −2.54128
\(366\) −1.55949e10 −0.0454273
\(367\) −1.83237e9 −0.00527248 −0.00263624 0.999997i \(-0.500839\pi\)
−0.00263624 + 0.999997i \(0.500839\pi\)
\(368\) −2.78913e11 −0.792780
\(369\) −5.36758e9 −0.0150716
\(370\) 1.37775e11 0.382175
\(371\) 2.88325e11 0.790132
\(372\) −4.56130e11 −1.23494
\(373\) 5.52030e10 0.147663 0.0738317 0.997271i \(-0.476477\pi\)
0.0738317 + 0.997271i \(0.476477\pi\)
\(374\) 3.92972e9 0.0103858
\(375\) 9.13763e11 2.38612
\(376\) −1.54286e11 −0.398091
\(377\) 0 0
\(378\) 8.37934e10 0.211104
\(379\) −2.25258e11 −0.560795 −0.280397 0.959884i \(-0.590466\pi\)
−0.280397 + 0.959884i \(0.590466\pi\)
\(380\) −3.51225e11 −0.864091
\(381\) 5.47914e10 0.133214
\(382\) 3.35838e10 0.0806947
\(383\) −4.64079e11 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(384\) −2.19860e11 −0.516008
\(385\) −1.05884e12 −2.45616
\(386\) −6.60438e10 −0.151422
\(387\) 2.05538e10 0.0465793
\(388\) 5.05322e11 1.13195
\(389\) −2.63061e11 −0.582482 −0.291241 0.956650i \(-0.594068\pi\)
−0.291241 + 0.956650i \(0.594068\pi\)
\(390\) 0 0
\(391\) −3.19446e10 −0.0691198
\(392\) 1.53360e11 0.328039
\(393\) 5.16608e11 1.09243
\(394\) 4.00255e10 0.0836765
\(395\) 5.21296e11 1.07745
\(396\) −2.30659e10 −0.0471348
\(397\) 1.80382e10 0.0364449 0.0182224 0.999834i \(-0.494199\pi\)
0.0182224 + 0.999834i \(0.494199\pi\)
\(398\) −8.12236e9 −0.0162259
\(399\) −3.51440e11 −0.694181
\(400\) 1.12951e12 2.20607
\(401\) −7.18792e10 −0.138821 −0.0694103 0.997588i \(-0.522112\pi\)
−0.0694103 + 0.997588i \(0.522112\pi\)
\(402\) 2.78888e10 0.0532614
\(403\) 0 0
\(404\) −7.98571e11 −1.49141
\(405\) 9.34549e11 1.72606
\(406\) −4.84737e10 −0.0885399
\(407\) −7.54862e11 −1.36362
\(408\) −1.23392e10 −0.0220453
\(409\) −5.31862e11 −0.939819 −0.469910 0.882715i \(-0.655713\pi\)
−0.469910 + 0.882715i \(0.655713\pi\)
\(410\) 4.14612e10 0.0724626
\(411\) 1.98680e11 0.343451
\(412\) −5.71806e11 −0.977713
\(413\) −1.08244e11 −0.183075
\(414\) −3.70640e9 −0.00620084
\(415\) 1.94585e12 3.22028
\(416\) 0 0
\(417\) −2.05319e11 −0.332519
\(418\) −3.80390e10 −0.0609446
\(419\) 1.45942e11 0.231322 0.115661 0.993289i \(-0.463101\pi\)
0.115661 + 0.993289i \(0.463101\pi\)
\(420\) 1.64609e12 2.58127
\(421\) −3.66247e11 −0.568204 −0.284102 0.958794i \(-0.591695\pi\)
−0.284102 + 0.958794i \(0.591695\pi\)
\(422\) −6.12115e10 −0.0939565
\(423\) 5.03176e10 0.0764168
\(424\) −9.79910e10 −0.147245
\(425\) 1.29366e11 0.192340
\(426\) 6.32587e10 0.0930629
\(427\) 3.40810e11 0.496120
\(428\) 3.62213e11 0.521756
\(429\) 0 0
\(430\) −1.58765e11 −0.223948
\(431\) −7.66389e11 −1.06980 −0.534899 0.844916i \(-0.679650\pi\)
−0.534899 + 0.844916i \(0.679650\pi\)
\(432\) 6.98911e11 0.965484
\(433\) −1.24176e12 −1.69763 −0.848813 0.528694i \(-0.822682\pi\)
−0.848813 + 0.528694i \(0.822682\pi\)
\(434\) −1.97045e11 −0.266601
\(435\) −5.70935e11 −0.764513
\(436\) −3.44656e11 −0.456769
\(437\) 3.09218e11 0.405601
\(438\) 1.45090e11 0.188367
\(439\) −1.48429e12 −1.90734 −0.953671 0.300852i \(-0.902729\pi\)
−0.953671 + 0.300852i \(0.902729\pi\)
\(440\) 3.59861e11 0.457717
\(441\) −5.00155e10 −0.0629696
\(442\) 0 0
\(443\) 1.03343e12 1.27487 0.637433 0.770506i \(-0.279996\pi\)
