Properties

Label 169.10.a.f.1.14
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{10}\cdot 13^{12} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(19.7704\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.7704 q^{2} +99.5109 q^{3} -121.130 q^{4} -1521.53 q^{5} +1967.37 q^{6} -9243.80 q^{7} -12517.3 q^{8} -9780.58 q^{9} -30081.3 q^{10} +38807.1 q^{11} -12053.7 q^{12} -182754. q^{14} -151409. q^{15} -185453. q^{16} +453281. q^{17} -193366. q^{18} -965410. q^{19} +184302. q^{20} -919859. q^{21} +767233. q^{22} +543135. q^{23} -1.24560e6 q^{24} +361927. q^{25} -2.93195e6 q^{27} +1.11970e6 q^{28} +4.05377e6 q^{29} -2.99342e6 q^{30} -2.44251e6 q^{31} +2.74234e6 q^{32} +3.86173e6 q^{33} +8.96157e6 q^{34} +1.40647e7 q^{35} +1.18472e6 q^{36} +7.60255e6 q^{37} -1.90866e7 q^{38} +1.90454e7 q^{40} -4.47020e6 q^{41} -1.81860e7 q^{42} +1.62810e7 q^{43} -4.70069e6 q^{44} +1.48814e7 q^{45} +1.07380e7 q^{46} +1.05026e7 q^{47} -1.84546e7 q^{48} +4.50942e7 q^{49} +7.15545e6 q^{50} +4.51064e7 q^{51} -4.76659e7 q^{53} -5.79659e7 q^{54} -5.90461e7 q^{55} +1.15707e8 q^{56} -9.60688e7 q^{57} +8.01449e7 q^{58} +1.11655e8 q^{59} +1.83401e7 q^{60} +6.91907e7 q^{61} -4.82895e7 q^{62} +9.04097e7 q^{63} +1.49169e8 q^{64} +7.63480e7 q^{66} +2.81909e8 q^{67} -5.49058e7 q^{68} +5.40479e7 q^{69} +2.78066e8 q^{70} -3.46433e8 q^{71} +1.22426e8 q^{72} +1.76119e8 q^{73} +1.50306e8 q^{74} +3.60157e7 q^{75} +1.16940e8 q^{76} -3.58725e8 q^{77} -2.36277e8 q^{79} +2.82172e8 q^{80} -9.92495e7 q^{81} -8.83778e7 q^{82} -2.90237e8 q^{83} +1.11422e8 q^{84} -6.89681e8 q^{85} +3.21883e8 q^{86} +4.03395e8 q^{87} -4.85758e8 q^{88} -4.52851e8 q^{89} +2.94213e8 q^{90} -6.57898e7 q^{92} -2.43056e8 q^{93} +2.07642e8 q^{94} +1.46890e9 q^{95} +2.72893e8 q^{96} -1.48537e9 q^{97} +8.91532e8 q^{98} -3.79556e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 19.7704 0.873738 0.436869 0.899525i \(-0.356087\pi\)
0.436869 + 0.899525i \(0.356087\pi\)
\(3\) 99.5109 0.709292 0.354646 0.935001i \(-0.384601\pi\)
0.354646 + 0.935001i \(0.384601\pi\)
\(4\) −121.130 −0.236581
\(5\) −1521.53 −1.08872 −0.544359 0.838852i \(-0.683227\pi\)
−0.544359 + 0.838852i \(0.683227\pi\)
\(6\) 1967.37 0.619735
\(7\) −9243.80 −1.45516 −0.727578 0.686025i \(-0.759354\pi\)
−0.727578 + 0.686025i \(0.759354\pi\)
\(8\) −12517.3 −1.08045
\(9\) −9780.58 −0.496905
\(10\) −30081.3 −0.951254
\(11\) 38807.1 0.799178 0.399589 0.916694i \(-0.369153\pi\)
0.399589 + 0.916694i \(0.369153\pi\)
\(12\) −12053.7 −0.167805
\(13\) 0 0
\(14\) −182754. −1.27142
\(15\) −151409. −0.772219
\(16\) −185453. −0.707448
\(17\) 453281. 1.31628 0.658139 0.752896i \(-0.271344\pi\)
0.658139 + 0.752896i \(0.271344\pi\)
\(18\) −193366. −0.434165
\(19\) −965410. −1.69950 −0.849749 0.527188i \(-0.823247\pi\)
−0.849749 + 0.527188i \(0.823247\pi\)
\(20\) 184302. 0.257570
\(21\) −919859. −1.03213
\(22\) 767233. 0.698273
\(23\) 543135. 0.404699 0.202350 0.979313i \(-0.435142\pi\)
0.202350 + 0.979313i \(0.435142\pi\)
\(24\) −1.24560e6 −0.766353
\(25\) 361927. 0.185306
\(26\) 0 0
\(27\) −2.93195e6 −1.06174
\(28\) 1.11970e6 0.344263
\(29\) 4.05377e6 1.06431 0.532156 0.846647i \(-0.321382\pi\)
0.532156 + 0.846647i \(0.321382\pi\)
\(30\) −2.99342e6 −0.674717
\(31\) −2.44251e6 −0.475016 −0.237508 0.971386i \(-0.576331\pi\)
−0.237508 + 0.971386i \(0.576331\pi\)
\(32\) 2.74234e6 0.462324
\(33\) 3.86173e6 0.566851
\(34\) 8.96157e6 1.15008
\(35\) 1.40647e7 1.58425
\(36\) 1.18472e6 0.117558
\(37\) 7.60255e6 0.666886 0.333443 0.942770i \(-0.391790\pi\)
0.333443 + 0.942770i \(0.391790\pi\)
\(38\) −1.90866e7 −1.48492
\(39\) 0 0
\(40\) 1.90454e7 1.17630
\(41\) −4.47020e6 −0.247058 −0.123529 0.992341i \(-0.539421\pi\)
−0.123529 + 0.992341i \(0.539421\pi\)
\(42\) −1.81860e7 −0.901811
\(43\) 1.62810e7 0.726229 0.363115 0.931744i \(-0.381713\pi\)
0.363115 + 0.931744i \(0.381713\pi\)
\(44\) −4.70069e6 −0.189071
\(45\) 1.48814e7 0.540989
\(46\) 1.07380e7 0.353601
\(47\) 1.05026e7 0.313948 0.156974 0.987603i \(-0.449826\pi\)
0.156974 + 0.987603i \(0.449826\pi\)
\(48\) −1.84546e7 −0.501787
\(49\) 4.50942e7 1.11748
\(50\) 7.15545e6 0.161909
\(51\) 4.51064e7 0.933626
\(52\) 0 0
\(53\) −4.76659e7 −0.829787 −0.414893 0.909870i \(-0.636181\pi\)
−0.414893 + 0.909870i \(0.636181\pi\)
\(54\) −5.79659e7 −0.927685
\(55\) −5.90461e7 −0.870080
\(56\) 1.15707e8 1.57222
\(57\) −9.60688e7 −1.20544
\(58\) 8.01449e7 0.929929
\(59\) 1.11655e8 1.19963 0.599813 0.800140i \(-0.295242\pi\)
0.599813 + 0.800140i \(0.295242\pi\)
\(60\) 1.83401e7 0.182693
\(61\) 6.91907e7 0.639828 0.319914 0.947447i \(-0.396346\pi\)
0.319914 + 0.947447i \(0.396346\pi\)
\(62\) −4.82895e7 −0.415040
\(63\) 9.04097e7 0.723074
\(64\) 1.49169e8 1.11140
\(65\) 0 0
\(66\) 7.63480e7 0.495279
\(67\) 2.81909e8 1.70912 0.854560 0.519352i \(-0.173827\pi\)
0.854560 + 0.519352i \(0.173827\pi\)
\(68\) −5.49058e7 −0.311407
\(69\) 5.40479e7 0.287050
\(70\) 2.78066e8 1.38422
\(71\) −3.46433e8 −1.61792 −0.808960 0.587864i \(-0.799969\pi\)
−0.808960 + 0.587864i \(0.799969\pi\)
\(72\) 1.22426e8 0.536880
\(73\) 1.76119e8 0.725862 0.362931 0.931816i \(-0.381776\pi\)
0.362931 + 0.931816i \(0.381776\pi\)
\(74\) 1.50306e8 0.582683
\(75\) 3.60157e7 0.131436
\(76\) 1.16940e8 0.402070
\(77\) −3.58725e8 −1.16293
\(78\) 0 0
