Properties

Label 169.10.a.f.1.14
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.14
Root 19.770419.7704 of defining polynomial
Character χ\chi == 169.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+19.7704q2+99.5109q3121.130q41521.53q5+1967.37q69243.80q712517.3q89780.58q930081.3q10+38807.1q1112053.7q12182754.q14151409.q15185453.q16+453281.q17193366.q18965410.q19+184302.q20919859.q21+767233.q22+543135.q231.24560e6q24+361927.q252.93195e6q27+1.11970e6q28+4.05377e6q292.99342e6q302.44251e6q31+2.74234e6q32+3.86173e6q33+8.96157e6q34+1.40647e7q35+1.18472e6q36+7.60255e6q371.90866e7q38+1.90454e7q404.47020e6q411.81860e7q42+1.62810e7q434.70069e6q44+1.48814e7q45+1.07380e7q46+1.05026e7q471.84546e7q48+4.50942e7q49+7.15545e6q50+4.51064e7q514.76659e7q535.79659e7q545.90461e7q55+1.15707e8q569.60688e7q57+8.01449e7q58+1.11655e8q59+1.83401e7q60+6.91907e7q614.82895e7q62+9.04097e7q63+1.49169e8q64+7.63480e7q66+2.81909e8q675.49058e7q68+5.40479e7q69+2.78066e8q703.46433e8q71+1.22426e8q72+1.76119e8q73+1.50306e8q74+3.60157e7q75+1.16940e8q763.58725e8q772.36277e8q79+2.82172e8q809.92495e7q818.83778e7q822.90237e8q83+1.11422e8q846.89681e8q85+3.21883e8q86+4.03395e8q874.85758e8q884.52851e8q89+2.94213e8q906.57898e7q922.43056e8q93+2.07642e8q94+1.46890e9q95+2.72893e8q961.48537e9q97+8.91532e8q983.79556e8q99+O(q100)q+19.7704 q^{2} +99.5109 q^{3} -121.130 q^{4} -1521.53 q^{5} +1967.37 q^{6} -9243.80 q^{7} -12517.3 q^{8} -9780.58 q^{9} -30081.3 q^{10} +38807.1 q^{11} -12053.7 q^{12} -182754. q^{14} -151409. q^{15} -185453. q^{16} +453281. q^{17} -193366. q^{18} -965410. q^{19} +184302. q^{20} -919859. q^{21} +767233. q^{22} +543135. q^{23} -1.24560e6 q^{24} +361927. q^{25} -2.93195e6 q^{27} +1.11970e6 q^{28} +4.05377e6 q^{29} -2.99342e6 q^{30} -2.44251e6 q^{31} +2.74234e6 q^{32} +3.86173e6 q^{33} +8.96157e6 q^{34} +1.40647e7 q^{35} +1.18472e6 q^{36} +7.60255e6 q^{37} -1.90866e7 q^{38} +1.90454e7 q^{40} -4.47020e6 q^{41} -1.81860e7 q^{42} +1.62810e7 q^{43} -4.70069e6 q^{44} +1.48814e7 q^{45} +1.07380e7 q^{46} +1.05026e7 q^{47} -1.84546e7 q^{48} +4.50942e7 q^{49} +7.15545e6 q^{50} +4.51064e7 q^{51} -4.76659e7 q^{53} -5.79659e7 q^{54} -5.90461e7 q^{55} +1.15707e8 q^{56} -9.60688e7 q^{57} +8.01449e7 q^{58} +1.11655e8 q^{59} +1.83401e7 q^{60} +6.91907e7 q^{61} -4.82895e7 q^{62} +9.04097e7 q^{63} +1.49169e8 q^{64} +7.63480e7 q^{66} +2.81909e8 q^{67} -5.49058e7 q^{68} +5.40479e7 q^{69} +2.78066e8 q^{70} -3.46433e8 q^{71} +1.22426e8 q^{72} +1.76119e8 q^{73} +1.50306e8 q^{74} +3.60157e7 q^{75} +1.16940e8 q^{76} -3.58725e8 q^{77} -2.36277e8 q^{79} +2.82172e8 q^{80} -9.92495e7 q^{81} -8.83778e7 q^{82} -2.90237e8 q^{83} +1.11422e8 q^{84} -6.89681e8 q^{85} +3.21883e8 q^{86} +4.03395e8 q^{87} -4.85758e8 q^{88} -4.52851e8 q^{89} +2.94213e8 q^{90} -6.57898e7 q^{92} -2.43056e8 q^{93} +2.07642e8 q^{94} +1.46890e9 q^{95} +2.72893e8 q^{96} -1.48537e9 q^{97} +8.91532e8 q^{98} -3.79556e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 19.7704 0.873738 0.436869 0.899525i 0.356087π-0.356087\pi
0.436869 + 0.899525i 0.356087π0.356087\pi
33 99.5109 0.709292 0.354646 0.935001i 0.384601π-0.384601\pi
0.354646 + 0.935001i 0.384601π0.384601\pi
44 −121.130 −0.236581
55 −1521.53 −1.08872 −0.544359 0.838852i 0.683227π-0.683227\pi
−0.544359 + 0.838852i 0.683227π0.683227\pi
66 1967.37 0.619735
77 −9243.80 −1.45516 −0.727578 0.686025i 0.759354π-0.759354\pi
−0.727578 + 0.686025i 0.759354π0.759354\pi
88 −12517.3 −1.08045
99 −9780.58 −0.496905
1010 −30081.3 −0.951254
1111 38807.1 0.799178 0.399589 0.916694i 0.369153π-0.369153\pi
0.399589 + 0.916694i 0.369153π0.369153\pi
1212 −12053.7 −0.167805
1313 0 0
1414 −182754. −1.27142
1515 −151409. −0.772219
1616 −185453. −0.707448
1717 453281. 1.31628 0.658139 0.752896i 0.271344π-0.271344\pi
0.658139 + 0.752896i 0.271344π0.271344\pi
1818 −193366. −0.434165
1919 −965410. −1.69950 −0.849749 0.527188i 0.823247π-0.823247\pi
−0.849749 + 0.527188i 0.823247π0.823247\pi
2020 184302. 0.257570
2121 −919859. −1.03213
2222 767233. 0.698273
2323 543135. 0.404699 0.202350 0.979313i 0.435142π-0.435142\pi
0.202350 + 0.979313i 0.435142π0.435142\pi
2424 −1.24560e6 −0.766353
2525 361927. 0.185306
2626 0 0
2727 −2.93195e6 −1.06174
2828 1.11970e6 0.344263
2929 4.05377e6 1.06431 0.532156 0.846647i 0.321382π-0.321382\pi
0.532156 + 0.846647i 0.321382π0.321382\pi
3030 −2.99342e6 −0.674717
3131 −2.44251e6 −0.475016 −0.237508 0.971386i 0.576331π-0.576331\pi
−0.237508 + 0.971386i 0.576331π0.576331\pi
3232 2.74234e6 0.462324
3333 3.86173e6 0.566851
3434 8.96157e6 1.15008
3535 1.40647e7 1.58425
3636 1.18472e6 0.117558
3737 7.60255e6 0.666886 0.333443 0.942770i 0.391790π-0.391790\pi
0.333443 + 0.942770i 0.391790π0.391790\pi
3838 −1.90866e7 −1.48492
3939 0 0
4040 1.90454e7 1.17630
4141 −4.47020e6 −0.247058 −0.123529 0.992341i 0.539421π-0.539421\pi
−0.123529 + 0.992341i 0.539421π0.539421\pi
4242 −1.81860e7 −0.901811
4343 1.62810e7 0.726229 0.363115 0.931744i 0.381713π-0.381713\pi
0.363115 + 0.931744i 0.381713π0.381713\pi
4444 −4.70069e6 −0.189071
4545 1.48814e7 0.540989
4646 1.07380e7 0.353601
4747 1.05026e7 0.313948 0.156974 0.987603i 0.449826π-0.449826\pi
0.156974 + 0.987603i 0.449826π0.449826\pi
4848 −1.84546e7 −0.501787
4949 4.50942e7 1.11748
5050 7.15545e6 0.161909
5151 4.51064e7 0.933626
5252 0 0
5353 −4.76659e7 −0.829787 −0.414893 0.909870i 0.636181π-0.636181\pi
−0.414893 + 0.909870i 0.636181π0.636181\pi
5454 −5.79659e7 −0.927685
5555 −5.90461e7 −0.870080
5656 1.15707e8 1.57222