0.637433 + 0.770506i \(0.279996\pi\)
\(444\) 1.17352e12 1.43307
\(445\) −2.11793e12 −2.56030
\(446\) 3.01197e10 0.0360449
\(447\) −5.85211e11 −0.693312
\(448\) 1.11726e12 1.31040
\(449\) 5.83072e11 0.677039 0.338519 0.940959i \(-0.390074\pi\)
0.338519 + 0.940959i \(0.390074\pi\)
\(450\) 1.50098e10 0.0172551
\(451\) −2.27163e11 −0.258550
\(452\) 4.18628e11 0.471743
\(453\) 6.55244e10 0.0731073
\(454\) −6.36470e10 −0.0703116
\(455\) 0 0
\(456\) 1.19441e11 0.129364
\(457\) −7.39681e11 −0.793271 −0.396635 0.917976i \(-0.629822\pi\)
−0.396635 + 0.917976i \(0.629822\pi\)
\(458\) −7.74405e10 −0.0822382
\(459\) 8.00482e10 0.0841772
\(460\) −1.44834e12 −1.50820
\(461\) −1.45843e12 −1.50394 −0.751971 0.659197i \(-0.770896\pi\)
−0.751971 + 0.659197i \(0.770896\pi\)
\(462\) 1.78278e11 0.182058
\(463\) 1.63194e12 1.65040 0.825200 0.564841i \(-0.191063\pi\)
0.825200 + 0.564841i \(0.191063\pi\)
\(464\) −4.04314e11 −0.404937
\(465\) −2.32084e12 −2.30201
\(466\) −2.49904e11 −0.245492
\(467\) −8.24440e11 −0.802109 −0.401054 0.916054i \(-0.631356\pi\)
−0.401054 + 0.916054i \(0.631356\pi\)
\(468\) 0 0
\(469\) −6.09481e11 −0.581677
\(470\) −3.88672e11 −0.367403
\(471\) 1.12588e12 1.05414
\(472\) 3.67882e10 0.0341169
\(473\) 8.69866e11 0.799056
\(474\) −8.77712e10 −0.0798637
\(475\) −1.25224e12 −1.12867
\(476\) 1.33511e11 0.119202
\(477\) 3.19579e10 0.0282648
\(478\) −8.27011e10 −0.0724579
\(479\) 1.80073e11 0.156293 0.0781463 0.996942i \(-0.475100\pi\)
0.0781463 + 0.996942i \(0.475100\pi\)
\(480\) −8.41907e11 −0.723900
\(481\) 0 0
\(482\) −3.17448e11 −0.267893
\(483\) −1.44922e12 −1.21164
\(484\) 2.07688e11 0.172031
\(485\) 2.57114e12 2.11003
\(486\) 1.81084e10 0.0147237
\(487\) 7.22045e11 0.581680 0.290840 0.956772i \(-0.406065\pi\)
0.290840 + 0.956772i \(0.406065\pi\)
\(488\) −1.15829e11 −0.0924543
\(489\) −8.10371e11 −0.640905
\(490\) 3.86339e11 0.302751
\(491\) 1.98313e12 1.53987 0.769937 0.638119i \(-0.220287\pi\)
0.769937 + 0.638119i \(0.220287\pi\)
\(492\) 3.53153e11 0.271719
\(493\) −4.63072e10 −0.0353051
\(494\) 0 0
\(495\) −1.17362e11 −0.0878625
\(496\) −1.64353e12 −1.21930
\(497\) −1.38245e12 −1.01636
\(498\) −3.27625e11 −0.238696
\(499\) 8.27327e11 0.597344 0.298672 0.954356i \(-0.403456\pi\)
0.298672 + 0.954356i \(0.403456\pi\)
\(500\) 3.36021e12 2.40437
\(501\) −1.01194e12 −0.717605
\(502\) 2.74955e11 0.193239
\(503\) 4.94554e11 0.344475 0.172238 0.985055i \(-0.444900\pi\)
0.172238 + 0.985055i \(0.444900\pi\)
\(504\) 3.12876e10 0.0215991
\(505\) −4.06322e12 −2.78009
\(506\) −1.56860e11 −0.106374
\(507\) 0 0
\(508\) 2.01486e11 0.134233
\(509\) 2.31118e12 1.52617 0.763087 0.646296i \(-0.223683\pi\)
0.763087 + 0.646296i \(0.223683\pi\)
\(510\) −3.10844e10 −0.0203459
\(511\) −3.17079e12 −2.05719
\(512\) −1.00022e12 −0.643248
\(513\) −7.74852e11 −0.493959
\(514\) −1.52541e11 −0.0963947
\(515\) −2.90942e12 −1.82252
\(516\) −1.35231e12 −0.839756
\(517\) 2.12951e12 1.31091
\(518\) 5.06954e11 0.309374
\(519\) −7.69937e11 −0.465803
\(520\) 0 0
\(521\) 2.20997e12 1.31406 0.657031 0.753864i \(-0.271812\pi\)
0.657031 + 0.753864i \(0.271812\pi\)
\(522\) −5.37283e9 −0.00316727