\(79\) −2.36277e8 −0.682496 −0.341248 0.939973i \(-0.610850\pi\)
−0.341248 + 0.939973i \(0.610850\pi\)
\(80\) 2.82172e8 0.770211
\(81\) −9.92495e7 −0.256180
\(82\) −8.83778e7 −0.215864
\(83\) −2.90237e8 −0.671276 −0.335638 0.941991i \(-0.608952\pi\)
−0.335638 + 0.941991i \(0.608952\pi\)
\(84\) 1.11422e8 0.244183
\(85\) −6.89681e8 −1.43306
\(86\) 3.21883e8 0.634534
\(87\) 4.03395e8 0.754907
\(88\) −4.85758e8 −0.863471
\(89\) −4.52851e8 −0.765069 −0.382534 0.923941i \(-0.624949\pi\)
−0.382534 + 0.923941i \(0.624949\pi\)
\(90\) 2.94213e8 0.472683
\(91\) 0 0
\(92\) −6.57898e7 −0.0957444
\(93\) −2.43056e8 −0.336925
\(94\) 2.07642e8 0.274309
\(95\) 1.46890e9 1.85027
\(96\) 2.72893e8 0.327923
\(97\) −1.48537e9 −1.70358 −0.851790 0.523884i \(-0.824483\pi\)
−0.851790 + 0.523884i \(0.824483\pi\)
\(98\) 8.91532e8 0.976382
\(99\) −3.79556e8 −0.397116
\(100\) −4.38401e7 −0.0438401
\(101\) −5.89236e8 −0.563435 −0.281717 0.959497i \(-0.590904\pi\)
−0.281717 + 0.959497i \(0.590904\pi\)
\(102\) 8.91774e8 0.815744
\(103\) 1.70244e9 1.49041 0.745203 0.666838i \(-0.232353\pi\)
0.745203 + 0.666838i \(0.232353\pi\)
\(104\) 0 0
\(105\) 1.39959e9 1.12370
\(106\) −9.42376e8 −0.725016
\(107\) −1.70949e8 −0.126078 −0.0630389 0.998011i \(-0.520079\pi\)
−0.0630389 + 0.998011i \(0.520079\pi\)
\(108\) 3.55146e8 0.251189
\(109\) 1.55941e9 1.05813 0.529066 0.848581i \(-0.322542\pi\)
0.529066 + 0.848581i \(0.322542\pi\)
\(110\) −1.16737e9 −0.760222
\(111\) 7.56536e8 0.473016
\(112\) 1.71429e9 1.02945
\(113\) −1.21786e9 −0.702659 −0.351330 0.936252i \(-0.614270\pi\)
−0.351330 + 0.936252i \(0.614270\pi\)
\(114\) −1.89932e9 −1.05324
\(115\) −8.26396e8 −0.440603
\(116\) −4.91032e8 −0.251796
\(117\) 0 0
\(118\) 2.20748e9 1.04816
\(119\) −4.19004e9 −1.91539
\(120\) 1.89522e9 0.834343
\(121\) −8.51959e8 −0.361314
\(122\) 1.36793e9 0.559042
\(123\) −4.44834e8 −0.175237
\(124\) 2.95860e8 0.112380
\(125\) 2.42105e9 0.886971
\(126\) 1.78744e9 0.631777
\(127\) 2.82775e9 0.964548 0.482274 0.876020i \(-0.339811\pi\)
0.482274 + 0.876020i \(0.339811\pi\)
\(128\) 1.54506e9 0.508747
\(129\) 1.62014e9 0.515109
\(130\) 0 0
\(131\) 1.69529e9 0.502947 0.251473 0.967864i \(-0.419085\pi\)
0.251473 + 0.967864i \(0.419085\pi\)
\(132\) −4.67770e8 −0.134106
\(133\) 8.92406e9 2.47303
\(134\) 5.57347e9 1.49332
\(135\) 4.46104e9 1.15594
\(136\) −5.67384e9 −1.42217
\(137\) −2.91520e9 −0.707009 −0.353505 0.935433i \(-0.615010\pi\)
−0.353505 + 0.935433i \(0.615010\pi\)
\(138\) 1.06855e9 0.250807
\(139\) −9.42169e7 −0.0214073 −0.0107037 0.999943i \(-0.503407\pi\)
−0.0107037 + 0.999943i \(0.503407\pi\)
\(140\) −1.70365e9 −0.374805
\(141\) 1.04513e9 0.222681
\(142\) −6.84914e9 −1.41364
\(143\) 0 0
\(144\) 1.81384e9 0.351534
\(145\) −6.16794e9 −1.15873
\(146\) 3.48196e9 0.634213
\(147\) 4.48737e9 0.792617
\(148\) −9.20894e8 −0.157773
\(149\) −9.49232e9 −1.57774 −0.788868 0.614563i \(-0.789332\pi\)
−0.788868 + 0.614563i \(0.789332\pi\)
\(150\) 7.12045e8 0.114841
\(151\) −3.58560e9 −0.561262 −0.280631 0.959816i \(-0.590544\pi\)
−0.280631 + 0.959816i \(0.590544\pi\)
\(152\) 1.20843e10 1.83622
\(153\) −4.43336e9 −0.654065
\(154\) −7.09215e9 −1.01610
\(155\) 3.71635e9 0.517159
\(156\) 0 0
\(157\) 1.18061e10 1.55081 0.775403 0.631467i \(-0.217547\pi\)
0.775403 + 0.631467i \(0.217547\pi\)
\(158\) −4.67130e9 −0.596323
\(159\) −4.74328e9 −0.588561
\(160\) −4.17255e9 −0.503341
\(161\) −5.02063e9 −0.588900
\(162\) −1.96221e9 −0.223835
\(163\) 5.11424e9 0.567462 0.283731 0.958904i \(-0.408428\pi\)
0.283731 + 0.958904i \(0.408428\pi\)
\(164\) 5.41474e8 0.0584494
\(165\) −5.87573e9 −0.617141
\(166\) −5.73811e9 −0.586520
\(167\) 1.02165e10 1.01643 0.508215 0.861230i \(-0.330306\pi\)
0.508215 + 0.861230i \(0.330306\pi\)
\(168\) 1.15141e10 1.11516
\(169\) 0 0
\(170\) −1.36353e10 −1.25212
\(171\) 9.44227e9 0.844489
\(172\) −1.97212e9 −0.171812
\(173\) 1.44080e10 1.22292 0.611458 0.791277i \(-0.290583\pi\)
0.611458 + 0.791277i \(0.290583\pi\)
\(174\) 7.97529e9 0.659591
\(175\) −3.34558e9 −0.269650
\(176\) −7.19690e9 −0.565377
\(177\) 1.11109e10 0.850885
\(178\) −8.95307e9 −0.668470
\(179\) −1.15726e10 −0.842542 −0.421271 0.906935i \(-0.638416\pi\)
−0.421271 + 0.906935i \(0.638416\pi\)
\(180\) −1.80258e9 −0.127988
\(181\) 1.98233e10 1.37284 0.686422 0.727203i \(-0.259180\pi\)
0.686422 + 0.727203i \(0.259180\pi\)
\(182\) 0 0
\(183\) 6.88523e9 0.453825
\(184\) −6.79856e9 −0.437257
\(185\) −1.15675e10 −0.726050
\(186\) −4.80533e9 −0.294384
\(187\) 1.75905e10 1.05194
\(188\) −1.27218e9 −0.0742743
\(189\) 2.71023e10 1.54500
\(190\) 2.90408e10 1.61665
\(191\) 6.27259e9 0.341033 0.170517 0.985355i \(-0.445456\pi\)
0.170517 + 0.985355i \(0.445456\pi\)
\(192\) 1.48440e10 0.788306
\(193\) −1.05273e10 −0.546147 −0.273073 0.961993i \(-0.588040\pi\)
−0.273073 + 0.961993i \(0.588040\pi\)
\(194\) −2.93665e10 −1.48848
\(195\) 0 0
\(196\) −5.46225e9 −0.264374
\(197\) 3.01663e10 1.42700 0.713499 0.700656i \(-0.247109\pi\)
0.713499 + 0.700656i \(0.247109\pi\)
\(198\) −7.50398e9 −0.346975
\(199\) 5.92900e9 0.268005 0.134002 0.990981i \(-0.457217\pi\)
0.134002 + 0.990981i \(0.457217\pi\)
\(200\) −4.53033e9 −0.200214
\(201\) 2.80530e10 1.21227
\(202\) −1.16495e10 −0.492294
\(203\) −3.74723e10 −1.54874
\(204\) −5.46373e9 −0.220878