5757 −9.60688e7 −1.20544
5858 8.01449e7 0.929929
5959 1.11655e8 1.19963 0.599813 0.800140i 0.295242π-0.295242\pi
0.599813 + 0.800140i 0.295242π0.295242\pi
6060 1.83401e7 0.182693
6161 6.91907e7 0.639828 0.319914 0.947447i 0.396346π-0.396346\pi
0.319914 + 0.947447i 0.396346π0.396346\pi
6262 −4.82895e7 −0.415040
6363 9.04097e7 0.723074
6464 1.49169e8 1.11140
6565 0 0
6666 7.63480e7 0.495279
6767 2.81909e8 1.70912 0.854560 0.519352i 0.173827π-0.173827\pi
0.854560 + 0.519352i 0.173827π0.173827\pi
6868 −5.49058e7 −0.311407
6969 5.40479e7 0.287050
7070 2.78066e8 1.38422
7171 −3.46433e8 −1.61792 −0.808960 0.587864i 0.799969π-0.799969\pi
−0.808960 + 0.587864i 0.799969π0.799969\pi
7272 1.22426e8 0.536880
7373 1.76119e8 0.725862 0.362931 0.931816i 0.381776π-0.381776\pi
0.362931 + 0.931816i 0.381776π0.381776\pi
7474 1.50306e8 0.582683
7575 3.60157e7 0.131436
7676 1.16940e8 0.402070
7777 −3.58725e8 −1.16293
7878 0 0
7979 −2.36277e8 −0.682496 −0.341248 0.939973i 0.610850π-0.610850\pi
−0.341248 + 0.939973i 0.610850π0.610850\pi
8080 2.82172e8 0.770211
8181 −9.92495e7 −0.256180
8282 −8.83778e7 −0.215864
8383 −2.90237e8 −0.671276 −0.335638 0.941991i 0.608952π-0.608952\pi
−0.335638 + 0.941991i 0.608952π0.608952\pi
8484 1.11422e8 0.244183
8585 −6.89681e8 −1.43306
8686 3.21883e8 0.634534
8787 4.03395e8 0.754907
8888 −4.85758e8 −0.863471
8989 −4.52851e8 −0.765069 −0.382534 0.923941i 0.624949π-0.624949\pi
−0.382534 + 0.923941i 0.624949π0.624949\pi
9090 2.94213e8 0.472683
9191 0 0
9292 −6.57898e7 −0.0957444
9393 −2.43056e8 −0.336925
9494 2.07642e8 0.274309
9595 1.46890e9 1.85027
9696 2.72893e8 0.327923
9797 −1.48537e9 −1.70358 −0.851790 0.523884i 0.824483π-0.824483\pi
−0.851790 + 0.523884i 0.824483π0.824483\pi
9898 8.91532e8 0.976382
9999 −3.79556e8 −0.397116
100100 −4.38401e7 −0.0438401
101101 −5.89236e8 −0.563435 −0.281717 0.959497i 0.590904π-0.590904\pi
−0.281717 + 0.959497i 0.590904π0.590904\pi
102102 8.91774e8 0.815744
103103 1.70244e9 1.49041 0.745203 0.666838i 0.232353π-0.232353\pi
0.745203 + 0.666838i 0.232353π0.232353\pi
104104 0 0
105105 1.39959e9 1.12370
106106 −9.42376e8 −0.725016
107107 −1.70949e8 −0.126078 −0.0630389 0.998011i 0.520079π-0.520079\pi
−0.0630389 + 0.998011i 0.520079π0.520079\pi
108108 3.55146e8 0.251189
109109 1.55941e9 1.05813 0.529066 0.848581i 0.322542π-0.322542\pi
0.529066 + 0.848581i 0.322542π0.322542\pi
110110 −1.16737e9 −0.760222
111111 7.56536e8 0.473016
112112 1.71429e9 1.02945
113113 −1.21786e9 −0.702659 −0.351330 0.936252i 0.614270π-0.614270\pi
−0.351330 + 0.936252i 0.614270π0.614270\pi
114114 −1.89932e9 −1.05324
115115 −8.26396e8 −0.440603
116116 −4.91032e8 −0.251796
117117 0 0
118118 2.20748e9 1.04816
119119 −4.19004e9 −1.91539
120120 1.89522e9 0.834343
121121 −8.51959e8 −0.361314
122122 1.36793e9 0.559042
123123 −4.44834e8 −0.175237
124124 2.95860e8 0.112380
125125 2.42105e9 0.886971
126126 1.78744e9 0.631777
127127 2.82775e9 0.964548 0.482274 0.876020i 0.339811π-0.339811\pi
0.482274 + 0.876020i 0.339811π0.339811\pi
128128 1.54506e9 0.508747
129129 1.62014e9 0.515109
130130 0 0
131131 1.69529e9 0.502947 0.251473 0.967864i 0.419085π-0.419085\pi
0.251473 + 0.967864i 0.419085π0.419085\pi
132132 −4.67770e8 −0.134106
133133 8.92406e9 2.47303
134134 5.57347e9 1.49332
135135 4.46104e9 1.15594
136136 −5.67384e9 −1.42217
137137 −2.91520e9 −0.707009 −0.353505 0.935433i 0.615010π-0.615010\pi
−0.353505 + 0.935433i 0.615010π0.615010\pi
138138 1.06855e9 0.250807
139139 −9.42169e7 −0.0214073 −0.0107037 0.999943i 0.503407π-0.503407\pi
−0.0107037 + 0.999943i 0.503407π0.503407\pi
140140 −1.70365e9 −0.374805
141141 1.04513e9 0.222681
142142 −6.84914e9 −1.41364
143143 0 0
144144 1.81384e9 0.351534
145145 −6.16794e9 −1.15873
146146 3.48196e9 0.634213
147147 4.48737e9 0.792617
148148 −9.20894e8 −0.157773
149149 −9.49232e9 −1.57774 −0.788868 0.614563i 0.789332π-0.789332\pi
−0.788868 + 0.614563i 0.789332π0.789332\pi
150150 7.12045e8 0.114841
151151 −3.58560e9 −0.561262 −0.280631 0.959816i 0.590544π-0.590544\pi
−0.280631 + 0.959816i 0.590544π0.590544\pi
152152 1.20843e10 1.83622
153153 −4.43336e9 −0.654065
154154 −7.09215e9 −1.01610
155155 3.71635e9 0.517159
156156 0 0
157157 1.18061e10 1.55081 0.775403 0.631467i 0.217547π-0.217547\pi
0.775403 + 0.631467i 0.217547π0.217547\pi
158158 −4.67130e9 −0.596323
159159 −4.74328e9 −0.588561
160160 −4.17255e9 −0.503341
161161 −5.02063e9 −0.588900
162162 −1.96221e9 −0.223835
163163 5.11424e9 0.567462 0.283731 0.958904i 0.408428π-0.408428\pi
0.283731 + 0.958904i 0.408428π0.408428\pi
164164 5.41474e8 0.0584494
165165 −5.87573e9 −0.617141
166166 −5.73811e9 −0.586520
167167 1.02165e10 1.01643 0.508215 0.861230i 0.330306π-0.330306\pi
0.508215 + 0.861230i 0.330306π0.330306\pi
168168 1.15141e10 1.11516
169169 0 0
170170 −1.36353e10 −1.25212
171171 9.44227e9 0.844489
172172 −1.97212e9 −0.171812
173173 1.44080e10 1.22292 0.611458 0.791277i 0.290583π-0.290583\pi
0.611458 + 0.791277i 0.290583π0.290583\pi
174174 7.97529e9 0.659591
175175 −3.34558e9 −0.269650
176176 −7.19690e9 −0.565377
177177 1.11109e10 0.850885
178178 −8.95307e9 −0.668470
179179 −1.15726e10 −0.842542 −0.421271 0.906935i 0.638416π-0.638416\pi
−0.421271 + 0.906935i 0.638416π0.638416\pi
180180 −1.80258e9 −0.127988
181181 1.98233e10 1.37284 0.686422 0.727203i 0.259180π-0.259180\pi
0.686422 + 0.727203i 0.259180π0.259180\pi
182182 0 0
183183 6.88523e9 0.453825
184184 −6.79856e9 −0.437257
185185 −1.15675e10 −0.726050
186186 −4.80533e9 −0.294384