\(523\) 2.43867e12 1.42527 0.712633 0.701537i \(-0.247503\pi\)
0.712633 + 0.701537i \(0.247503\pi\)
\(524\) 1.89974e12 1.10079
\(525\) 5.86889e12 3.37162
\(526\) 1.38822e10 0.00790718
\(527\) −1.88238e11 −0.106307
\(528\) 1.48700e12 0.832641
\(529\) −5.26040e11 −0.292057
\(530\) −2.46855e11 −0.135894
\(531\) −1.19978e10 −0.00654900
\(532\) −1.29236e12 −0.699490
\(533\) 0 0
\(534\) 3.56598e11 0.189777
\(535\) 1.84298e12 0.972588
\(536\) 2.07140e11 0.108398
\(537\) −1.69138e12 −0.877720
\(538\) −4.46968e11 −0.230015
\(539\) −2.11673e12 −1.08023
\(540\) 3.62930e12 1.83675
\(541\) 1.84418e12 0.925585 0.462792 0.886467i \(-0.346848\pi\)
0.462792 + 0.886467i \(0.346848\pi\)
\(542\) −2.23582e11 −0.111286
\(543\) 3.35667e12 1.65695
\(544\) −6.82851e10 −0.0334296
\(545\) −1.75365e12 −0.851448
\(546\) 0 0
\(547\) −2.62022e12 −1.25140 −0.625698 0.780065i \(-0.715186\pi\)
−0.625698 + 0.780065i \(0.715186\pi\)
\(548\) 7.30611e11 0.346078
\(549\) 3.77754e10 0.0177473
\(550\) 6.35235e11 0.296007
\(551\) 4.48245e11 0.207173
\(552\) 4.92536e11 0.225794
\(553\) 1.91815e12 0.872206
\(554\) −3.85264e11 −0.173766
\(555\) 5.97102e12 2.67135
\(556\) −7.55025e11 −0.335062
\(557\) −2.45908e12 −1.08249 −0.541245 0.840865i \(-0.682047\pi\)
−0.541245 + 0.840865i \(0.682047\pi\)
\(558\) −2.18405e10 −0.00953692
\(559\) 0 0
\(560\) 5.93122e12 2.54858
\(561\) 1.70310e11 0.0725950
\(562\) −3.12494e11 −0.132138
\(563\) −1.30659e12 −0.548091 −0.274046 0.961717i \(-0.588362\pi\)
−0.274046 + 0.961717i \(0.588362\pi\)
\(564\) −3.31058e12 −1.37768
\(565\) 2.13003e12 0.879361
\(566\) −5.97534e11 −0.244731
\(567\) 3.43875e12 1.39726
\(568\) 4.69845e11 0.189403
\(569\) −2.68810e12 −1.07508 −0.537539 0.843239i \(-0.680646\pi\)
−0.537539 + 0.843239i \(0.680646\pi\)
\(570\) 3.00892e11 0.119391
\(571\) 2.99602e12 1.17946 0.589729 0.807601i \(-0.299235\pi\)
0.589729 + 0.807601i \(0.299235\pi\)
\(572\) 0 0
\(573\) 1.45549e12 0.564044
\(574\) 1.52560e11 0.0586592
\(575\) −5.16381e12 −1.97000
\(576\) 1.23837e11 0.0468760
\(577\) −6.04343e11 −0.226982 −0.113491 0.993539i \(-0.536203\pi\)
−0.113491 + 0.993539i \(0.536203\pi\)
\(578\) 3.71071e11 0.138287
\(579\) −2.86227e12 −1.05842
\(580\) −2.09952e12 −0.770360
\(581\) 7.15991e12 2.60684
\(582\) −4.32905e11 −0.156401
\(583\) 1.35250e12 0.484876
\(584\) 1.07763e12 0.383366
\(585\) 0 0
\(586\) 6.16747e11 0.216057
\(587\) 7.41276e11 0.257697 0.128848 0.991664i \(-0.458872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(588\) 3.29071e12 1.13525
\(589\) 1.82211e12 0.623816
\(590\) 9.26752e10 0.0314869
\(591\) 1.73466e12 0.584886
\(592\) 4.22845e12 1.41492
\(593\) 5.55536e12 1.84487 0.922435 0.386152i \(-0.126196\pi\)
0.922435 + 0.386152i \(0.126196\pi\)
\(594\) 3.93067e11 0.129547
\(595\) 6.79318e11 0.222201
\(596\) −2.15201e12 −0.698614
\(597\) −3.52015e11 −0.113417
\(598\) 0 0
\(599\) −3.35363e12 −1.06437 −0.532187 0.846627i \(-0.678630\pi\)
−0.532187 + 0.846627i \(0.678630\pi\)
\(600\) −1.99462e12 −0.628318
\(601\) 1.88646e12 0.589809 0.294905 0.955527i \(-0.404712\pi\)
0.294905 + 0.955527i \(0.404712\pi\)
\(602\) −5.84189e11 −0.181288
\(603\) −6.75548e10 −0.0208079