\(205\) 6.80154e9 0.268977
\(206\) 3.36580e10 1.30222
\(207\) −5.31218e9 −0.201097
\(208\) 0 0
\(209\) −3.74647e10 −1.35820
\(210\) 2.76706e10 0.981818
\(211\) −3.32122e9 −0.115352 −0.0576762 0.998335i \(-0.518369\pi\)
−0.0576762 + 0.998335i \(0.518369\pi\)
\(212\) 5.77376e9 0.196312
\(213\) −3.44739e10 −1.14758
\(214\) −3.37973e9 −0.110159
\(215\) −2.47721e10 −0.790659
\(216\) 3.66999e10 1.14716
\(217\) 2.25781e10 0.691222
\(218\) 3.08301e10 0.924531
\(219\) 1.75258e10 0.514848
\(220\) 7.15224e9 0.205845
\(221\) 0 0
\(222\) 1.49571e10 0.413293
\(223\) −6.95646e9 −0.188372 −0.0941860 0.995555i \(-0.530025\pi\)
−0.0941860 + 0.995555i \(0.530025\pi\)
\(224\) −2.53497e10 −0.672754
\(225\) −3.53985e9 −0.0920797
\(226\) −2.40777e10 −0.613940
\(227\) 1.35171e10 0.337884 0.168942 0.985626i \(-0.445965\pi\)
0.168942 + 0.985626i \(0.445965\pi\)
\(228\) 1.16368e10 0.285185
\(229\) −6.99795e10 −1.68155 −0.840777 0.541381i \(-0.817902\pi\)
−0.840777 + 0.541381i \(0.817902\pi\)
\(230\) −1.63382e10 −0.384972
\(231\) −3.56970e10 −0.824856
\(232\) −5.07421e10 −1.14993
\(233\) 1.50692e9 0.0334956 0.0167478 0.999860i \(-0.494669\pi\)
0.0167478 + 0.999860i \(0.494669\pi\)
\(234\) 0 0
\(235\) −1.59801e10 −0.341801
\(236\) −1.35248e10 −0.283809
\(237\) −2.35122e10 −0.484089
\(238\) −8.28390e10 −1.67355
\(239\) −4.09671e10 −0.812165 −0.406083 0.913836i \(-0.633105\pi\)
−0.406083 + 0.913836i \(0.633105\pi\)
\(240\) 2.80792e10 0.546304
\(241\) −2.37244e8 −0.00453021 −0.00226510 0.999997i \(-0.500721\pi\)
−0.00226510 + 0.999997i \(0.500721\pi\)
\(242\) −1.68436e10 −0.315694
\(243\) 4.78331e10 0.880036
\(244\) −8.38105e9 −0.151371
\(245\) −6.86122e10 −1.21662
\(246\) −8.79456e9 −0.153111
\(247\) 0 0
\(248\) 3.05735e10 0.513230
\(249\) −2.88817e10 −0.476131
\(250\) 4.78653e10 0.774981
\(251\) 3.12908e9 0.0497605 0.0248802 0.999690i \(-0.492080\pi\)
0.0248802 + 0.999690i \(0.492080\pi\)
\(252\) −1.09513e10 −0.171066
\(253\) 2.10775e10 0.323427
\(254\) 5.59058e10 0.842763
\(255\) −6.86308e10 −1.01645
\(256\) −4.58281e10 −0.666887
\(257\) 1.16093e11 1.65999 0.829996 0.557769i \(-0.188343\pi\)
0.829996 + 0.557769i \(0.188343\pi\)
\(258\) 3.20309e10 0.450070
\(259\) −7.02764e10 −0.970422
\(260\) 0 0
\(261\) −3.96483e10 −0.528861
\(262\) 3.35165e10 0.439444
\(263\) 1.45825e10 0.187946 0.0939728 0.995575i \(-0.470043\pi\)
0.0939728 + 0.995575i \(0.470043\pi\)
\(264\) −4.83382e10 −0.612453
\(265\) 7.25251e10 0.903403
\(266\) 1.76433e11 2.16078
\(267\) −4.50636e10 −0.542657
\(268\) −3.41476e10 −0.404346
\(269\) −1.38425e11 −1.61187 −0.805935 0.592004i \(-0.798337\pi\)
−0.805935 + 0.592004i \(0.798337\pi\)
\(270\) 8.81968e10 1.00999
\(271\) 4.58189e10 0.516039 0.258019 0.966140i \(-0.416930\pi\)
0.258019 + 0.966140i \(0.416930\pi\)
\(272\) −8.40625e10 −0.931198
\(273\) 0 0
\(274\) −5.76347e10 −0.617741
\(275\) 1.40453e10 0.148093
\(276\) −6.54680e9 −0.0679107
\(277\) −6.30656e10 −0.643626 −0.321813 0.946803i \(-0.604292\pi\)
−0.321813 + 0.946803i \(0.604292\pi\)
\(278\) −1.86271e9 −0.0187044
\(279\) 2.38891e10 0.236038
\(280\) −1.76052e11 −1.71170
\(281\) 9.53019e10 0.911849 0.455924 0.890018i \(-0.349309\pi\)
0.455924 + 0.890018i \(0.349309\pi\)
\(282\) 2.06626e10 0.194565
\(283\) −8.82038e10 −0.817426 −0.408713 0.912663i \(-0.634022\pi\)
−0.408713 + 0.912663i \(0.634022\pi\)
\(284\) 4.19633e10 0.382770
\(285\) 1.46172e11 1.31238
\(286\) 0 0
\(287\) 4.13216e10 0.359508
\(288\) −2.68217e10 −0.229731
\(289\) 8.68761e10 0.732589
\(290\) −1.21943e11 −1.01243
\(291\) −1.47811e11 −1.20834
\(292\) −2.13333e10 −0.171725
\(293\) 4.53169e10 0.359216 0.179608 0.983738i \(-0.442517\pi\)
0.179608 + 0.983738i \(0.442517\pi\)
\(294\) 8.87172e10 0.692540
\(295\) −1.69887e11 −1.30605
\(296\) −9.51630e10 −0.720535
\(297\) −1.13780e11 −0.848522
\(298\) −1.87667e11 −1.37853
\(299\) 0 0
\(300\) −4.36256e9 −0.0310954
\(301\) −1.50499e11 −1.05678
\(302\) −7.08889e10 −0.490396
\(303\) −5.86355e10 −0.399640
\(304\) 1.79038e11 1.20231
\(305\) −1.05276e11 −0.696592
\(306\) −8.76494e10 −0.571482
\(307\) −2.27379e11 −1.46093 −0.730463 0.682953i \(-0.760695\pi\)
−0.730463 + 0.682953i \(0.760695\pi\)
\(308\) 4.34522e10 0.275127
\(309\) 1.69411e11 1.05713
\(310\) 7.34738e10 0.451861
\(311\) 1.56295e11 0.947377 0.473688 0.880693i \(-0.342922\pi\)
0.473688 + 0.880693i \(0.342922\pi\)
\(312\) 0 0
\(313\) −9.62686e10 −0.566937 −0.283469 0.958982i \(-0.591485\pi\)
−0.283469 + 0.958982i \(0.591485\pi\)
\(314\) 2.33411e11 1.35500
\(315\) −1.37561e11 −0.787223
\(316\) 2.86202e10 0.161466
\(317\) −8.54722e9 −0.0475399 −0.0237699 0.999717i \(-0.507567\pi\)
−0.0237699 + 0.999717i \(0.507567\pi\)
\(318\) −9.37767e10 −0.514248
\(319\) 1.57315e11 0.850574
\(320\) −2.26966e11 −1.21000
\(321\) −1.70113e10 −0.0894260
\(322\) −9.92601e10 −0.514545
\(323\) −4.37602e11 −2.23701
\(324\) 1.20221e10 0.0606075
\(325\) 0 0
\(326\) 1.01111e11 0.495813
\(327\) 1.55178e11 0.750525
\(328\) 5.59546e10 0.266934
\(329\) −9.70843e10 −0.456844
\(330\) −1.16166e11 −0.539219
\(331\) 3.23832e11 1.48284 0.741419 0.671042i \(-0.234153\pi\)
0.741419 + 0.671042i \(0.234153\pi\)
\(332\) 3.51563e10 0.158811
\(333\) −7.43573e10 −0.331379
\(334\) 2.01984e11 0.888094
\(335\) −4.28933e11 −1.86075
\(336\) 1.70591e11 0.730178
