Properties

Label 169.10.a.f.1.3
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x207679x18+24599364x1642662336000x14+43527566862400x12++25 ⁣ ⁣36 x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 2253101312 2^{25}\cdot 3^{10}\cdot 13^{12}
Twist minimal: no (minimal twist has level 13)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 36.6943-36.6943 of defining polynomial
Character χ\chi == 169.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q36.6943q2130.026q3+834.471q4+1417.57q5+4771.23q67507.92q711832.9q82776.14q952016.6q1042852.6q11108503.q12+275498.q14184321.q15+6948.87q16535226.q17+101868.q18418977.q19+1.18292e6q20+976228.q21+1.57245e6q22+294693.q23+1.53858e6q24+56368.4q25+2.92028e6q276.26514e6q28+1.62070e6q29+6.76353e6q30+3.25108e6q31+5.80344e6q32+5.57197e6q33+1.96397e7q341.06430e7q352.31661e6q362.00820e7q37+1.53741e7q381.67738e7q403.44352e7q413.58220e7q42+3.13771e6q433.57593e7q443.93536e6q451.08136e7q465.82844e7q47903537.q48+1.60153e7q492.06840e6q50+6.95935e7q512.43962e7q531.07158e8q546.07464e7q55+8.88401e7q56+5.44780e7q575.94706e7q581.61913e8q591.53811e8q60+8.43506e7q611.19296e8q62+2.08430e7q632.16511e8q642.04459e8q66+4.89466e7q674.46631e8q683.83179e7q69+3.90536e8q703.31943e7q71+3.28496e7q722.22708e8q73+7.36896e8q747.32937e6q753.49624e8q76+3.21734e8q77+1.28556e7q79+9.85048e6q803.25071e8q81+1.26358e9q821.32887e8q83+8.14634e8q847.58718e8q851.15136e8q862.10734e8q87+5.07069e8q88+5.85065e8q89+1.44405e8q90+2.45913e8q924.22726e8q93+2.13870e9q945.93927e8q957.54600e8q961.03264e9q975.87670e8q98+1.18965e8q99+O(q100)q-36.6943 q^{2} -130.026 q^{3} +834.471 q^{4} +1417.57 q^{5} +4771.23 q^{6} -7507.92 q^{7} -11832.9 q^{8} -2776.14 q^{9} -52016.6 q^{10} -42852.6 q^{11} -108503. q^{12} +275498. q^{14} -184321. q^{15} +6948.87 q^{16} -535226. q^{17} +101868. q^{18} -418977. q^{19} +1.18292e6 q^{20} +976228. q^{21} +1.57245e6 q^{22} +294693. q^{23} +1.53858e6 q^{24} +56368.4 q^{25} +2.92028e6 q^{27} -6.26514e6 q^{28} +1.62070e6 q^{29} +6.76353e6 q^{30} +3.25108e6 q^{31} +5.80344e6 q^{32} +5.57197e6 q^{33} +1.96397e7 q^{34} -1.06430e7 q^{35} -2.31661e6 q^{36} -2.00820e7 q^{37} +1.53741e7 q^{38} -1.67738e7 q^{40} -3.44352e7 q^{41} -3.58220e7 q^{42} +3.13771e6 q^{43} -3.57593e7 q^{44} -3.93536e6 q^{45} -1.08136e7 q^{46} -5.82844e7 q^{47} -903537. q^{48} +1.60153e7 q^{49} -2.06840e6 q^{50} +6.95935e7 q^{51} -2.43962e7 q^{53} -1.07158e8 q^{54} -6.07464e7 q^{55} +8.88401e7 q^{56} +5.44780e7 q^{57} -5.94706e7 q^{58} -1.61913e8 q^{59} -1.53811e8 q^{60} +8.43506e7 q^{61} -1.19296e8 q^{62} +2.08430e7 q^{63} -2.16511e8 q^{64} -2.04459e8 q^{66} +4.89466e7 q^{67} -4.46631e8 q^{68} -3.83179e7 q^{69} +3.90536e8 q^{70} -3.31943e7 q^{71} +3.28496e7 q^{72} -2.22708e8 q^{73} +7.36896e8 q^{74} -7.32937e6 