187187 1.75905e10 1.05194
188188 −1.27218e9 −0.0742743
189189 2.71023e10 1.54500
190190 2.90408e10 1.61665
191191 6.27259e9 0.341033 0.170517 0.985355i 0.445456π-0.445456\pi
0.170517 + 0.985355i 0.445456π0.445456\pi
192192 1.48440e10 0.788306
193193 −1.05273e10 −0.546147 −0.273073 0.961993i 0.588040π-0.588040\pi
−0.273073 + 0.961993i 0.588040π0.588040\pi
194194 −2.93665e10 −1.48848
195195 0 0
196196 −5.46225e9 −0.264374
197197 3.01663e10 1.42700 0.713499 0.700656i 0.247109π-0.247109\pi
0.713499 + 0.700656i 0.247109π0.247109\pi
198198 −7.50398e9 −0.346975
199199 5.92900e9 0.268005 0.134002 0.990981i 0.457217π-0.457217\pi
0.134002 + 0.990981i 0.457217π0.457217\pi
200200 −4.53033e9 −0.200214
201201 2.80530e10 1.21227
202202 −1.16495e10 −0.492294
203203 −3.74723e10 −1.54874
204204 −5.46373e9 −0.220878
205205 6.80154e9 0.268977
206206 3.36580e10 1.30222
207207 −5.31218e9 −0.201097
208208 0 0
209209 −3.74647e10 −1.35820
210210 2.76706e10 0.981818
211211 −3.32122e9 −0.115352 −0.0576762 0.998335i 0.518369π-0.518369\pi
−0.0576762 + 0.998335i 0.518369π0.518369\pi
212212 5.77376e9 0.196312
213213 −3.44739e10 −1.14758
214214 −3.37973e9 −0.110159
215215 −2.47721e10 −0.790659
216216 3.66999e10 1.14716
217217 2.25781e10 0.691222
218218 3.08301e10 0.924531
219219 1.75258e10 0.514848
220220 7.15224e9 0.205845
221221 0 0
222222 1.49571e10 0.413293
223223 −6.95646e9 −0.188372 −0.0941860 0.995555i 0.530025π-0.530025\pi
−0.0941860 + 0.995555i 0.530025π0.530025\pi
224224 −2.53497e10 −0.672754
225225 −3.53985e9 −0.0920797
226226 −2.40777e10 −0.613940
227227 1.35171e10 0.337884 0.168942 0.985626i 0.445965π-0.445965\pi
0.168942 + 0.985626i 0.445965π0.445965\pi
228228 1.16368e10 0.285185
229229 −6.99795e10 −1.68155 −0.840777 0.541381i 0.817902π-0.817902\pi
−0.840777 + 0.541381i 0.817902π0.817902\pi
230230 −1.63382e10 −0.384972
231231 −3.56970e10 −0.824856
232232 −5.07421e10 −1.14993
233233 1.50692e9 0.0334956 0.0167478 0.999860i 0.494669π-0.494669\pi
0.0167478 + 0.999860i 0.494669π0.494669\pi
234234 0 0
235235 −1.59801e10 −0.341801
236236 −1.35248e10 −0.283809
237237 −2.35122e10 −0.484089
238238 −8.28390e10 −1.67355
239239 −4.09671e10 −0.812165 −0.406083 0.913836i 0.633105π-0.633105\pi
−0.406083 + 0.913836i 0.633105π0.633105\pi
240240 2.80792e10 0.546304
241241 −2.37244e8 −0.00453021 −0.00226510 0.999997i 0.500721π-0.500721\pi
−0.00226510 + 0.999997i 0.500721π0.500721\pi
242242 −1.68436e10 −0.315694
243243 4.78331e10 0.880036
244244 −8.38105e9 −0.151371
245245 −6.86122e10 −1.21662
246246 −8.79456e9 −0.153111
247247 0 0
248248 3.05735e10 0.513230
249249 −2.88817e10 −0.476131
250250 4.78653e10 0.774981
251251 3.12908e9 0.0497605 0.0248802 0.999690i 0.492080π-0.492080\pi
0.0248802 + 0.999690i 0.492080π0.492080\pi
252252 −1.09513e10 −0.171066
253253 2.10775e10 0.323427
254254 5.59058e10 0.842763
255255 −6.86308e10 −1.01645
256256 −4.58281e10 −0.666887
257257 1.16093e11 1.65999 0.829996 0.557769i 0.188343π-0.188343\pi
0.829996 + 0.557769i 0.188343π0.188343\pi
258258 3.20309e10 0.450070
259259 −7.02764e10 −0.970422
260260 0 0
261261 −3.96483e10 −0.528861
262262 3.35165e10 0.439444
263263 1.45825e10 0.187946 0.0939728 0.995575i 0.470043π-0.470043\pi
0.0939728 + 0.995575i 0.470043π0.470043\pi
264264 −4.83382e10 −0.612453
265265 7.25251e10 0.903403
266266 1.76433e11 2.16078
267267 −4.50636e10 −0.542657
268268 −3.41476e10 −0.404346
269269 −1.38425e11 −1.61187 −0.805935 0.592004i 0.798337π-0.798337\pi
−0.805935 + 0.592004i 0.798337π0.798337\pi
270270 8.81968e10 1.00999
271271 4.58189e10 0.516039 0.258019 0.966140i 0.416930π-0.416930\pi
0.258019 + 0.966140i 0.416930π0.416930\pi
272272 −8.40625e10 −0.931198
273273 0 0
274274 −5.76347e10 −0.617741
275275 1.40453e10 0.148093
276276 −6.54680e9 −0.0679107
277277 −6.30656e10 −0.643626 −0.321813 0.946803i 0.604292π-0.604292\pi
−0.321813 + 0.946803i 0.604292π0.604292\pi
278278 −1.86271e9 −0.0187044
279279 2.38891e10 0.236038
280280 −1.76052e11 −1.71170
281281 9.53019e10 0.911849 0.455924 0.890018i 0.349309π-0.349309\pi
0.455924 + 0.890018i 0.349309π0.349309\pi
282282 2.06626e10 0.194565
283283 −8.82038e10 −0.817426 −0.408713 0.912663i 0.634022π-0.634022\pi
−0.408713 + 0.912663i 0.634022π0.634022\pi
284284 4.19633e10 0.382770
285285 1.46172e11 1.31238
286286 0 0
287287 4.13216e10 0.359508
288288 −2.68217e10 −0.229731
289289 8.68761e10 0.732589
290290 −1.21943e11 −1.01243
291291 −1.47811e11 −1.20834
292292 −2.13333e10 −0.171725
293293 4.53169e10 0.359216 0.179608 0.983738i 0.442517π-0.442517\pi
0.179608 + 0.983738i 0.442517π0.442517\pi
294294 8.87172e10 0.692540
295295 −1.69887e11 −1.30605
296296 −9.51630e10 −0.720535
297297 −1.13780e11 −0.848522
298298 −1.87667e11 −1.37853
299299 0 0
300300 −4.36256e9 −0.0310954
301301 −1.50499e11 −1.05678
302302 −7.08889e10 −0.490396
303303 −5.86355e10 −0.399640
304304 1.79038e11 1.20231
305305 −1.05276e11 −0.696592
306306 −8.76494e10 −0.571482
307307 −2.27379e11 −1.46093 −0.730463 0.682953i 0.760695π-0.760695\pi
−0.730463 + 0.682953i 0.760695π0.760695\pi
308308 4.34522e10 0.275127
309309 1.69411e11 1.05713
310310 7.34738e10 0.451861
311311 1.56295e11 0.947377 0.473688 0.880693i 0.342922π-0.342922\pi
0.473688 + 0.880693i 0.342922π0.342922\pi
312312 0 0
313313 −9.62686e10 −0.566937 −0.283469 0.958982i 0.591485π-0.591485\pi
−0.283469 + 0.958982i 0.591485π0.591485\pi
314314 2.33411e11 1.35500
315315 −1.37561e11 −0.787223
316316 2.86202e10 0.161466