\(337\) 1.16577e11 0.492356 0.246178 0.969225i \(-0.420825\pi\)
0.246178 + 0.969225i \(0.420825\pi\)
\(338\) 0 0
\(339\) −1.21190e11 −0.498391
\(340\) 8.35408e10 0.339034
\(341\) −9.47866e10 −0.379623
\(342\) 1.86678e11 0.737862
\(343\) −4.38212e10 −0.170947
\(344\) −2.03794e11 −0.784654
\(345\) −8.22354e10 −0.312516
\(346\) 2.84853e11 1.06851
\(347\) 3.91173e11 1.44839 0.724197 0.689593i \(-0.242211\pi\)
0.724197 + 0.689593i \(0.242211\pi\)
\(348\) −4.88631e10 −0.178597
\(349\) 1.52168e11 0.549046 0.274523 0.961581i \(-0.411480\pi\)
0.274523 + 0.961581i \(0.411480\pi\)
\(350\) −6.61435e10 −0.235603
\(351\) 0 0
\(352\) 1.06422e11 0.369480
\(353\) −3.05234e11 −1.04628 −0.523138 0.852248i \(-0.675239\pi\)
−0.523138 + 0.852248i \(0.675239\pi\)
\(354\) 2.19668e11 0.743451
\(355\) 5.27108e11 1.76146
\(356\) 5.48537e10 0.181001
\(357\) −4.16955e11 −1.35857
\(358\) −2.28795e11 −0.736161
\(359\) 4.59883e11 1.46124 0.730622 0.682782i \(-0.239230\pi\)
0.730622 + 0.682782i \(0.239230\pi\)
\(360\) −1.86275e11 −0.584511
\(361\) 6.09329e11 1.88829
\(362\) 3.91914e11 1.19951
\(363\) −8.47792e10 −0.256277
\(364\) 0 0
\(365\) −2.67971e11 −0.790259
\(366\) 1.36124e11 0.396524
\(367\) −4.76454e10 −0.137096 −0.0685478 0.997648i \(-0.521837\pi\)
−0.0685478 + 0.997648i \(0.521837\pi\)
\(368\) −1.00726e11 −0.286304
\(369\) 4.37212e10 0.122765
\(370\) −2.28695e11 −0.634378
\(371\) 4.40614e11 1.20747
\(372\) 2.94413e10 0.0797102
\(373\) −4.45233e10 −0.119096 −0.0595481 0.998225i \(-0.518966\pi\)
−0.0595481 + 0.998225i \(0.518966\pi\)
\(374\) 3.47772e11 0.919121
\(375\) 2.40921e11 0.629122
\(376\) −1.31464e11 −0.339205
\(377\) 0 0
\(378\) 5.35825e11 1.34993
\(379\) 1.15114e11 0.286584 0.143292 0.989680i \(-0.454231\pi\)
0.143292 + 0.989680i \(0.454231\pi\)
\(380\) −1.77927e11 −0.437740
\(381\) 2.81392e11 0.684146
\(382\) 1.24012e11 0.297974
\(383\) 5.21296e11 1.23791 0.618957 0.785425i \(-0.287556\pi\)
0.618957 + 0.785425i \(0.287556\pi\)
\(384\) 1.53751e11 0.360850
\(385\) 5.45810e11 1.26610
\(386\) −2.08129e11 −0.477189
\(387\) −1.59238e11 −0.360867
\(388\) 1.79923e11 0.403035
\(389\) 1.68464e11 0.373021 0.186510 0.982453i \(-0.440282\pi\)
0.186510 + 0.982453i \(0.440282\pi\)
\(390\) 0 0
\(391\) 2.46193e11 0.532697
\(392\) −5.64456e11 −1.20738
\(393\) 1.68699e11 0.356736
\(394\) 5.96400e11 1.24682
\(395\) 3.59503e11 0.743045
\(396\) 4.59755e10 0.0939502
\(397\) 6.78075e11 1.37000 0.684999 0.728544i \(-0.259802\pi\)
0.684999 + 0.728544i \(0.259802\pi\)
\(398\) 1.17219e11 0.234166
\(399\) 8.88041e11 1.75410
\(400\) −6.71205e10 −0.131095
\(401\) −3.34719e11 −0.646443 −0.323221 0.946323i \(-0.604766\pi\)
−0.323221 + 0.946323i \(0.604766\pi\)
\(402\) 5.54621e11 1.05920
\(403\) 0 0
\(404\) 7.13740e10 0.133298
\(405\) 1.51011e11 0.278908
\(406\) −7.40843e11 −1.35319
\(407\) 2.95033e11 0.532961
\(408\) −5.64609e11 −1.00873
\(409\) −6.86952e11 −1.21387 −0.606934 0.794752i \(-0.707601\pi\)
−0.606934 + 0.794752i \(0.707601\pi\)
\(410\) 1.34469e11 0.235015
\(411\) −2.90094e11 −0.501476
\(412\) −2.06216e11 −0.352602
\(413\) −1.03212e12 −1.74564
\(414\) −1.05024e11 −0.175706
\(415\) 4.41604e11 0.730830
\(416\) 0 0
\(417\) −9.37561e9 −0.0151840
\(418\) −7.40694e11 −1.18671
\(419\) 9.09694e11 1.44189 0.720945 0.692992i \(-0.243708\pi\)
0.720945 + 0.692992i \(0.243708\pi\)
\(420\) −1.69532e11 −0.265846
\(421\) 7.71291e11 1.19660 0.598300 0.801272i \(-0.295843\pi\)
0.598300 + 0.801272i \(0.295843\pi\)
\(422\) −6.56620e10 −0.100788
\(423\) −1.02722e11 −0.156003
\(424\) 5.96646e11 0.896542
\(425\) 1.64055e11 0.243915
\(426\) −6.81564e11 −1.00268
\(427\) −6.39585e11 −0.931049
\(428\) 2.07070e10 0.0298277
\(429\) 0 0
\(430\) −4.89755e11 −0.690829
\(431\) −5.86965e11 −0.819341 −0.409671 0.912233i \(-0.634356\pi\)
−0.409671 + 0.912233i \(0.634356\pi\)
\(432\) 5.43739e11 0.751127
\(433\) 6.24963e11 0.854395 0.427197 0.904158i \(-0.359501\pi\)
0.427197 + 0.904158i \(0.359501\pi\)
\(434\) 4.46378e11 0.603947
\(435\) −6.13777e11 −0.821881
\(436\) −1.88890e11 −0.250334
\(437\) −5.24348e11 −0.687786
\(438\) 3.46493e11 0.449842
\(439\) 4.25543e11 0.546831 0.273416 0.961896i \(-0.411847\pi\)
0.273416 + 0.961896i \(0.411847\pi\)
\(440\) 7.39095e11 0.940076
\(441\) −4.41048e11 −0.555280
\(442\) 0 0
\(443\) 1.27293e12 1.57032 0.785161 0.619292i \(-0.212580\pi\)
0.785161 + 0.619292i \(0.212580\pi\)
\(444\) −9.16390e10 −0.111907
\(445\) 6.89026e11 0.832944
\(446\) −1.37532e11 −0.164588
\(447\) −9.44590e11 −1.11908
\(448\) −1.37889e12 −1.61726
\(449\) −9.55517e11 −1.10951 −0.554753 0.832015i \(-0.687187\pi\)
−0.554753 + 0.832015i \(0.687187\pi\)
\(450\) −6.99845e10 −0.0804536
\(451\) −1.73475e11 −0.197444
\(452\) 1.47519e11 0.166236
\(453\) −3.56807e11 −0.398099
\(454\) 2.67240e11 0.295223
\(455\) 0 0
\(456\) 1.20252e12 1.30242
\(457\) 1.64747e12 1.76683 0.883416 0.468589i \(-0.155237\pi\)
0.883416 + 0.468589i \(0.155237\pi\)
\(458\) −1.38353e12 −1.46924
\(459\) −1.32900e12 −1.39755
\(460\) 1.00101e11 0.104239
\(461\) −2.01578e11 −0.207869 −0.103934 0.994584i \(-0.533143\pi\)
−0.103934 + 0.994584i \(0.533143\pi\)
\(462\) −7.05746e11 −0.720708
\(463\) −7.27788e11 −0.736021 −0.368011 0.929822i \(-0.619961\pi\)
−0.368011 + 0.929822i \(0.619961\pi\)
\(464\) −7.51785e11 −0.752945