\(604\) 2.40955e11 0.0736664
\(605\) 1.05674e12 0.320677
\(606\) 6.84129e11 0.206068
\(607\) 1.01740e12 0.304188 0.152094 0.988366i \(-0.451398\pi\)
0.152094 + 0.988366i \(0.451398\pi\)
\(608\) 6.60987e11 0.196168
\(609\) −2.10080e12 −0.618881
\(610\) −2.91791e11 −0.0853272
\(611\) 0 0
\(612\) 1.47983e10 0.00426414
\(613\) 5.21446e11 0.149155 0.0745774 0.997215i \(-0.476239\pi\)
0.0745774 + 0.997215i \(0.476239\pi\)
\(614\) −2.26038e11 −0.0641836
\(615\) 1.79688e12 0.506503
\(616\) 1.32413e12 0.370526
\(617\) −1.14541e12 −0.318183 −0.159092 0.987264i \(-0.550857\pi\)
−0.159092 + 0.987264i \(0.550857\pi\)
\(618\) 4.89862e11 0.135091
\(619\) 1.10612e12 0.302827 0.151414 0.988470i \(-0.451617\pi\)
0.151414 + 0.988470i \(0.451617\pi\)
\(620\) −8.53452e12 −2.31962
\(621\) −3.19523e12 −0.862165
\(622\) −6.64793e10 −0.0178086
\(623\) −7.79308e12 −2.07259
\(624\) 0 0
\(625\) 8.16561e12 2.14057
\(626\) 4.55751e11 0.118616
\(627\) −1.64857e12 −0.425994
\(628\) 4.14023e12 1.06220
\(629\) 4.84295e11 0.123362
\(630\) 7.88184e10 0.0199340
\(631\) −3.20443e12 −0.804671 −0.402336 0.915492i \(-0.631802\pi\)
−0.402336 + 0.915492i \(0.631802\pi\)
\(632\) −6.51908e11 −0.162540
\(633\) −2.65284e12 −0.656742
\(634\) 1.82313e11 0.0448143
\(635\) 1.02518e12 0.250219
\(636\) −2.10263e12 −0.509573
\(637\) 0 0
\(638\) −2.27386e11 −0.0543338
\(639\) −1.53231e11 −0.0363574
\(640\) −4.11374e12 −0.969230
\(641\) −4.90467e12 −1.14749 −0.573745 0.819034i \(-0.694510\pi\)
−0.573745 + 0.819034i \(0.694510\pi\)
\(642\) −3.10305e11 −0.0720910
\(643\) −1.53529e12 −0.354194 −0.177097 0.984193i \(-0.556671\pi\)
−0.177097 + 0.984193i \(0.556671\pi\)
\(644\) −5.32926e12 −1.22090
\(645\) −6.88072e12 −1.56536
\(646\) 2.44046e10 0.00551347
\(647\) −6.61326e11 −0.148370 −0.0741850 0.997244i \(-0.523636\pi\)
−0.0741850 + 0.997244i \(0.523636\pi\)
\(648\) −1.16870e12 −0.260385
\(649\) −5.07763e11 −0.112347
\(650\) 0 0
\(651\) −8.53973e12 −1.86350
\(652\) −2.98000e12 −0.645807
\(653\) 4.61469e12 0.993192 0.496596 0.867982i \(-0.334583\pi\)
0.496596 + 0.867982i \(0.334583\pi\)
\(654\) 2.95264e11 0.0631118
\(655\) 9.66610e12 2.05194
\(656\) 1.27248e12 0.268278
\(657\) −3.51450e11 −0.0735902
\(658\) −1.43015e12 −0.297416
\(659\) −9.04687e12 −1.86859 −0.934294 0.356502i \(-0.883969\pi\)
−0.934294 + 0.356502i \(0.883969\pi\)
\(660\) 7.72167e12 1.58403
\(661\) −3.59295e12 −0.732057 −0.366028 0.930604i \(-0.619283\pi\)
−0.366028 + 0.930604i \(0.619283\pi\)
\(662\) −3.15926e11 −0.0639328
\(663\) 0 0
\(664\) −2.43339e12 −0.485797
\(665\) −6.57568e12 −1.30390
\(666\) 5.61907e10 0.0110670
\(667\) 1.84841e12 0.361604
\(668\) −3.72124e12 −0.723093
\(669\) 1.30536e12 0.251948
\(670\) 5.21819e11 0.100042
\(671\) 1.59871e12 0.304451
\(672\) −3.09786e12 −0.586004
\(673\) 2.13714e12 0.401573 0.200786 0.979635i \(-0.435650\pi\)
0.200786 + 0.979635i \(0.435650\pi\)
\(674\) 1.80608e11 0.0337107
\(675\) 1.29397e13 2.39915
\(676\) 0 0
\(677\) −2.55166e12 −0.466847 −0.233423 0.972375i \(-0.574993\pi\)
−0.233423 + 0.972375i \(0.574993\pi\)
\(678\) −3.58635e11 −0.0651808
\(679\) 9.46070e12 1.70809
\(680\) −2.30875e11 −0.0414083