317317 −8.54722e9 −0.0475399 −0.0237699 0.999717i 0.507567π-0.507567\pi
−0.0237699 + 0.999717i 0.507567π0.507567\pi
318318 −9.37767e10 −0.514248
319319 1.57315e11 0.850574
320320 −2.26966e11 −1.21000
321321 −1.70113e10 −0.0894260
322322 −9.92601e10 −0.514545
323323 −4.37602e11 −2.23701
324324 1.20221e10 0.0606075
325325 0 0
326326 1.01111e11 0.495813
327327 1.55178e11 0.750525
328328 5.59546e10 0.266934
329329 −9.70843e10 −0.456844
330330 −1.16166e11 −0.539219
331331 3.23832e11 1.48284 0.741419 0.671042i 0.234153π-0.234153\pi
0.741419 + 0.671042i 0.234153π0.234153\pi
332332 3.51563e10 0.158811
333333 −7.43573e10 −0.331379
334334 2.01984e11 0.888094
335335 −4.28933e11 −1.86075
336336 1.70591e11 0.730178
337337 1.16577e11 0.492356 0.246178 0.969225i 0.420825π-0.420825\pi
0.246178 + 0.969225i 0.420825π0.420825\pi
338338 0 0
339339 −1.21190e11 −0.498391
340340 8.35408e10 0.339034
341341 −9.47866e10 −0.379623
342342 1.86678e11 0.737862
343343 −4.38212e10 −0.170947
344344 −2.03794e11 −0.784654
345345 −8.22354e10 −0.312516
346346 2.84853e11 1.06851
347347 3.91173e11 1.44839 0.724197 0.689593i 0.242211π-0.242211\pi
0.724197 + 0.689593i 0.242211π0.242211\pi
348348 −4.88631e10 −0.178597
349349 1.52168e11 0.549046 0.274523 0.961581i 0.411480π-0.411480\pi
0.274523 + 0.961581i 0.411480π0.411480\pi
350350 −6.61435e10 −0.235603
351351 0 0
352352 1.06422e11 0.369480
353353 −3.05234e11 −1.04628 −0.523138 0.852248i 0.675239π-0.675239\pi
−0.523138 + 0.852248i 0.675239π0.675239\pi
354354 2.19668e11 0.743451
355355 5.27108e11 1.76146
356356 5.48537e10 0.181001
357357 −4.16955e11 −1.35857
358358 −2.28795e11 −0.736161
359359 4.59883e11 1.46124 0.730622 0.682782i 0.239230π-0.239230\pi
0.730622 + 0.682782i 0.239230π0.239230\pi
360360 −1.86275e11 −0.584511
361361 6.09329e11 1.88829
362362 3.91914e11 1.19951
363363 −8.47792e10 −0.256277
364364 0 0
365365 −2.67971e11 −0.790259
366366 1.36124e11 0.396524
367367 −4.76454e10 −0.137096 −0.0685478 0.997648i 0.521837π-0.521837\pi
−0.0685478 + 0.997648i 0.521837π0.521837\pi
368368 −1.00726e11 −0.286304
369369 4.37212e10 0.122765
370370 −2.28695e11 −0.634378
371371 4.40614e11 1.20747
372372 2.94413e10 0.0797102
373373 −4.45233e10 −0.119096 −0.0595481 0.998225i 0.518966π-0.518966\pi
−0.0595481 + 0.998225i 0.518966π0.518966\pi
374374 3.47772e11 0.919121
375375 2.40921e11 0.629122
376376 −1.31464e11 −0.339205
377377 0 0
378378 5.35825e11 1.34993
379379 1.15114e11 0.286584 0.143292 0.989680i 0.454231π-0.454231\pi
0.143292 + 0.989680i 0.454231π0.454231\pi
380380 −1.77927e11 −0.437740
381381 2.81392e11 0.684146
382382 1.24012e11 0.297974
383383 5.21296e11 1.23791 0.618957 0.785425i 0.287556π-0.287556\pi
0.618957 + 0.785425i 0.287556π0.287556\pi
384384 1.53751e11 0.360850
385385 5.45810e11 1.26610
386386 −2.08129e11 −0.477189
387387 −1.59238e11 −0.360867
388388 1.79923e11 0.403035
389389 1.68464e11 0.373021 0.186510 0.982453i 0.440282π-0.440282\pi
0.186510 + 0.982453i 0.440282π0.440282\pi
390390 0 0
391391 2.46193e11 0.532697
392392 −5.64456e11 −1.20738
393393 1.68699e11 0.356736
394394 5.96400e11 1.24682
395395 3.59503e11 0.743045
396396 4.59755e10 0.0939502
397397 6.78075e11 1.37000 0.684999 0.728544i 0.259802π-0.259802\pi
0.684999 + 0.728544i 0.259802π0.259802\pi
398398 1.17219e11 0.234166
399399 8.88041e11 1.75410
400400 −6.71205e10 −0.131095
401401 −3.34719e11 −0.646443 −0.323221 0.946323i 0.604766π-0.604766\pi
−0.323221 + 0.946323i 0.604766π0.604766\pi
402402 5.54621e11 1.05920
403403 0 0
404404 7.13740e10 0.133298
405405 1.51011e11 0.278908
406406 −7.40843e11 −1.35319
407407 2.95033e11 0.532961
408408 −5.64609e11 −1.00873
409409 −6.86952e11 −1.21387 −0.606934 0.794752i 0.707601π-0.707601\pi
−0.606934 + 0.794752i 0.707601π0.707601\pi
410410 1.34469e11 0.235015
411411 −2.90094e11 −0.501476
412412 −2.06216e11 −0.352602
413413 −1.03212e12 −1.74564
414414 −1.05024e11 −0.175706
415415 4.41604e11 0.730830
416416 0 0
417417 −9.37561e9 −0.0151840
418418 −7.40694e11 −1.18671
419419 9.09694e11 1.44189 0.720945 0.692992i 0.243708π-0.243708\pi
0.720945 + 0.692992i 0.243708π0.243708\pi
420420 −1.69532e11 −0.265846
421421 7.71291e11 1.19660 0.598300 0.801272i 0.295843π-0.295843\pi
0.598300 + 0.801272i 0.295843π0.295843\pi
422422 −6.56620e10 −0.100788
423423 −1.02722e11 −0.156003
424424 5.96646e11 0.896542
425425 1.64055e11 0.243915
426426 −6.81564e11 −1.00268
427427 −6.39585e11 −0.931049
428428 2.07070e10 0.0298277
429429 0 0
430430 −4.89755e11 −0.690829
431431 −5.86965e11 −0.819341 −0.409671 0.912233i 0.634356π-0.634356\pi
−0.409671 + 0.912233i 0.634356π0.634356\pi
432432 5.43739e11 0.751127
433433 6.24963e11 0.854395 0.427197 0.904158i 0.359501π-0.359501\pi
0.427197 + 0.904158i 0.359501π0.359501\pi
434434 4.46378e11 0.603947
435435 −6.13777e11 −0.821881
436436 −1.88890e11 −0.250334
437437 −5.24348e11 −0.687786
438438 3.46493e11 0.449842
439439 4.25543e11 0.546831 0.273416 0.961896i 0.411847π-0.411847\pi
0.273416 + 0.961896i 0.411847π0.411847\pi
440440 7.39095e11 0.940076
441441 −4.41048e11 −0.555280
442442 0 0
443443 1.27293e12 1.57032 0.785161 0.619292i 0.212580π-0.212580\pi
0.785161 + 0.619292i 0.212580π0.212580\pi
444444 −9.16390e10 −0.111907
445445 6.89026e11 0.832944
446446 −1.37532e11 −0.164588
447447 −9.44590e11 −1.11908
448448 −1.37889e12 −1.61726
449449 −9.55517e11 −1.10951 −0.554753 0.832015i 0.687187π-0.687187\pi
−0.554753 + 0.832015i 0.687187π0.687187\pi
450450 −6.99845e10 −0.0804536
451451 −1.73475e11 −0.197444
452452 1.47519e11 0.166236