\(465\) 3.69817e11 0.366816
\(466\) 2.97924e10 0.0292664
\(467\) −1.74702e12 −1.69970 −0.849851 0.527024i \(-0.823308\pi\)
−0.849851 + 0.527024i \(0.823308\pi\)
\(468\) 0 0
\(469\) −2.60591e12 −2.48704
\(470\) −3.15933e11 −0.298645
\(471\) 1.17483e12 1.09997
\(472\) −1.39762e12 −1.29613
\(473\) 6.31819e11 0.580387
\(474\) −4.64846e11 −0.422967
\(475\) −3.49408e11 −0.314928
\(476\) 5.07538e11 0.453145
\(477\) 4.66200e11 0.412325
\(478\) −8.09937e11 −0.709620
\(479\) −3.24829e11 −0.281933 −0.140966 0.990014i \(-0.545021\pi\)
−0.140966 + 0.990014i \(0.545021\pi\)
\(480\) −4.15215e11 −0.357015
\(481\) 0 0
\(482\) −4.69041e9 −0.00395822
\(483\) −4.99608e11 −0.417702
\(484\) 1.03198e11 0.0854801
\(485\) 2.26004e12 1.85472
\(486\) 9.45682e11 0.768921
\(487\) 1.78478e12 1.43782 0.718911 0.695102i \(-0.244641\pi\)
0.718911 + 0.695102i \(0.244641\pi\)
\(488\) −8.66077e11 −0.691302
\(489\) 5.08923e11 0.402496
\(490\) −1.35649e12 −1.06300
\(491\) 6.75975e11 0.524884 0.262442 0.964948i \(-0.415472\pi\)
0.262442 + 0.964948i \(0.415472\pi\)
\(492\) 5.38826e10 0.0414577
\(493\) 1.83750e12 1.40093
\(494\) 0 0
\(495\) 5.77505e11 0.432347
\(496\) 4.52971e11 0.336049
\(497\) 3.20236e12 2.35432
\(498\) −5.71005e11 −0.416014
\(499\) 1.75261e12 1.26542 0.632708 0.774390i \(-0.281943\pi\)
0.632708 + 0.774390i \(0.281943\pi\)
\(500\) −2.93262e11 −0.209841
\(501\) 1.01665e12 0.720945
\(502\) 6.18632e10 0.0434776
\(503\) −3.96462e11 −0.276151 −0.138075 0.990422i \(-0.544092\pi\)
−0.138075 + 0.990422i \(0.544092\pi\)
\(504\) −1.13168e12 −0.781244
\(505\) 8.96541e11 0.613421
\(506\) 4.16711e11 0.282591
\(507\) 0 0
\(508\) −3.42524e11 −0.228194
\(509\) −2.66748e11 −0.176145 −0.0880727 0.996114i \(-0.528071\pi\)
−0.0880727 + 0.996114i \(0.528071\pi\)
\(510\) −1.35686e12 −0.888115
\(511\) −1.62801e12 −1.05624
\(512\) −1.69711e12 −1.09143
\(513\) 2.83053e12 1.80443
\(514\) 2.29520e12 1.45040
\(515\) −2.59031e12 −1.62263
\(516\) −1.96247e11 −0.121865
\(517\) 4.07577e11 0.250901
\(518\) −1.38940e12 −0.847895
\(519\) 1.43375e12 0.867405
\(520\) 0 0
\(521\) 2.43114e12 1.44557 0.722787 0.691071i \(-0.242861\pi\)
0.722787 + 0.691071i \(0.242861\pi\)
\(522\) −7.83864e11 −0.462087
\(523\) −3.14301e12 −1.83691 −0.918456 0.395523i \(-0.870563\pi\)
−0.918456 + 0.395523i \(0.870563\pi\)
\(524\) −2.05349e11 −0.118988
\(525\) −3.32921e11 −0.191260
\(526\) 2.88303e11 0.164215
\(527\) −1.10714e12 −0.625253
\(528\) −7.16170e11 −0.401017
\(529\) −1.50616e12 −0.836218
\(530\) 1.43385e12 0.789338
\(531\) −1.09206e12 −0.596100
\(532\) −1.08097e12 −0.585074
\(533\) 0 0
\(534\) −8.90928e11 −0.474140
\(535\) 2.60104e11 0.137263
\(536\) −3.52873e12 −1.84662
\(537\) −1.15160e12 −0.597608
\(538\) −2.73673e12 −1.40835
\(539\) 1.74997e12 0.893063
\(540\) −5.40365e11 −0.273473
\(541\) 1.31906e12 0.662028 0.331014 0.943626i \(-0.392609\pi\)
0.331014 + 0.943626i \(0.392609\pi\)
\(542\) 9.05859e11 0.450883
\(543\) 1.97263e12 0.973748
\(544\) 1.24305e12 0.608547
\(545\) −2.37268e12 −1.15201
\(546\) 0 0
\(547\) −2.73121e12 −1.30440 −0.652202 0.758045i \(-0.726155\pi\)
−0.652202 + 0.758045i \(0.726155\pi\)
\(548\) 3.53117e11 0.167265
\(549\) −6.76725e11 −0.317934
\(550\) 2.77682e11 0.129394
\(551\) −3.91355e12 −1.80879
\(552\) −6.76531e11 −0.310143
\(553\) 2.18410e12 0.993137
\(554\) −1.24684e12 −0.562361
\(555\) −1.15109e12 −0.514981
\(556\) 1.14125e10 0.00506458
\(557\) −2.75823e11 −0.121418 −0.0607088 0.998156i \(-0.519336\pi\)
−0.0607088 + 0.998156i \(0.519336\pi\)
\(558\) 4.72299e11 0.206235
\(559\) 0 0
\(560\) −2.60835e12 −1.12078
\(561\) 1.75045e12 0.746133
\(562\) 1.88416e12 0.796717
\(563\) 3.43268e8 0.000143994 0 7.19972e−5 1.00000i \(-0.499977\pi\)
7.19972e−5 1.00000i \(0.499977\pi\)
\(564\) −1.26596e11 −0.0526822
\(565\) 1.85301e12 0.764998
\(566\) −1.74383e12 −0.714216
\(567\) 9.17443e11 0.372782
\(568\) 4.33639e12 1.74808
\(569\) 2.17713e12 0.870721 0.435361 0.900256i \(-0.356621\pi\)
0.435361 + 0.900256i \(0.356621\pi\)
\(570\) 2.88988e12 1.14668
\(571\) −2.35383e12 −0.926641 −0.463321 0.886191i \(-0.653342\pi\)
−0.463321 + 0.886191i \(0.653342\pi\)
\(572\) 0 0
\(573\) 6.24191e11 0.241892
\(574\) 8.16947e11 0.314116
\(575\) 1.96575e11 0.0749934
\(576\) −1.45896e12 −0.552259
\(577\) 2.87096e12 1.07829 0.539145 0.842213i \(-0.318747\pi\)
0.539145 + 0.842213i \(0.318747\pi\)
\(578\) 1.71758e12 0.640091
\(579\) −1.04758e12 −0.387377
\(580\) 7.47120e11 0.274135
\(581\) 2.68289e12 0.976811
\(582\) −2.92228e12 −1.05577
\(583\) −1.84977e12 −0.663148
\(584\) −2.20453e12 −0.784256
\(585\) 0 0
\(586\) 8.95935e11 0.313861
\(587\) 2.30595e12 0.801639 0.400820 0.916157i \(-0.368725\pi\)
0.400820 + 0.916157i \(0.368725\pi\)
\(588\) −5.43553e11 −0.187518
\(589\) 2.35802e12 0.807289
\(590\) −3.35874e12 −1.14115
\(591\) 3.00187e12 1.01216
\(592\) −1.40992e12 −0.471787
\(593\) −1.61589e12 −0.536620 −0.268310 0.963333i \(-0.586465\pi\)
−0.268310 + 0.963333i \(0.586465\pi\)
\(594\) −2.24949e12 −0.741386
\(595\) 6.37527e12 2.08532
\(596\) 1.14980e12 0.373263
\(597\) 5.90000e11 0.190094
\(598\) 0 0
\(599\) −4.17127e12 −1.32388 −0.661938 0.749558i \(-0.730266\pi\)
−0.661938 + 0.749558i \(0.730266\pi\)
\(600\) −4.50817e11 −0.142010
\(601\) 2.82549e12 0.883404 0.441702 0.897162i \(-0.354375\pi\)