\(681\) −2.75840e12 −0.491467
\(682\) −9.24320e11 −0.163604
\(683\) −7.63188e12 −1.34196 −0.670978 0.741477i \(-0.734126\pi\)
−0.670978 + 0.741477i \(0.734126\pi\)
\(684\) −1.43245e11 −0.0250223
\(685\) 3.71743e12 0.645113
\(686\) 2.26574e11 0.0390617
\(687\) −3.35619e12 −0.574832
\(688\) −4.87266e12 −0.829121
\(689\) 0 0
\(690\) 1.24078e12 0.208388
\(691\) 2.36970e12 0.395405 0.197703 0.980262i \(-0.436652\pi\)
0.197703 + 0.980262i \(0.436652\pi\)
\(692\) −2.83132e12 −0.469365
\(693\) −4.31842e11 −0.0711255
\(694\) 7.37405e10 0.0120667
\(695\) −3.84165e12 −0.624578
\(696\) 7.13984e11 0.115331
\(697\) 1.45741e11 0.0233902
\(698\) 1.23747e12 0.197326
\(699\) −1.08306e13 −1.71595
\(700\) 2.15819e13 3.39741
\(701\) −1.72803e12 −0.270284 −0.135142 0.990826i \(-0.543149\pi\)
−0.135142 + 0.990826i \(0.543149\pi\)
\(702\) 0 0
\(703\) −4.68789e12 −0.723900
\(704\) 5.24097e12 0.804146
\(705\) −1.68446e13 −2.56809
\(706\) 6.81804e11 0.103285
\(707\) −1.49509e13 −2.25051
\(708\) 7.89378e11 0.118069
\(709\) 3.26440e12 0.485172 0.242586 0.970130i \(-0.422004\pi\)
0.242586 + 0.970130i \(0.422004\pi\)
\(710\) 1.18361e12 0.174802
\(711\) 2.12608e11 0.0312008
\(712\) 2.64858e12 0.386236
\(713\) 7.51378e12 1.08882
\(714\) −1.14378e11 −0.0164702
\(715\) 0 0
\(716\) −6.21976e12 −0.884433
\(717\) −3.58418e12 −0.506469
\(718\) 1.10128e12 0.154646
\(719\) −6.17850e11 −0.0862191 −0.0431095 0.999070i \(-0.513726\pi\)
−0.0431095 + 0.999070i \(0.513726\pi\)
\(720\) 6.57416e11 0.0911683
\(721\) −1.07054e13 −1.47535
\(722\) 7.80344e11 0.106873
\(723\) −1.37579e13 −1.87253
\(724\) 1.23436e13 1.66962
\(725\) −7.48550e12 −1.00624
\(726\) −1.77924e11 −0.0237695
\(727\) 5.84000e12 0.775368 0.387684 0.921792i \(-0.373275\pi\)
0.387684 + 0.921792i \(0.373275\pi\)
\(728\) 0 0
\(729\) 7.98538e12 1.04718
\(730\) 2.71473e12 0.353813
\(731\) −5.58079e11 −0.0722882
\(732\) −2.48538e12 −0.319958
\(733\) 7.18908e10 0.00919826 0.00459913 0.999989i \(-0.498536\pi\)
0.00459913 + 0.999989i \(0.498536\pi\)
\(734\) 5.77258e9 0.000734070 0
\(735\) 1.67435e13 2.11618
\(736\) 2.72569e12 0.342394
\(737\) −2.85902e12 −0.356954
\(738\) 1.69097e10 0.00209837
\(739\) 1.01033e13 1.24613 0.623067 0.782168i \(-0.285886\pi\)
0.623067 + 0.782168i \(0.285886\pi\)
\(740\) 2.19574e13 2.69178
\(741\) 0 0
\(742\) −9.08322e11 −0.110007
\(743\) 6.09193e12 0.733340 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(744\) 2.90234e12 0.347272
\(745\) −1.09497e13 −1.30226
\(746\) −1.73908e11 −0.0205587
\(747\) 7.93604e11 0.0932527
\(748\) 6.26286e11 0.0731502
\(749\) 6.78139e12 0.787319
\(750\) −2.87867e12 −0.332212
\(751\) −1.43572e13 −1.64698 −0.823491 0.567330i \(-0.807976\pi\)
−0.823491 + 0.567330i \(0.807976\pi\)
\(752\) −1.19287e13 −1.36023
\(753\) 1.19163e13 1.35071
\(754\) 0 0
\(755\) 1.22601e12 0.137319
\(756\) 1.33543e13 1.48687
\(757\) 1.33786e13 1.48074 0.740370 0.672200i \(-0.234651\pi\)
0.740370 + 0.672200i \(0.234651\pi\)
\(758\) 7.09640e11 0.0780776
\(759\) −6.79815e12 −0.743537
\(760\) 2.23483e12 0.242987
\(761\) −1.00649e13 −1.08788 −0.543938 0.839126i \(-0.683067\pi\)
−0.543938 + 0.839126i \(0.683067\pi\)
\(762\) −1.72611e11 −0.0185469