q^{75} -3.49624e8 q^{76} +3.21734e8 q^{77} +1.28556e7 q^{79} +9.85048e6 q^{80} -3.25071e8 q^{81} +1.26358e9 q^{82} -1.32887e8 q^{83} +8.14634e8 q^{84} -7.58718e8 q^{85} -1.15136e8 q^{86} -2.10734e8 q^{87} +5.07069e8 q^{88} +5.85065e8 q^{89} +1.44405e8 q^{90} +2.45913e8 q^{92} -4.22726e8 q^{93} +2.13870e9 q^{94} -5.93927e8 q^{95} -7.54600e8 q^{96} -1.03264e9 q^{97} -5.87670e8 q^{98} +1.18965e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+326q3+5118q4+129526q9+88390q10+427652q12+473556q14+1189618q1699312q175073532q22+6252378q23+1529274q25+18052718q27+5424828q29++9251202540q95+O(q100) 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −36.6943 −1.62167 −0.810837 0.585272i 0.800988π-0.800988\pi
−0.810837 + 0.585272i 0.800988π0.800988\pi
33 −130.026 −0.926800 −0.463400 0.886149i 0.653371π-0.653371\pi
−0.463400 + 0.886149i 0.653371π0.653371\pi
44 834.471 1.62983
55 1417.57 1.01433 0.507164 0.861850i 0.330694π-0.330694\pi
0.507164 + 0.861850i 0.330694π0.330694\pi
66 4771.23 1.50297
77 −7507.92 −1.18189 −0.590947 0.806710i 0.701246π-0.701246\pi
−0.590947 + 0.806710i 0.701246π0.701246\pi
88 −11832.9 −1.02137
99 −2776.14 −0.141042
1010 −52016.6 −1.64491
1111 −42852.6 −0.882491 −0.441245 0.897386i 0.645463π-0.645463\pi
−0.441245 + 0.897386i 0.645463π0.645463\pi
1212 −108503. −1.51052
1313 0 0
1414 275498. 1.91665
1515 −184321. −0.940078
1616 6948.87 0.0265078
1717 −535226. −1.55424 −0.777118 0.629354i 0.783319π-0.783319\pi
−0.777118 + 0.629354i 0.783319π0.783319\pi
1818 101868. 0.228725
1919 −418977. −0.737563 −0.368781 0.929516i 0.620225π-0.620225\pi
−0.368781 + 0.929516i 0.620225π0.620225\pi
2020 1.18292e6 1.65318
2121 976228. 1.09538
2222 1.57245e6 1.43111
2323 294693. 0.219581 0.109791 0.993955i 0.464982π-0.464982\pi
0.109791 + 0.993955i 0.464982π0.464982\pi
2424 1.53858e6 0.946608
2525 56368.4 0.0288606
2626 0 0
2727 2.92028e6 1.05752
2828 −6.26514e6 −1.92628
2929 1.62070e6 0.425513 0.212756 0.977105i 0.431756π-0.431756\pi
0.212756 + 0.977105i 0.431756π0.431756\pi
3030 6.76353e6 1.52450
3131 3.25108e6 0.632265 0.316133 0.948715i 0.397616π-0.397616\pi
0.316133 + 0.948715i 0.397616π0.397616\pi
3232 5.80344e6 0.978386
3333 5.57197e6 0.817892
3434 1.96397e7 2.52047
3535 −1.06430e7 −1.19883
3636 −2.31661e6 −0.229875
3737 −2.00820e7 −1.76157 −0.880785 0.473516i 0.842985π-0.842985\pi
−0.880785 + 0.473516i 0.842985π0.842985\pi
3838 1.53741e7 1.19609
3939 0 0
4040 −1.67738e7 −1.03601
4141 −3.44352e7 −1.90316 −0.951580 0.307401i 0.900541π-0.900541\pi
−0.951580 + 0.307401i 0.900541π0.900541\pi
4242 −3.58220e7 −1.77635
4343 3.13771e6 0.139960 0.0699801 0.997548i 0.477706π-0.477706\pi
0.0699801 + 0.997548i 0.477706π0.477706\pi
4444 −3.57593e7 −1.43831
4545 −3.93536e6 −0.143063
4646 −1.08136e7 −0.356089