0.441702 + 0.897162i \(0.354375\pi\)
\(602\) −2.97542e12 −0.923346
\(603\) −2.75724e12 −0.849270
\(604\) 4.34323e11 0.132784
\(605\) 1.29628e12 0.393369
\(606\) −1.15925e12 −0.349180
\(607\) −1.71393e11 −0.0512441 −0.0256220 0.999672i \(-0.508157\pi\)
−0.0256220 + 0.999672i \(0.508157\pi\)
\(608\) −2.64748e12 −0.785719
\(609\) −3.72890e12 −1.09851
\(610\) −2.08135e12 −0.608640
\(611\) 0 0
\(612\) 5.37011e11 0.154740
\(613\) 5.97398e12 1.70880 0.854401 0.519615i \(-0.173925\pi\)
0.854401 + 0.519615i \(0.173925\pi\)
\(614\) −4.49539e12 −1.27647
\(615\) 6.76827e11 0.190783
\(616\) 4.49025e12 1.25648
\(617\) 5.82013e11 0.161678 0.0808388 0.996727i \(-0.474240\pi\)
0.0808388 + 0.996727i \(0.474240\pi\)
\(618\) 3.34934e12 0.923657
\(619\) −6.13432e11 −0.167942 −0.0839709 0.996468i \(-0.526760\pi\)
−0.0839709 + 0.996468i \(0.526760\pi\)
\(620\) −4.50160e11 −0.122350
\(621\) −1.59244e12 −0.429687
\(622\) 3.09002e12 0.827759
\(623\) 4.18607e12 1.11329
\(624\) 0 0
\(625\) −4.39059e12 −1.15097
\(626\) −1.90327e12 −0.495355
\(627\) −3.72815e12 −0.963362
\(628\) −1.43007e12 −0.366892
\(629\) 3.44609e12 0.877807
\(630\) −2.71964e12 −0.687827
\(631\) 6.56659e11 0.164895 0.0824475 0.996595i \(-0.473726\pi\)
0.0824475 + 0.996595i \(0.473726\pi\)
\(632\) 2.95754e12 0.737401
\(633\) −3.30498e11 −0.0818186
\(634\) −1.68982e11 −0.0415374
\(635\) −4.30250e12 −1.05012
\(636\) 5.74552e11 0.139243
\(637\) 0 0
\(638\) 3.11019e12 0.743179
\(639\) 3.38832e12 0.803952
\(640\) −2.35086e12 −0.553882
\(641\) −4.68212e12 −1.09542 −0.547711 0.836668i \(-0.684501\pi\)
−0.547711 + 0.836668i \(0.684501\pi\)
\(642\) −3.36320e11 −0.0781349
\(643\) −3.85913e12 −0.890307 −0.445153 0.895454i \(-0.646851\pi\)
−0.445153 + 0.895454i \(0.646851\pi\)
\(644\) 6.08147e11 0.139323
\(645\) −2.46509e12 −0.560808
\(646\) −8.65159e12 −1.95456
\(647\) −2.95801e11 −0.0663636 −0.0331818 0.999449i \(-0.510564\pi\)
−0.0331818 + 0.999449i \(0.510564\pi\)
\(648\) 1.24233e12 0.276790
\(649\) 4.33302e12 0.958716
\(650\) 0 0
\(651\) 2.24676e12 0.490278
\(652\) −6.19486e11 −0.134251
\(653\) 2.88888e12 0.621755 0.310878 0.950450i \(-0.399377\pi\)
0.310878 + 0.950450i \(0.399377\pi\)
\(654\) 3.06794e12 0.655762
\(655\) −2.57943e12 −0.547567
\(656\) 8.29013e11 0.174781
\(657\) −1.72255e12 −0.360684
\(658\) −1.91940e12 −0.399162
\(659\) 8.70413e11 0.179780 0.0898899 0.995952i \(-0.471348\pi\)
0.0898899 + 0.995952i \(0.471348\pi\)
\(660\) 7.11725e11 0.146004
\(661\) 5.17707e12 1.05482 0.527409 0.849612i \(-0.323164\pi\)
0.527409 + 0.849612i \(0.323164\pi\)
\(662\) 6.40230e12 1.29561
\(663\) 0 0
\(664\) 3.63297e12 0.725279
\(665\) −1.35782e13 −2.69244
\(666\) −1.47008e12 −0.289538
\(667\) 2.20175e12 0.430726
\(668\) −1.23752e12 −0.240468
\(669\) −6.92244e11 −0.133611
\(670\) −8.48020e12 −1.62581
\(671\) 2.68509e12 0.511337
\(672\) −2.52257e12 −0.477179
\(673\) −9.85716e12 −1.85218 −0.926092 0.377297i \(-0.876854\pi\)
−0.926092 + 0.377297i \(0.876854\pi\)
\(674\) 2.30479e12 0.430191
\(675\) −1.06115e12 −0.196748
\(676\) 0 0
\(677\) 8.69916e12 1.59158 0.795790 0.605573i \(-0.207056\pi\)
0.795790 + 0.605573i \(0.207056\pi\)
\(678\) −2.39599e12 −0.435463
\(679\) 1.37305e13 2.47897
\(680\) 8.63291e12 1.54834
\(681\) 1.34510e12 0.239659
\(682\) −1.87397e12 −0.331691
\(683\) 1.53046e12 0.269109 0.134554 0.990906i \(-0.457040\pi\)
0.134554 + 0.990906i \(0.457040\pi\)
\(684\) −1.14374e12 −0.199790
\(685\) 4.43556e12 0.769734
\(686\) −8.66364e11 −0.149363
\(687\) −6.96372e12 −1.19271
\(688\) −3.01937e12 −0.513769
\(689\) 0 0
\(690\) −1.62583e12 −0.273058
\(691\) 1.00313e12 0.167380 0.0836902 0.996492i \(-0.473329\pi\)
0.0836902 + 0.996492i \(0.473329\pi\)
\(692\) −1.74524e12 −0.289319
\(693\) 3.50854e12 0.577865
\(694\) 7.73367e12 1.26552
\(695\) 1.43354e11 0.0233065
\(696\) −5.04939e12 −0.815638
\(697\) −2.02626e12 −0.325198
\(698\) 3.00842e12 0.479722
\(699\) 1.49955e11 0.0237581
\(700\) 4.05249e11 0.0637941
\(701\) −6.48282e12 −1.01399 −0.506994 0.861949i \(-0.669243\pi\)
−0.506994 + 0.861949i \(0.669243\pi\)
\(702\) 0 0
\(703\) −7.33957e12 −1.13337
\(704\) 5.78883e12 0.888206
\(705\) −1.59019e12 −0.242437
\(706\) −6.03460e12 −0.914171
\(707\) 5.44678e12 0.819885
\(708\) −1.34586e12 −0.201304
\(709\) 4.20475e12 0.624931 0.312465 0.949929i \(-0.398845\pi\)
0.312465 + 0.949929i \(0.398845\pi\)
\(710\) 1.04212e13 1.53905
\(711\) 2.31093e12 0.339135
\(712\) 5.66845e12 0.826617
\(713\) −1.32661e12 −0.192239
\(714\) −8.24338e12 −1.18703
\(715\) 0 0
\(716\) 1.40178e12 0.199330
\(717\) −4.07667e12 −0.576062
\(718\) 9.09210e12 1.27674
\(719\) −9.00975e12 −1.25728 −0.628641 0.777695i \(-0.716389\pi\)
−0.628641 + 0.777695i \(0.716389\pi\)
\(720\) −2.75981e12 −0.382722
\(721\) −1.57370e13 −2.16877
\(722\) 1.20467e13 1.64987
\(723\) −2.36083e10 −0.00321324
\(724\) −2.40118e12 −0.324790
\(725\) 1.46717e12 0.197224
\(726\) −1.67612e12 −0.223919
\(727\) 4.23757e12 0.562615 0.281308 0.959618i \(-0.409232\pi\)
0.281308 + 0.959618i \(0.409232\pi\)
\(728\) 0 0
\(729\) 6.71344e12 0.880383
\(730\) −5.29790e12 −0.690479
\(731\) 7.37989e12 0.955920
\(732\) −8.34006e11 −0.107367
\(733\) 4.35002e12 0.556575 0.278288 0.960498i \(-0.410233\pi\)
0.278288 + 0.960498i \(0.410233\pi\)
\(734\) −9.41970e11 −0.119786
\(735\) −6.82766e12 −0.862936