\(763\) −6.45269e12 −0.689255
\(764\) 5.35231e12 0.568357
\(765\) 7.52956e10 0.00794865
\(766\) 1.46201e12 0.153433
\(767\) 0 0
\(768\) −7.61614e12 −0.789968
\(769\) −4.34623e12 −0.448172 −0.224086 0.974569i \(-0.571940\pi\)
−0.224086 + 0.974569i \(0.571940\pi\)
\(770\) 3.33571e12 0.341963
\(771\) −6.61097e12 −0.673784
\(772\) −1.05255e13 −1.06651
\(773\) −2.50017e12 −0.251862 −0.125931 0.992039i \(-0.540192\pi\)
−0.125931 + 0.992039i \(0.540192\pi\)
\(774\) −6.47515e10 −0.00648509
\(775\) −3.04285e13 −3.02986
\(776\) −3.21534e12 −0.318310
\(777\) 2.19708e13 2.16248
\(778\) 8.28731e11 0.0810971
\(779\) −1.41075e12 −0.137256
\(780\) 0 0
\(781\) −6.48495e12 −0.623702
\(782\) 1.00636e11 0.00962332
\(783\) −4.63183e12 −0.440377
\(784\) 1.18571e13 1.12087
\(785\) 2.10660e13 1.98001
\(786\) −1.62749e12 −0.152096
\(787\) 1.47010e13 1.36603 0.683013 0.730406i \(-0.260669\pi\)
0.683013 + 0.730406i \(0.260669\pi\)
\(788\) 6.37893e12 0.589359
\(789\) 6.01639e11 0.0552700
\(790\) −1.64226e12 −0.150010
\(791\) 7.83761e12 0.711851
\(792\) 1.46767e11 0.0132546
\(793\) 0 0
\(794\) −5.68266e10 −0.00507410
\(795\) −1.06984e13 −0.949879
\(796\) −1.29448e12 −0.114284
\(797\) 8.96898e12 0.787373 0.393687 0.919245i \(-0.371199\pi\)
0.393687 + 0.919245i \(0.371199\pi\)
\(798\) 1.10715e12 0.0966485
\(799\) −1.36623e12 −0.118594
\(800\) −1.10382e13 −0.952782
\(801\) −8.63785e11 −0.0741411
\(802\) 2.26444e11 0.0193275
\(803\) −1.48739e13 −1.26242
\(804\) 4.44468e12 0.375136
\(805\) −2.71159e13 −2.27584
\(806\) 0 0
\(807\) −1.93711e13 −1.60777
\(808\) 5.08127e12 0.419393
\(809\) 1.74450e13 1.43187 0.715934 0.698168i \(-0.246001\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(810\) −2.94415e12 −0.240313
\(811\) 8.34611e12 0.677470 0.338735 0.940882i \(-0.390001\pi\)
0.338735 + 0.940882i \(0.390001\pi\)
\(812\) −7.72534e12 −0.623614
\(813\) −9.68980e12 −0.777871
\(814\) 2.37807e12 0.189852
\(815\) −1.51626e13 −1.20383
\(816\) −9.54010e11 −0.0753264
\(817\) 5.40210e12 0.424193
\(818\) 1.67555e12 0.130848
\(819\) 0 0
\(820\) 6.60774e12 0.510376
\(821\) −1.88288e13 −1.44637 −0.723183 0.690657i \(-0.757322\pi\)
−0.723183 + 0.690657i \(0.757322\pi\)
\(822\) −6.25909e11 −0.0478176
\(823\) 4.02178e12 0.305576 0.152788 0.988259i \(-0.451175\pi\)
0.152788 + 0.988259i \(0.451175\pi\)
\(824\) 3.63838e12 0.274938
\(825\) 2.75304e13 2.06904
\(826\) 3.41006e11 0.0254889
\(827\) −3.84013e12 −0.285477 −0.142738 0.989760i \(-0.545591\pi\)
−0.142738 + 0.989760i \(0.545591\pi\)
\(828\) −5.90695e11 −0.0436744
\(829\) 1.81041e13 1.33132 0.665660 0.746255i \(-0.268150\pi\)
0.665660 + 0.746255i \(0.268150\pi\)
\(830\) −6.13010e12 −0.448349
\(831\) −1.66969e13 −1.21460
\(832\) 0 0
\(833\) 1.35803e12 0.0977249
\(834\) 6.46824e11 0.0462955
\(835\) −1.89341e13 −1.34789
\(836\) −6.06234e12 −0.429252
\(837\) −1.88284e13 −1.32601
\(838\) −4.59766e11 −0.0322062
\(839\) −1.83543e13 −1.27882 −0.639410 0.768866i \(-0.720821\pi\)
−0.639410 + 0.768866i \(0.720821\pi\)
\(840\) −1.04740e13 −0.725867
\(841\) −1.18277e13 −0.815300
\(842\) 1.15380e12 0.0791092
\(843\) −1.35431e13 −0.923625
\(844\) −9.75538e12 −0.661764
\(845\) 0 0