453453 −3.56807e11 −0.398099
454454 2.67240e11 0.295223
455455 0 0
456456 1.20252e12 1.30242
457457 1.64747e12 1.76683 0.883416 0.468589i 0.155237π-0.155237\pi
0.883416 + 0.468589i 0.155237π0.155237\pi
458458 −1.38353e12 −1.46924
459459 −1.32900e12 −1.39755
460460 1.00101e11 0.104239
461461 −2.01578e11 −0.207869 −0.103934 0.994584i 0.533143π-0.533143\pi
−0.103934 + 0.994584i 0.533143π0.533143\pi
462462 −7.05746e11 −0.720708
463463 −7.27788e11 −0.736021 −0.368011 0.929822i 0.619961π-0.619961\pi
−0.368011 + 0.929822i 0.619961π0.619961\pi
464464 −7.51785e11 −0.752945
465465 3.69817e11 0.366816
466466 2.97924e10 0.0292664
467467 −1.74702e12 −1.69970 −0.849851 0.527024i 0.823308π-0.823308\pi
−0.849851 + 0.527024i 0.823308π0.823308\pi
468468 0 0
469469 −2.60591e12 −2.48704
470470 −3.15933e11 −0.298645
471471 1.17483e12 1.09997
472472 −1.39762e12 −1.29613
473473 6.31819e11 0.580387
474474 −4.64846e11 −0.422967
475475 −3.49408e11 −0.314928
476476 5.07538e11 0.453145
477477 4.66200e11 0.412325
478478 −8.09937e11 −0.709620
479479 −3.24829e11 −0.281933 −0.140966 0.990014i 0.545021π-0.545021\pi
−0.140966 + 0.990014i 0.545021π0.545021\pi
480480 −4.15215e11 −0.357015
481481 0 0
482482 −4.69041e9 −0.00395822
483483 −4.99608e11 −0.417702
484484 1.03198e11 0.0854801
485485 2.26004e12 1.85472
486486 9.45682e11 0.768921
487487 1.78478e12 1.43782 0.718911 0.695102i 0.244641π-0.244641\pi
0.718911 + 0.695102i 0.244641π0.244641\pi
488488 −8.66077e11 −0.691302
489489 5.08923e11 0.402496
490490 −1.35649e12 −1.06300
491491 6.75975e11 0.524884 0.262442 0.964948i 0.415472π-0.415472\pi
0.262442 + 0.964948i 0.415472π0.415472\pi
492492 5.38826e10 0.0414577
493493 1.83750e12 1.40093
494494 0 0
495495 5.77505e11 0.432347
496496 4.52971e11 0.336049
497497 3.20236e12 2.35432
498498 −5.71005e11 −0.416014
499499 1.75261e12 1.26542 0.632708 0.774390i 0.281943π-0.281943\pi
0.632708 + 0.774390i 0.281943π0.281943\pi
500500 −2.93262e11 −0.209841
501501 1.01665e12 0.720945
502502 6.18632e10 0.0434776
503503 −3.96462e11 −0.276151 −0.138075 0.990422i 0.544092π-0.544092\pi
−0.138075 + 0.990422i 0.544092π0.544092\pi
504504 −1.13168e12 −0.781244
505505 8.96541e11 0.613421
506506 4.16711e11 0.282591
507507 0 0
508508 −3.42524e11 −0.228194
509509 −2.66748e11 −0.176145 −0.0880727 0.996114i 0.528071π-0.528071\pi
−0.0880727 + 0.996114i 0.528071π0.528071\pi
510510 −1.35686e12 −0.888115
511511 −1.62801e12 −1.05624
512512 −1.69711e12 −1.09143
513513 2.83053e12 1.80443
514514 2.29520e12 1.45040
515515 −2.59031e12 −1.62263
516516 −1.96247e11 −0.121865
517517 4.07577e11 0.250901
518518 −1.38940e12 −0.847895
519519 1.43375e12 0.867405
520520 0 0
521521 2.43114e12 1.44557 0.722787 0.691071i 0.242861π-0.242861\pi
0.722787 + 0.691071i 0.242861π0.242861\pi
522522 −7.83864e11 −0.462087
523523 −3.14301e12 −1.83691 −0.918456 0.395523i 0.870563π-0.870563\pi
−0.918456 + 0.395523i 0.870563π0.870563\pi
524524 −2.05349e11 −0.118988
525525 −3.32921e11 −0.191260
526526 2.88303e11 0.164215
527527 −1.10714e12 −0.625253
528528 −7.16170e11 −0.401017
529529 −1.50616e12 −0.836218
530530 1.43385e12 0.789338
531531 −1.09206e12 −0.596100
532532 −1.08097e12 −0.585074
533533 0 0
534534 −8.90928e11 −0.474140
535535 2.60104e11 0.137263
536536 −3.52873e12 −1.84662
537537 −1.15160e12 −0.597608
538538 −2.73673e12 −1.40835
539539 1.74997e12 0.893063
540540 −5.40365e11 −0.273473
541541 1.31906e12 0.662028 0.331014 0.943626i 0.392609π-0.392609\pi
0.331014 + 0.943626i 0.392609π0.392609\pi
542542 9.05859e11 0.450883
543543 1.97263e12 0.973748
544544 1.24305e12 0.608547
545545 −2.37268e12 −1.15201
546546 0 0
547547 −2.73121e12 −1.30440 −0.652202 0.758045i 0.726155π-0.726155\pi
−0.652202 + 0.758045i 0.726155π0.726155\pi
548548 3.53117e11 0.167265
549549 −6.76725e11 −0.317934
550550 2.77682e11 0.129394
551551 −3.91355e12 −1.80879
552552 −6.76531e11 −0.310143
553553 2.18410e12 0.993137
554554 −1.24684e12 −0.562361
555555 −1.15109e12 −0.514981
556556 1.14125e10 0.00506458
557557 −2.75823e11 −0.121418 −0.0607088 0.998156i 0.519336π-0.519336\pi
−0.0607088 + 0.998156i 0.519336π0.519336\pi
558558 4.72299e11 0.206235
559559 0 0
560560 −2.60835e12 −1.12078
561561 1.75045e12 0.746133
562562 1.88416e12 0.796717
563563 3.43268e8 0.000143994 0 7.19972e−5 1.00000i 0.499977π-0.499977\pi
7.19972e−5 1.00000i 0.499977π0.499977\pi
564564 −1.26596e11 −0.0526822
565565 1.85301e12 0.764998
566566 −1.74383e12 −0.714216
567567 9.17443e11 0.372782
568568 4.33639e12 1.74808
569569 2.17713e12 0.870721 0.435361 0.900256i 0.356621π-0.356621\pi
0.435361 + 0.900256i 0.356621π0.356621\pi
570570 2.88988e12 1.14668
571571 −2.35383e12 −0.926641 −0.463321 0.886191i 0.653342π-0.653342\pi
−0.463321 + 0.886191i 0.653342π0.653342\pi
572572 0 0
573573 6.24191e11 0.241892
574574 8.16947e11 0.314116
575575 1.96575e11 0.0749934
576576 −1.45896e12 −0.552259
577577 2.87096e12 1.07829 0.539145 0.842213i 0.318747π-0.318747\pi
0.539145 + 0.842213i 0.318747π0.318747\pi
578578 1.71758e12 0.640091
579579 −1.04758e12 −0.387377
580580 7.47120e11 0.274135
581581 2.68289e12 0.976811
582582 −2.92228e12 −1.05577
583583 −1.84977e12 −0.663148
584584 −2.20453e12 −0.784256
585585 0 0
586586 8.95935e11 0.313861
587587 2.30595e12 0.801639 0.400820 0.916157i 0.368725π-0.368725\pi
0.400820 + 0.916157i 0.368725π0.368725\pi
588588 −5.43553e11 −0.187518
589589 2.35802e12 0.807289
590590 −3.35874e12 −1.14115
591591 3.00187e12 1.01216
592592 −1.40992e12 −0.471787