\(736\) 1.48946e12 0.187102
\(737\) 1.09401e13 1.36589
\(738\) 8.64387e11 0.107264
\(739\) 3.68548e11 0.0454563 0.0227281 0.999742i \(-0.492765\pi\)
0.0227281 + 0.999742i \(0.492765\pi\)
\(740\) 1.40117e12 0.171770
\(741\) 0 0
\(742\) 8.71113e12 1.05501
\(743\) −6.34876e12 −0.764257 −0.382128 0.924109i \(-0.624809\pi\)
−0.382128 + 0.924109i \(0.624809\pi\)
\(744\) 3.04240e12 0.364030
\(745\) 1.44428e13 1.71771
\(746\) −8.80246e11 −0.104059
\(747\) 2.83869e12 0.333561
\(748\) −2.13073e12 −0.248870
\(749\) 1.58022e12 0.183463
\(750\) 4.76312e12 0.549688
\(751\) −1.03951e13 −1.19247 −0.596236 0.802809i \(-0.703338\pi\)
−0.596236 + 0.802809i \(0.703338\pi\)
\(752\) −1.94775e12 −0.222102
\(753\) 3.11377e11 0.0352947
\(754\) 0 0
\(755\) 5.45560e12 0.611056
\(756\) −3.28290e12 −0.365518
\(757\) −4.19405e12 −0.464197 −0.232098 0.972692i \(-0.574559\pi\)
−0.232098 + 0.972692i \(0.574559\pi\)
\(758\) 2.27586e12 0.250399
\(759\) 2.09744e12 0.229404
\(760\) −1.83866e13 −1.99913
\(761\) 4.72170e12 0.510349 0.255175 0.966895i \(-0.417867\pi\)
0.255175 + 0.966895i \(0.417867\pi\)
\(762\) 5.56324e12 0.597765
\(763\) −1.44148e13 −1.53975
\(764\) −7.59797e11 −0.0806822
\(765\) 6.74548e12 0.712093
\(766\) 1.03063e13 1.08161
\(767\) 0 0
\(768\) −4.56040e12 −0.473017
\(769\) −1.30977e13 −1.35060 −0.675302 0.737541i \(-0.735987\pi\)
−0.675302 + 0.737541i \(0.735987\pi\)
\(770\) 1.07909e13 1.10624
\(771\) 1.15525e13 1.17742
\(772\) 1.27517e12 0.129208
\(773\) −1.08876e11 −0.0109679 −0.00548397 0.999985i \(-0.501746\pi\)
−0.00548397 + 0.999985i \(0.501746\pi\)
\(774\) −3.14820e12 −0.315303
\(775\) −8.84009e11 −0.0880236
\(776\) 1.85928e13 1.84063
\(777\) −6.99327e12 −0.688312
\(778\) 3.33060e12 0.325923
\(779\) 4.31558e12 0.419875
\(780\) 0 0
\(781\) −1.34441e13 −1.29301
\(782\) 4.86734e12 0.465438
\(783\) −1.18855e13 −1.13002
\(784\) −8.36287e12 −0.790556
\(785\) −1.79633e13 −1.68839
\(786\) 3.33526e12 0.311694
\(787\) 1.73724e13 1.61426 0.807131 0.590372i \(-0.201019\pi\)
0.807131 + 0.590372i \(0.201019\pi\)
\(788\) −3.65403e12 −0.337601
\(789\) 1.45112e12 0.133308
\(790\) 7.10753e12 0.649227
\(791\) 1.12577e13 1.02248
\(792\) 4.75099e12 0.429063
\(793\) 0 0
\(794\) 1.34058e13 1.19702
\(795\) 7.21704e12 0.640777
\(796\) −7.18178e11 −0.0634050
\(797\) 1.88209e13 1.65226 0.826128 0.563483i \(-0.190539\pi\)
0.826128 + 0.563483i \(0.190539\pi\)
\(798\) 1.75570e13 1.53263
\(799\) 4.76065e12 0.413243
\(800\) 9.92527e11 0.0856717
\(801\) 4.42915e12 0.380166
\(802\) −6.61753e12 −0.564822
\(803\) 6.83467e12 0.580093
\(804\) −3.39806e12 −0.286799
\(805\) 7.63904e12 0.641146
\(806\) 0 0
\(807\) −1.37748e13 −1.14329
\(808\) 7.37562e12 0.608762
\(809\) −1.41885e13 −1.16458 −0.582290 0.812981i \(-0.697843\pi\)
−0.582290 + 0.812981i \(0.697843\pi\)
\(810\) 2.98556e12 0.243693
\(811\) 2.49677e12 0.202667 0.101334 0.994852i \(-0.467689\pi\)
0.101334 + 0.994852i \(0.467689\pi\)
\(812\) 4.53900e12 0.366403
\(813\) 4.55948e12 0.366022
\(814\) 5.83292e12 0.465668
\(815\) −7.78147e12 −0.617806
\(816\) −8.36513e12 −0.660491
\(817\) −1.57179e13 −1.23423
\(818\) −1.35813e13 −1.06060
\(819\) 0 0
\(820\) −8.23869e11 −0.0636349
\(821\) 5.97064e12 0.458645 0.229323 0.973350i \(-0.426349\pi\)
0.229323 + 0.973350i \(0.426349\pi\)
\(822\) −5.73528e12 −0.438159
\(823\) 1.04151e12 0.0791343 0.0395672 0.999217i \(-0.487402\pi\)
0.0395672 + 0.999217i \(0.487402\pi\)
\(824\) −2.13099e13 −1.61031
\(825\) 1.39766e12 0.105041
\(826\) −2.04055e13 −1.52523
\(827\) −4.22577e12 −0.314146 −0.157073 0.987587i \(-0.550206\pi\)
−0.157073 + 0.987587i \(0.550206\pi\)
\(828\) 6.43462e11 0.0475759
\(829\) 7.38832e12 0.543313 0.271656 0.962394i \(-0.412429\pi\)
0.271656 + 0.962394i \(0.412429\pi\)
\(830\) 8.73071e12 0.638555
\(831\) −6.27572e12 −0.456519
\(832\) 0 0
\(833\) 2.04404e13 1.47091
\(834\) −1.85360e11 −0.0132669
\(835\) −1.55447e13 −1.10661
\(836\) 4.53809e12 0.321325
\(837\) 7.16130e12 0.504345
\(838\) 1.79851e13 1.25983
\(839\) 7.56034e12 0.526760 0.263380 0.964692i \(-0.415163\pi\)
0.263380 + 0.964692i \(0.415163\pi\)
\(840\) −1.75190e13 −1.21410
\(841\) 1.92594e12 0.132758
\(842\) 1.52488e13 1.04552
\(843\) 9.48357e12 0.646767
\(844\) 4.02299e11 0.0272902
\(845\) 0 0
\(846\) −2.03086e12 −0.136305
\(847\) 7.87534e12 0.525768
\(848\) 8.83979e12 0.587031
\(849\) −8.77724e12 −0.579794
\(850\) 3.24343e12 0.213118
\(851\) 4.12921e12 0.269888
\(852\) 4.17581e12 0.271495
\(853\) 1.99879e13 1.29269 0.646347 0.763043i \(-0.276296\pi\)
0.646347 + 0.763043i \(0.276296\pi\)
\(854\) −1.26449e13 −0.813494
\(855\) −1.43667e13 −0.919410
\(856\) 2.13981e12 0.136221
\(857\) 8.41249e12 0.532735 0.266367 0.963872i \(-0.414177\pi\)
0.266367 + 0.963872i \(0.414177\pi\)
\(858\) 0 0
\(859\) 3.81635e12 0.239155 0.119577 0.992825i \(-0.461846\pi\)
0.119577 + 0.992825i \(0.461846\pi\)
\(860\) 3.00063e12 0.187055
\(861\) 4.11195e12 0.254996
\(862\) −1.16046e13 −0.715890
\(863\) 1.53354e13 0.941121 0.470560 0.882368i \(-0.344052\pi\)
0.470560 + 0.882368i \(0.344052\pi\)
\(864\) −8.04040e12 −0.490869
\(865\) −2.19222e13 −1.33141
\(866\) 1.23558e13 0.746517
\(867\) 8.64512e12 0.519619
\(868\) −2.73487e12 −0.163530
\(869\) −9.16923e12 −0.545436
\(870\) −1.21346e13 −0.718109
\(871\) 0 0