\(846\) −1.58518e11 −0.0106393
\(847\) 3.88835e12 0.259591
\(848\) −7.57621e12 −0.503119
\(849\) −2.58965e13 −1.71063
\(850\) −4.07546e11 −0.0267789
\(851\) −1.93313e13 −1.26351
\(852\) 1.00816e13 0.655470
\(853\) 1.20116e13 0.776835 0.388418 0.921483i \(-0.373022\pi\)
0.388418 + 0.921483i \(0.373022\pi\)
\(854\) −1.07367e12 −0.0690732
\(855\) −7.28848e11 −0.0466433
\(856\) −2.30475e12 −0.146721
\(857\) −6.17723e12 −0.391183 −0.195592 0.980685i \(-0.562663\pi\)
−0.195592 + 0.980685i \(0.562663\pi\)
\(858\) 0 0
\(859\) 2.76160e13 1.73058 0.865291 0.501269i \(-0.167133\pi\)
0.865291 + 0.501269i \(0.167133\pi\)
\(860\) −2.53027e13 −1.57733
\(861\) 6.61177e12 0.410019
\(862\) 2.41439e12 0.148944
\(863\) −9.27582e12 −0.569251 −0.284626 0.958639i \(-0.591869\pi\)
−0.284626 + 0.958639i \(0.591869\pi\)
\(864\) −6.83016e12 −0.416983
\(865\) −1.44061e13 −0.874929
\(866\) 3.91197e12 0.236355
\(867\) 1.60818e13 0.966606
\(868\) −3.14034e13 −1.87775
\(869\) 8.99785e12 0.535242
\(870\) 1.79864e12 0.106441
\(871\) 0 0
\(872\) 2.19303e12 0.128446
\(873\) 1.04862e12 0.0611021
\(874\) −9.74143e11 −0.0564704
\(875\) 6.29103e13 3.62815
\(876\) 2.31232e13 1.32672
\(877\) 2.19078e13 1.25055 0.625274 0.780405i \(-0.284987\pi\)
0.625274 + 0.780405i \(0.284987\pi\)
\(878\) 4.67602e12 0.265553
\(879\) 2.67292e13 1.51020
\(880\) 2.78228e13 1.56397
\(881\) 2.92416e12 0.163534 0.0817672 0.996651i \(-0.473944\pi\)
0.0817672 + 0.996651i \(0.473944\pi\)
\(882\) 1.57566e11 0.00876706
\(883\) 3.35851e13 1.85919 0.929594 0.368585i \(-0.120158\pi\)
0.929594 + 0.368585i \(0.120158\pi\)
\(884\) 0 0
\(885\) 4.01645e12 0.220089
\(886\) −3.25566e12 −0.177495
\(887\) −3.31699e13 −1.79924 −0.899619 0.436676i \(-0.856156\pi\)
−0.899619 + 0.436676i \(0.856156\pi\)
\(888\) −7.46708e12 −0.402988
\(889\) 3.77225e12 0.202555
\(890\) 6.67219e12 0.356462
\(891\) 1.61308e13 0.857447
\(892\) 4.80023e12 0.253875
\(893\) 1.32248e13 0.695920
\(894\) 1.84361e12 0.0965275
\(895\) −3.16469e13 −1.64864
\(896\) −1.51368e13 −0.784601
\(897\) 0 0
\(898\) −1.83688e12 −0.0942619
\(899\) 1.08920e13 0.556148
\(900\) 2.39213e12 0.121533
\(901\) −8.67724e11 −0.0438652
\(902\) 7.15642e11 0.0359970
\(903\) −2.53181e13 −1.26718
\(904\) −2.66371e12 −0.132657
\(905\) 6.28057e13 3.11229
\(906\) −2.06424e11 −0.0101785
\(907\) 2.27086e13 1.11418 0.557092 0.830451i \(-0.311917\pi\)
0.557092 + 0.830451i \(0.311917\pi\)
\(908\) −1.01435e13 −0.495226
\(909\) −1.65716e12 −0.0805059
\(910\) 0 0
\(911\) 4.92090e12 0.236707 0.118354 0.992972i \(-0.462238\pi\)
0.118354 + 0.992972i \(0.462238\pi\)
\(912\) 9.23465e12 0.442022
\(913\) 3.35865e13 1.59973
\(914\) 2.33025e12 0.110444
\(915\) −1.26459e13 −0.596424
\(916\) −1.23418e13 −0.579229
\(917\) 3.55671e13 1.66107
\(918\) −2.52179e11 −0.0117197
\(919\) −9.41621e12 −0.435468 −0.217734 0.976008i \(-0.569867\pi\)
−0.217734 + 0.976008i \(0.569867\pi\)
\(920\) 9.21569e12 0.424114
\(921\) −9.79626e12 −0.448634
\(922\) 4.59455e12 0.209389
\(923\) 0 0
\(924\) 2.84125e13 1.28229
\(925\) 7.82858e13 3.51597
\(926\) −5.14116e12 −0.229780
\(927\) −1.18659e12 −0.0527766
\(928\) 3.95118e12 0.174889