593593 −1.61589e12 −0.536620 −0.268310 0.963333i 0.586465π-0.586465\pi
−0.268310 + 0.963333i 0.586465π0.586465\pi
594594 −2.24949e12 −0.741386
595595 6.37527e12 2.08532
596596 1.14980e12 0.373263
597597 5.90000e11 0.190094
598598 0 0
599599 −4.17127e12 −1.32388 −0.661938 0.749558i 0.730266π-0.730266\pi
−0.661938 + 0.749558i 0.730266π0.730266\pi
600600 −4.50817e11 −0.142010
601601 2.82549e12 0.883404 0.441702 0.897162i 0.354375π-0.354375\pi
0.441702 + 0.897162i 0.354375π0.354375\pi
602602 −2.97542e12 −0.923346
603603 −2.75724e12 −0.849270
604604 4.34323e11 0.132784
605605 1.29628e12 0.393369
606606 −1.15925e12 −0.349180
607607 −1.71393e11 −0.0512441 −0.0256220 0.999672i 0.508157π-0.508157\pi
−0.0256220 + 0.999672i 0.508157π0.508157\pi
608608 −2.64748e12 −0.785719
609609 −3.72890e12 −1.09851
610610 −2.08135e12 −0.608640
611611 0 0
612612 5.37011e11 0.154740
613613 5.97398e12 1.70880 0.854401 0.519615i 0.173925π-0.173925\pi
0.854401 + 0.519615i 0.173925π0.173925\pi
614614 −4.49539e12 −1.27647
615615 6.76827e11 0.190783
616616 4.49025e12 1.25648
617617 5.82013e11 0.161678 0.0808388 0.996727i 0.474240π-0.474240\pi
0.0808388 + 0.996727i 0.474240π0.474240\pi
618618 3.34934e12 0.923657
619619 −6.13432e11 −0.167942 −0.0839709 0.996468i 0.526760π-0.526760\pi
−0.0839709 + 0.996468i 0.526760π0.526760\pi
620620 −4.50160e11 −0.122350
621621 −1.59244e12 −0.429687
622622 3.09002e12 0.827759
623623 4.18607e12 1.11329
624624 0 0
625625 −4.39059e12 −1.15097
626626 −1.90327e12 −0.495355
627627 −3.72815e12 −0.963362
628628 −1.43007e12 −0.366892
629629 3.44609e12 0.877807
630630 −2.71964e12 −0.687827
631631 6.56659e11 0.164895 0.0824475 0.996595i 0.473726π-0.473726\pi
0.0824475 + 0.996595i 0.473726π0.473726\pi
632632 2.95754e12 0.737401
633633 −3.30498e11 −0.0818186
634634 −1.68982e11 −0.0415374
635635 −4.30250e12 −1.05012
636636 5.74552e11 0.139243
637637 0 0
638638 3.11019e12 0.743179
639639 3.38832e12 0.803952
640640 −2.35086e12 −0.553882
641641 −4.68212e12 −1.09542 −0.547711 0.836668i 0.684501π-0.684501\pi
−0.547711 + 0.836668i 0.684501π0.684501\pi
642642 −3.36320e11 −0.0781349
643643 −3.85913e12 −0.890307 −0.445153 0.895454i 0.646851π-0.646851\pi
−0.445153 + 0.895454i 0.646851π0.646851\pi
644644 6.08147e11 0.139323
645645 −2.46509e12 −0.560808
646646 −8.65159e12 −1.95456
647647 −2.95801e11 −0.0663636 −0.0331818 0.999449i 0.510564π-0.510564\pi
−0.0331818 + 0.999449i 0.510564π0.510564\pi
648648 1.24233e12 0.276790
649649 4.33302e12 0.958716
650650 0 0
651651 2.24676e12 0.490278
652652 −6.19486e11 −0.134251
653653 2.88888e12 0.621755 0.310878 0.950450i 0.399377π-0.399377\pi
0.310878 + 0.950450i 0.399377π0.399377\pi
654654 3.06794e12 0.655762
655655 −2.57943e12 −0.547567
656656 8.29013e11 0.174781
657657 −1.72255e12 −0.360684
658658 −1.91940e12 −0.399162
659659 8.70413e11 0.179780 0.0898899 0.995952i 0.471348π-0.471348\pi
0.0898899 + 0.995952i 0.471348π0.471348\pi
660660 7.11725e11 0.146004
661661 5.17707e12 1.05482 0.527409 0.849612i 0.323164π-0.323164\pi
0.527409 + 0.849612i 0.323164π0.323164\pi
662662 6.40230e12 1.29561
663663 0 0
664664 3.63297e12 0.725279
665665 −1.35782e13 −2.69244
666666 −1.47008e12 −0.289538
667667 2.20175e12 0.430726
668668 −1.23752e12 −0.240468
669669 −6.92244e11 −0.133611
670670 −8.48020e12 −1.62581
671671 2.68509e12 0.511337
672672 −2.52257e12 −0.477179
673673 −9.85716e12 −1.85218 −0.926092 0.377297i 0.876854π-0.876854\pi
−0.926092 + 0.377297i 0.876854π0.876854\pi
674674 2.30479e12 0.430191
675675 −1.06115e12 −0.196748
676676 0 0
677677 8.69916e12 1.59158 0.795790 0.605573i 0.207056π-0.207056\pi
0.795790 + 0.605573i 0.207056π0.207056\pi
678678 −2.39599e12 −0.435463
679679 1.37305e13 2.47897
680680 8.63291e12 1.54834
681681 1.34510e12 0.239659
682682 −1.87397e12 −0.331691
683683 1.53046e12 0.269109 0.134554 0.990906i 0.457040π-0.457040\pi
0.134554 + 0.990906i 0.457040π0.457040\pi
684684 −1.14374e12 −0.199790
685685 4.43556e12 0.769734
686686 −8.66364e11 −0.149363
687687 −6.96372e12 −1.19271
688688 −3.01937e12 −0.513769
689689 0 0
690690 −1.62583e12 −0.273058
691691 1.00313e12 0.167380 0.0836902 0.996492i 0.473329π-0.473329\pi
0.0836902 + 0.996492i 0.473329π0.473329\pi
692692 −1.74524e12 −0.289319
693693 3.50854e12 0.577865
694694 7.73367e12 1.26552
695695 1.43354e11 0.0233065
696696 −5.04939e12 −0.815638
697697 −2.02626e12 −0.325198
698698 3.00842e12 0.479722
699699 1.49955e11 0.0237581
700700 4.05249e11 0.0637941
701701 −6.48282e12 −1.01399 −0.506994 0.861949i 0.669243π-0.669243\pi
−0.506994 + 0.861949i 0.669243π0.669243\pi
702702 0 0
703703 −7.33957e12 −1.13337
704704 5.78883e12 0.888206
705705 −1.59019e12 −0.242437
706706 −6.03460e12 −0.914171
707707 5.44678e12 0.819885
708708 −1.34586e12 −0.201304
709709 4.20475e12 0.624931 0.312465 0.949929i 0.398845π-0.398845\pi
0.312465 + 0.949929i 0.398845π0.398845\pi
710710 1.04212e13 1.53905
711711 2.31093e12 0.339135
712712 5.66845e12 0.826617
713713 −1.32661e12 −0.192239
714714 −8.24338e12 −1.18703
715715 0 0
716716 1.40178e12 0.199330
717717 −4.07667e12 −0.576062
718718 9.09210e12 1.27674
719719 −9.00975e12 −1.25728 −0.628641 0.777695i 0.716389π-0.716389\pi
−0.628641 + 0.777695i 0.716389π0.716389\pi
720720 −2.75981e12 −0.382722
721721 −1.57370e13 −2.16877
722722 1.20467e13 1.64987
723723 −2.36083e10 −0.00321324
724724 −2.40118e12 −0.324790
725725 1.46717e12 0.197224
726726 −1.67612e12 −0.223919
727727 4.23757e12 0.562615 0.281308 0.959618i 0.409232π-0.409232\pi
0.281308 + 0.959618i 0.409232π0.409232\pi