\(872\) −1.95195e13 −1.14326
\(873\) 1.45278e13 0.846517
\(874\) −1.03666e13 −0.600945
\(875\) −2.23797e13 −1.29068
\(876\) −2.12289e12 −0.121803
\(877\) −1.52103e12 −0.0868239 −0.0434119 0.999057i \(-0.513823\pi\)
−0.0434119 + 0.999057i \(0.513823\pi\)
\(878\) 8.41317e12 0.477787
\(879\) 4.50952e12 0.254789
\(880\) 1.09503e13 0.615536
\(881\) −8.92983e11 −0.0499403 −0.0249702 0.999688i \(-0.507949\pi\)
−0.0249702 + 0.999688i \(0.507949\pi\)
\(882\) −8.71970e12 −0.485169
\(883\) 1.69912e13 0.940592 0.470296 0.882509i \(-0.344147\pi\)
0.470296 + 0.882509i \(0.344147\pi\)
\(884\) 0 0
\(885\) −1.69056e13 −0.926374
\(886\) 2.51664e13 1.37205
\(887\) 6.57514e12 0.356655 0.178328 0.983971i \(-0.442931\pi\)
0.178328 + 0.983971i \(0.442931\pi\)
\(888\) −9.46975e12 −0.511070
\(889\) −2.61391e13 −1.40357
\(890\) 1.36224e13 0.727775
\(891\) −3.85158e12 −0.204734
\(892\) 8.42634e11 0.0445653
\(893\) −1.01394e13 −0.533555
\(894\) −1.86750e13 −0.977779
\(895\) 1.76080e13 0.917290
\(896\) −1.42823e13 −0.740306
\(897\) 0 0
\(898\) −1.88910e13 −0.969418
\(899\) −9.90138e12 −0.505565
\(900\) 4.28781e11 0.0217843
\(901\) −2.16061e13 −1.09223
\(902\) −3.42968e12 −0.172514
\(903\) −1.49762e13 −0.749563
\(904\) 1.52443e13 0.759187
\(905\) −3.01617e13 −1.49464
\(906\) −7.05422e12 −0.347834
\(907\) 1.24839e13 0.612517 0.306258 0.951948i \(-0.400923\pi\)
0.306258 + 0.951948i \(0.400923\pi\)
\(908\) −1.63733e12 −0.0799372
\(909\) 5.76308e12 0.279973
\(910\) 0 0
\(911\) −1.51870e13 −0.730534 −0.365267 0.930903i \(-0.619022\pi\)
−0.365267 + 0.930903i \(0.619022\pi\)
\(912\) 1.78163e13 0.852786
\(913\) −1.12632e13 −0.536470
\(914\) 3.25713e13 1.54375
\(915\) −1.04761e13 −0.494087
\(916\) 8.47659e12 0.397825
\(917\) −1.56709e13 −0.731866
\(918\) −2.62749e13 −1.22109
\(919\) 2.15334e13 0.995849 0.497925 0.867220i \(-0.334096\pi\)
0.497925 + 0.867220i \(0.334096\pi\)
\(920\) 1.03442e13 0.476049
\(921\) −2.26267e13 −1.03622
\(922\) −3.98529e12 −0.181623
\(923\) 0 0
\(924\) 4.32397e12 0.195146
\(925\) 2.75156e12 0.123578
\(926\) −1.43887e13 −0.643090
\(927\) −1.66509e13 −0.740590
\(928\) 1.11168e13 0.492057
\(929\) 1.39285e13 0.613526 0.306763 0.951786i \(-0.400754\pi\)
0.306763 + 0.951786i \(0.400754\pi\)
\(930\) 7.31145e12 0.320501
\(931\) −4.35344e13 −1.89915
\(932\) −1.82532e11 −0.00792443
\(933\) 1.55530e13 0.671967
\(934\) −3.45394e13 −1.48509
\(935\) −2.67645e13 −1.14527
\(936\) 0 0
\(937\) 1.94606e13 0.824761 0.412380 0.911012i \(-0.364697\pi\)
0.412380 + 0.911012i \(0.364697\pi\)
\(938\) −5.15200e13 −2.17302
\(939\) −9.57977e12 −0.402124
\(940\) 1.93566e12 0.0808638
\(941\) −2.38676e13 −0.992328 −0.496164 0.868229i \(-0.665258\pi\)
−0.496164 + 0.868229i \(0.665258\pi\)
\(942\) 2.32270e13 0.961089
\(943\) −2.42792e12 −0.0999844
\(944\) −2.07069e13 −0.848673
\(945\) −4.12370e13 −1.68207
\(946\) 1.24913e13 0.507106
\(947\) 3.33959e13 1.34933 0.674664 0.738125i \(-0.264288\pi\)
0.674664 + 0.738125i \(0.264288\pi\)
\(948\) 2.84802e12 0.114526
\(949\) 0 0
\(950\) −6.90794e12 −0.275165
\(951\) −8.50541e11 −0.0337196
\(952\) 5.24478e13 2.06948
\(953\) −1.23406e13 −0.484639 −0.242320 0.970196i \(-0.577908\pi\)
−0.242320 + 0.970196i \(0.577908\pi\)
\(954\) 9.21698e12 0.360264
\(955\) −9.54394e12 −0.371289
\(956\) 4.96233e12 0.192143
\(957\) 1.56546e13 0.603306
\(958\) −6.42202e12 −0.246335
\(959\) 2.69475e13 1.02881
\(960\) −2.25855e13 −0.858243
\(961\) −2.04738e13 −0.774360
\(962\) 0 0
\(963\) 1.67198e12 0.0626487
\(964\) 2.87373e10 0.00107176
\(965\) 1.60176e13 0.594600
\(966\) −9.87746e12 −0.364963
\(967\) −1.96551e13 −0.722863 −0.361432 0.932399i \(-0.617712\pi\)
−0.361432 + 0.932399i \(0.617712\pi\)
\(968\) 1.06642e13 0.390381
\(969\) −4.35462e13 −1.58669
\(970\) 4.46819e13 1.62054
\(971\) −3.59611e12 −0.129822 −0.0649108 0.997891i \(-0.520676\pi\)
−0.0649108 + 0.997891i \(0.520676\pi\)
\(972\) −5.79401e12 −0.208200
\(973\) 8.70922e11 0.0311510
\(974\) 3.52859e13 1.25628
\(975\) 0 0
\(976\) −1.28316e13 −0.452645
\(977\) −5.51875e13 −1.93783 −0.968914 0.247398i \(-0.920424\pi\)
−0.968914 + 0.247398i \(0.920424\pi\)
\(978\) 1.00616e13 0.351676
\(979\) −1.75738e13 −0.611426
\(980\) 8.31097e12 0.287829
\(981\) −1.52519e13 −0.525791
\(982\) 1.33643e13 0.458612
\(983\) 2.30506e13 0.787394 0.393697 0.919240i \(-0.371196\pi\)
0.393697 + 0.919240i \(0.371196\pi\)
\(984\) 5.56810e12 0.189334
\(985\) −4.58989e13 −1.55360
\(986\) 3.63282e13 1.22405
\(987\) −9.66095e12 −0.324035
\(988\) 0 0
\(989\) 8.84280e12 0.293905
\(990\) 1.14175e13 0.377758
\(991\) −3.82758e13 −1.26065 −0.630323 0.776333i \(-0.717077\pi\)
−0.630323 + 0.776333i \(0.717077\pi\)
\(992\) −6.69819e12 −0.219611
\(993\) 3.22248e13 1.05177
\(994\) 6.33120e13 2.05706
\(995\) −9.02115e12 −0.291782
\(996\) 3.49844e12 0.112644
\(997\) −3.74284e13 −1.19970 −0.599851 0.800112i \(-0.704774\pi\)
−0.599851 + 0.800112i \(0.704774\pi\)
\(998\) 3.46499e13 1.10564
\(999\) −2.22903e13 −0.708061
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.14 20
13.2 odd 12 13.10.e.a.4.7 20
13.7 odd 12 13.10.e.a.10.7 yes 20
13.12 even 2 inner 169.10.a.f.1.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.7 20 13.2 odd 12
13.10.e.a.10.7 yes 20 13.7 odd 12
169.10.a.f.1.7 20 13.12 even 2 inner
169.10.a.f.1.14 20 1.1 even 1 trivial