\(929\) 3.87518e13 1.70695 0.853476 0.521131i \(-0.174490\pi\)
0.853476 + 0.521131i \(0.174490\pi\)
\(930\) 7.31145e12 0.320502
\(931\) −1.31454e13 −0.573458
\(932\) −3.98276e13 −1.72907
\(933\) −2.88114e12 −0.124479
\(934\) 2.59727e12 0.111675
\(935\) 3.18662e12 0.136357
\(936\) 0 0
\(937\) 1.41425e13 0.599373 0.299687 0.954038i \(-0.403118\pi\)
0.299687 + 0.954038i \(0.403118\pi\)
\(938\) 1.92007e12 0.0809850
\(939\) 1.97518e13 0.829108
\(940\) −6.19433e13 −2.58773
\(941\) 2.29704e13 0.955027 0.477514 0.878624i \(-0.341538\pi\)
0.477514 + 0.878624i \(0.341538\pi\)
\(942\) −3.54690e12 −0.146764
\(943\) −5.81744e12 −0.239568
\(944\) 2.84429e12 0.116574
\(945\) 6.79482e13 2.77163
\(946\) −2.74038e12 −0.111250
\(947\) 1.50510e12 0.0608120 0.0304060 0.999538i \(-0.490320\pi\)
0.0304060 + 0.999538i \(0.490320\pi\)
\(948\) −1.39882e13 −0.562504
\(949\) 0 0
\(950\) 3.94498e12 0.157141
\(951\) 7.90126e12 0.313245
\(952\) −8.49523e11 −0.0335204
\(953\) 2.42253e13 0.951373 0.475686 0.879615i \(-0.342200\pi\)
0.475686 + 0.879615i \(0.342200\pi\)
\(954\) −1.00678e11 −0.00393522
\(955\) 2.72332e13 1.05946
\(956\) −1.31802e13 −0.510343
\(957\) −9.85465e12 −0.379785
\(958\) −5.67291e11 −0.0217601
\(959\) 1.36786e13 0.522225
\(960\) −4.14565e13 −1.57533
\(961\) 1.78364e13 0.674608
\(962\) 0 0
\(963\) 7.51650e11 0.0281642
\(964\) −5.05923e13 −1.88685
\(965\) −5.35551e13 −1.98805
\(966\) 4.56554e12 0.168692
\(967\) −2.41172e13 −0.886967 −0.443484 0.896282i \(-0.646258\pi\)
−0.443484 + 0.896282i \(0.646258\pi\)
\(968\) −1.32151e12 −0.0483760
\(969\) 1.05767e12 0.0385383
\(970\) −8.09996e12 −0.293772
\(971\) 3.13584e13 1.13206 0.566028 0.824386i \(-0.308479\pi\)
0.566028 + 0.824386i \(0.308479\pi\)
\(972\) 2.88597e12 0.103703
\(973\) −1.41357e13 −0.505602
\(974\) −2.27469e12 −0.0809854
\(975\) 0 0
\(976\) −8.95534e12 −0.315906
\(977\) −4.44366e13 −1.56033 −0.780163 0.625576i \(-0.784864\pi\)
−0.780163 + 0.625576i \(0.784864\pi\)
\(978\) 2.55294e12 0.0892312
\(979\) −3.65566e13 −1.27187
\(980\) 6.15714e13 2.13237
\(981\) −7.15216e11 −0.0246562
\(982\) −6.24755e12 −0.214392
\(983\) −1.53216e13 −0.523376 −0.261688 0.965153i \(-0.584279\pi\)
−0.261688 + 0.965153i \(0.584279\pi\)
\(984\) −2.24710e12 −0.0764089
\(985\) 3.24567e13 1.09861
\(986\) 1.45883e11 0.00491541
\(987\) −6.19812e13 −2.07889
\(988\) 0 0
\(989\) 2.22765e13 0.740394
\(990\) 3.69730e11 0.0122328
\(991\) 2.32887e13 0.767034 0.383517 0.923534i \(-0.374713\pi\)
0.383517 + 0.923534i \(0.374713\pi\)
\(992\) 1.60615e13 0.526604
\(993\) −1.36919e13 −0.446881
\(994\) 4.35520e12 0.141504
\(995\) −6.58644e12 −0.213033
\(996\) −5.22142e13 −1.68121
\(997\) −1.12247e13 −0.359788 −0.179894 0.983686i \(-0.557575\pi\)
−0.179894 + 0.983686i \(0.557575\pi\)
\(998\) −2.60636e12 −0.0831663
\(999\) 4.84412e13 1.53876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.b.1.3 5
13.12 even 2 13.10.a.b.1.3 5
39.38 odd 2 117.10.a.e.1.3 5
52.51 odd 2 208.10.a.h.1.4 5
65.64 even 2 325.10.a.b.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.3 5 13.12 even 2
117.10.a.e.1.3 5 39.38 odd 2
169.10.a.b.1.3 5 1.1 even 1 trivial
208.10.a.h.1.4 5 52.51 odd 2
325.10.a.b.1.3 5 65.64 even 2