728728 0 0
729729 6.71344e12 0.880383
730730 −5.29790e12 −0.690479
731731 7.37989e12 0.955920
732732 −8.34006e11 −0.107367
733733 4.35002e12 0.556575 0.278288 0.960498i 0.410233π-0.410233\pi
0.278288 + 0.960498i 0.410233π0.410233\pi
734734 −9.41970e11 −0.119786
735735 −6.82766e12 −0.862936
736736 1.48946e12 0.187102
737737 1.09401e13 1.36589
738738 8.64387e11 0.107264
739739 3.68548e11 0.0454563 0.0227281 0.999742i 0.492765π-0.492765\pi
0.0227281 + 0.999742i 0.492765π0.492765\pi
740740 1.40117e12 0.171770
741741 0 0
742742 8.71113e12 1.05501
743743 −6.34876e12 −0.764257 −0.382128 0.924109i 0.624809π-0.624809\pi
−0.382128 + 0.924109i 0.624809π0.624809\pi
744744 3.04240e12 0.364030
745745 1.44428e13 1.71771
746746 −8.80246e11 −0.104059
747747 2.83869e12 0.333561
748748 −2.13073e12 −0.248870
749749 1.58022e12 0.183463
750750 4.76312e12 0.549688
751751 −1.03951e13 −1.19247 −0.596236 0.802809i 0.703338π-0.703338\pi
−0.596236 + 0.802809i 0.703338π0.703338\pi
752752 −1.94775e12 −0.222102
753753 3.11377e11 0.0352947
754754 0 0
755755 5.45560e12 0.611056
756756 −3.28290e12 −0.365518
757757 −4.19405e12 −0.464197 −0.232098 0.972692i 0.574559π-0.574559\pi
−0.232098 + 0.972692i 0.574559π0.574559\pi
758758 2.27586e12 0.250399
759759 2.09744e12 0.229404
760760 −1.83866e13 −1.99913
761761 4.72170e12 0.510349 0.255175 0.966895i 0.417867π-0.417867\pi
0.255175 + 0.966895i 0.417867π0.417867\pi
762762 5.56324e12 0.597765
763763 −1.44148e13 −1.53975
764764 −7.59797e11 −0.0806822
765765 6.74548e12 0.712093
766766 1.03063e13 1.08161
767767 0 0
768768 −4.56040e12 −0.473017
769769 −1.30977e13 −1.35060 −0.675302 0.737541i 0.735987π-0.735987\pi
−0.675302 + 0.737541i 0.735987π0.735987\pi
770770 1.07909e13 1.10624
771771 1.15525e13 1.17742
772772 1.27517e12 0.129208
773773 −1.08876e11 −0.0109679 −0.00548397 0.999985i 0.501746π-0.501746\pi
−0.00548397 + 0.999985i 0.501746π0.501746\pi
774774 −3.14820e12 −0.315303
775775 −8.84009e11 −0.0880236
776776 1.85928e13 1.84063
777777 −6.99327e12 −0.688312
778778 3.33060e12 0.325923
779779 4.31558e12 0.419875
780780 0 0
781781 −1.34441e13 −1.29301
782782 4.86734e12 0.465438
783783 −1.18855e13 −1.13002
784784 −8.36287e12 −0.790556
785785 −1.79633e13 −1.68839
786786 3.33526e12 0.311694
787787 1.73724e13 1.61426 0.807131 0.590372i 0.201019π-0.201019\pi
0.807131 + 0.590372i 0.201019π0.201019\pi
788788 −3.65403e12 −0.337601
789789 1.45112e12 0.133308
790790 7.10753e12 0.649227
791791 1.12577e13 1.02248
792792 4.75099e12 0.429063
793793 0 0
794794 1.34058e13 1.19702
795795 7.21704e12 0.640777
796796 −7.18178e11 −0.0634050
797797 1.88209e13 1.65226 0.826128 0.563483i 0.190539π-0.190539\pi
0.826128 + 0.563483i 0.190539π0.190539\pi
798798 1.75570e13 1.53263
799799 4.76065e12 0.413243
800800 9.92527e11 0.0856717
801801 4.42915e12 0.380166
802802 −6.61753e12 −0.564822
803803 6.83467e12 0.580093
804804 −3.39806e12 −0.286799
805805 7.63904e12 0.641146
806806 0 0
807807 −1.37748e13 −1.14329
808808 7.37562e12 0.608762
809809 −1.41885e13 −1.16458 −0.582290 0.812981i 0.697843π-0.697843\pi
−0.582290 + 0.812981i 0.697843π0.697843\pi
810810 2.98556e12 0.243693
811811 2.49677e12 0.202667 0.101334 0.994852i 0.467689π-0.467689\pi
0.101334 + 0.994852i 0.467689π0.467689\pi
812812 4.53900e12 0.366403
813813 4.55948e12 0.366022
814814 5.83292e12 0.465668
815815 −7.78147e12 −0.617806
816816 −8.36513e12 −0.660491
817817 −1.57179e13 −1.23423
818818 −1.35813e13 −1.06060
819819 0 0
820820 −8.23869e11 −0.0636349
821821 5.97064e12 0.458645 0.229323 0.973350i 0.426349π-0.426349\pi
0.229323 + 0.973350i 0.426349π0.426349\pi
822822 −5.73528e12 −0.438159
823823 1.04151e12 0.0791343 0.0395672 0.999217i 0.487402π-0.487402\pi
0.0395672 + 0.999217i 0.487402π0.487402\pi
824824 −2.13099e13 −1.61031
825825 1.39766e12 0.105041
826826 −2.04055e13 −1.52523
827827 −4.22577e12 −0.314146 −0.157073 0.987587i 0.550206π-0.550206\pi
−0.157073 + 0.987587i 0.550206π0.550206\pi
828828 6.43462e11 0.0475759
829829 7.38832e12 0.543313 0.271656 0.962394i 0.412429π-0.412429\pi
0.271656 + 0.962394i 0.412429π0.412429\pi
830830 8.73071e12 0.638555
831831 −6.27572e12 −0.456519
832832 0 0
833833 2.04404e13 1.47091
834834 −1.85360e11 −0.0132669
835835 −1.55447e13 −1.10661
836836 4.53809e12 0.321325
837837 7.16130e12 0.504345
838838 1.79851e13 1.25983
839839 7.56034e12 0.526760 0.263380 0.964692i 0.415163π-0.415163\pi
0.263380 + 0.964692i 0.415163π0.415163\pi
840840 −1.75190e13 −1.21410
841841 1.92594e12 0.132758
842842 1.52488e13 1.04552
843843 9.48357e12 0.646767
844844 4.02299e11 0.0272902
845845 0 0
846846 −2.03086e12 −0.136305
847847 7.87534e12 0.525768
848848 8.83979e12 0.587031
849849 −8.77724e12 −0.579794
850850 3.24343e12 0.213118
851851 4.12921e12 0.269888
852852 4.17581e12 0.271495
853853 1.99879e13 1.29269 0.646347 0.763043i 0.276296π-0.276296\pi
0.646347 + 0.763043i 0.276296π0.276296\pi
854854 −1.26449e13 −0.813494
855855 −1.43667e13 −0.919410
856856 2.13981e12 0.136221
857857 8.41249e12 0.532735 0.266367 0.963872i 0.414177π-0.414177\pi
0.266367 + 0.963872i 0.414177π0.414177\pi
858858 0 0
859859 3.81635e12 0.239155 0.119577 0.992825i 0.461846π-0.461846\pi
0.119577 + 0.992825i 0.461846π0.461846\pi
860860 3.00063e12 0.187055
861861 4.11195e12 0.254996
862862 −1.16046e13 −0.715890
863863 1.53354e13 0.941121 0.470560 0.882368i 0.344052π-0.344052\pi
0.470560 + 0.882368i 0.344052π0.344052\pi
864864 −8.04040e12 −0.490869
865865 −2.19222e13 −1.33141
866866 1.23558e13 0.746517
867867 8.64512e12 0.519619
868868 −2.73487e12 −0.163530
869869 −9.16923e12 −0.545436
870870 −1.21346e13 −0.718109
871871 0 0
872872 −1.95195e13 −1.14326
873873 1.45278e13 0.846517
874874 −1.03666e13 −0.600945
875875 −2.23797e13 −1.29068
876876 −2.12289e12 −0.121803
877877 −1.52103e12 −0.0868239 −0.0434119 0.999057i 0.513823π-0.513823\pi
−0.0434119 + 0.999057i 0.513823π0.513823\pi
878878 8.41317e12 0.477787
879879 4.50952e12 0.254789
880880 1.09503e13 0.615536
881881 −8.92983e11 −0.0499403 −0.0249702 0.999688i 0.507949π-0.507949\pi
−0.0249702 + 0.999688i 0.507949π0.507949\pi
882882 −8.71970e12 −0.485169
883883 1.69912e13 0.940592 0.470296 0.882509i 0.344147π-0.344147\pi
0.470296 + 0.882509i 0.344147π0.344147\pi
884884 0 0
885885 −1.69056e13 −0.926374
886886 2.51664e13 1.37205
887887 6.57514e12 0.356655 0.178328 0.983971i 0.442931π-0.442931\pi
0.178328 + 0.983971i 0.442931π0.442931\pi
888888 −9.46975e12 −0.511070
889889 −2.61391e13 −1.40357
890890 1.36224e13 0.727775
891891 −3.85158e12 −0.204734
892892 8.42634e11 0.0445653
893893 −1.01394e13 −0.533555
894894 −1.86750e13 −0.977779
895895 1.76080e13 0.917290
896896 −1.42823e13 −0.740306
897897 0 0
898898 −1.88910e13 −0.969418
899899 −9.90138e12 −0.505565
900900 4.28781e11 0.0217843
901901 −2.16061e13 −1.09223
902902 −3.42968e12 −0.172514
903903 −1.49762e13 −0.749563
904904 1.52443e13 0.759187
905905 −3.01617e13 −1.49464
906906 −7.05422e12 −0.347834
907907 1.24839e13 0.612517 0.306258 0.951948i 0.400923π-0.400923\pi
0.306258 + 0.951948i 0.400923π0.400923\pi
908908 −1.63733e12 −0.0799372
909909 5.76308e12 0.279973
910910 0 0
911911 −1.51870e13 −0.730534 −0.365267 0.930903i 0.619022π-0.619022\pi
−0.365267 + 0.930903i 0.619022π0.619022\pi
912912 1.78163e13 0.852786
913913 −1.12632e13 −0.536470
914914 3.25713e13 1.54375
915915 −1.04761e13 −0.494087
916916 8.47659e12 0.397825
917917 −1.56709e13 −0.731866
918918 −2.62749e13 −1.22109
919919 2.15334e13 0.995849 0.497925 0.867220i 0.334096π-0.334096\pi
0.497925 + 0.867220i 0.334096π0.334096\pi
920920 1.03442e13 0.476049
921921 −2.26267e13 −1.03622
922922 −3.98529e12 −0.181623
923923 0 0
924924 4.32397e12 0.195146
925925 2.75156e12 0.123578
926926 −1.43887e13 −0.643090
927927 −1.66509e13 −0.740590
928928 1.11168e13 0.492057
929929 1.39285e13 0.613526 0.306763 0.951786i 0.400754π-0.400754\pi
0.306763 + 0.951786i 0.400754π0.400754\pi
930930 7.31145e12 0.320501
931931 −4.35344e13 −1.89915
932932 −1.82532e11 −0.00792443
933933 1.55530e13 0.671967
934934 −3.45394e13 −1.48509
935935 −2.67645e13 −1.14527
936936 0 0
937937 1.94606e13 0.824761 0.412380 0.911012i 0.364697π-0.364697\pi
0.412380 + 0.911012i 0.364697π0.364697\pi
938938 −5.15200e13 −2.17302
939939 −9.57977e12 −0.402124
940940 1.93566e12 0.0808638
941941 −2.38676e13 −0.992328 −0.496164 0.868229i 0.665258π-0.665258\pi
−0.496164 + 0.868229i 0.665258π0.665258\pi
942942 2.32270e13 0.961089
943943 −2.42792e12 −0.0999844
944944 −2.07069e13 −0.848673
945945 −4.12370e13 −1.68207
946946 1.24913e13 0.507106
947947 3.33959e13 1.34933 0.674664 0.738125i 0.264288π-0.264288\pi
0.674664 + 0.738125i 0.264288π0.264288\pi
948948 2.84802e12 0.114526
949949 0 0
950950 −6.90794e12 −0.275165
951951 −8.50541e11 −0.0337196
952952 5.24478e13 2.06948
953953 −1.23406e13 −0.484639 −0.242320 0.970196i 0.577908π-0.577908\pi
−0.242320 + 0.970196i 0.577908π0.577908\pi
954954 9.21698e12 0.360264
955955 −9.54394e12 −0.371289
956956 4.96233e12 0.192143
957957 1.56546e13 0.603306
958958 −6.42202e12 −0.246335
959959 2.69475e13 1.02881
960960 −2.25855e13 −0.858243
961961 −2.04738e13 −0.774360
962962 0 0
963963 1.67198e12 0.0626487
964964 2.87373e10 0.00107176
965965 1.60176e13 0.594600
966966 −9.87746e12 −0.364963
967967 −1.96551e13 −0.722863 −0.361432 0.932399i 0.617712π-0.617712\pi
−0.361432 + 0.932399i 0.617712π0.617712\pi
968968 1.06642e13 0.390381
969969 −4.35462e13 −1.58669
970970 4.46819e13 1.62054
971971 −3.59611e12 −0.129822 −0.0649108 0.997891i 0.520676π-0.520676\pi
−0.0649108 + 0.997891i 0.520676π0.520676\pi
972972 −5.79401e12 −0.208200
973973 8.70922e11 0.0311510
974974 3.52859e13 1.25628
975975 0 0
976976 −1.28316e13 −0.452645
977977 −5.51875e13 −1.93783 −0.968914 0.247398i 0.920424π-0.920424\pi
−0.968914 + 0.247398i 0.920424π0.920424\pi
978978 1.00616e13 0.351676
979979 −1.75738e13 −0.611426
980980 8.31097e12 0.287829
981981 −1.52519e13 −0.525791
982982 1.33643e13 0.458612
983983 2.30506e13 0.787394 0.393697 0.919240i 0.371196π-0.371196\pi
0.393697 + 0.919240i 0.371196π0.371196\pi
984984 5.56810e12 0.189334
985985 −4.58989e13 −1.55360
986986 3.63282e13 1.22405
987987 −9.66095e12 −0.324035
988988 0 0
989989 8.84280e12 0.293905
990990 1.14175e13 0.377758
991991 −3.82758e13 −1.26065 −0.630323 0.776333i 0.717077π-0.717077\pi
−0.630323 + 0.776333i 0.717077π0.717077\pi
992992 −6.69819e12 −0.219611
993993 3.22248e13 1.05177
994994 6.33120e13 2.05706
995995 −9.02115e12 −0.291782
996996 3.49844e12 0.112644
997997 −3.74284e13 −1.19970 −0.599851 0.800112i 0.704774π-0.704774\pi
−0.599851 + 0.800112i 0.704774π0.704774\pi
998998 3.46499e13 1.10564
999999 −2.22903e13 −0.708061
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.14 20
13.2 odd 12 13.10.e.a.4.7 20
13.7 odd 12 13.10.e.a.10.7 yes 20
13.12 even 2 inner 169.10.a.f.1.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.7 20 13.2 odd 12
13.10.e.a.10.7 yes 20 13.7 odd 12
169.10.a.f.1.7 20 13.12 even 2 inner
169.10.a.f.1.14 20 1.1 even 1 trivial