4747 −5.82844e7 −1.74226 −0.871128 0.491056i 0.836611π-0.836611\pi
−0.871128 + 0.491056i 0.836611π0.836611\pi
4848 −903537. −0.0245675
4949 1.60153e7 0.396874
5050 −2.06840e6 −0.0468025
5151 6.95935e7 1.44047
5252 0 0
5353 −2.43962e7 −0.424699 −0.212349 0.977194i 0.568111π-0.568111\pi
−0.212349 + 0.977194i 0.568111π0.568111\pi
5454 −1.07158e8 −1.71495
5555 −6.07464e7 −0.895135
5656 8.88401e7 1.20716
5757 5.44780e7 0.683573
5858 −5.94706e7 −0.690043
5959 −1.61913e8 −1.73959 −0.869795 0.493412i 0.835749π-0.835749\pi
−0.869795 + 0.493412i 0.835749π0.835749\pi
6060 −1.53811e8 −1.53216
6161 8.43506e7 0.780017 0.390008 0.920811i 0.372472π-0.372472\pi
0.390008 + 0.920811i 0.372472π0.372472\pi
6262 −1.19296e8 −1.02533
6363 2.08430e7 0.166697
6464 −2.16511e8 −1.61313
6565 0 0
6666 −2.04459e8 −1.32635
6767 4.89466e7 0.296746 0.148373 0.988931i 0.452596π-0.452596\pi
0.148373 + 0.988931i 0.452596π0.452596\pi
6868 −4.46631e8 −2.53314
6969 −3.83179e7 −0.203508
7070 3.90536e8 1.94411
7171 −3.31943e7 −0.155025 −0.0775125 0.996991i 0.524698π-0.524698\pi
−0.0775125 + 0.996991i 0.524698π0.524698\pi
7272 3.28496e7 0.144057
7373 −2.22708e8 −0.917875 −0.458938 0.888468i 0.651770π-0.651770\pi
−0.458938 + 0.888468i 0.651770π0.651770\pi
7474 7.36896e8 2.85669
7575 −7.32937e6 −0.0267480
7676 −3.49624e8 −1.20210
7777 3.21734e8 1.04301
7878 0 0
7979 1.28556e7 0.0371338 0.0185669 0.999828i 0.494090π-0.494090\pi
0.0185669 + 0.999828i 0.494090π0.494090\pi
8080 9.85048e6 0.0268876
8181 −3.25071e8 −0.839065
8282 1.26358e9 3.08631
8383 −1.32887e8 −0.307348 −0.153674 0.988122i 0.549111π-0.549111\pi
−0.153674 + 0.988122i 0.549111π0.549111\pi
8484 8.14634e8 1.78528
8585 −7.58718e8 −1.57651
8686 −1.15136e8 −0.226970
8787 −2.10734e8 −0.394365
8888 5.07069e8 0.901352
8989 5.85065e8 0.988437 0.494218 0.869338i 0.335454π-0.335454\pi
0.494218 + 0.869338i 0.335454π0.335454\pi
9090 1.44405e8 0.232002
9191 0 0
9292 2.45913e8 0.357879
9393 −4.22726e8 −0.585983
9494 2.13870e9 2.82537
9595 −5.93927e8 −0.748130
9696 −7.54600e8 −0.906768
9797 −1.03264e9 −1.18434 −0.592170 0.805813i 0.701729π-0.701729\pi
−0.592170 + 0.805813i 0.701729π0.701729\pi
9898 −5.87670e8 −0.643600
9999 1.18965e8 0.124469
100100 4.70378e7 0.0470378
101101 7.35672e8 0.703458 0.351729 0.936102i 0.385594π-0.385594\pi
0.351729 + 0.936102i 0.385594π0.385594\pi
102102 −2.55369e9 −2.33597
103103 1.16039e8 0.101587 0.0507934 0.998709i 0.483825π-0.483825\pi
0.0507934 + 0.998709i 0.483825π0.483825\pi
104104 0 0
105105 1.38387e9 1.11107
106106 8.95201e8 0.688723
107107 −4.21394e8 −0.310786 −0.155393 0.987853i 0.549664π-0.549664\pi
−0.155393 + 0.987853i 0.549664π0.549664\pi
108108 2.43689e9 1.72357
109109 −1.30101e9 −0.882796 −0.441398 0.897311i 0.645517π-0.645517\pi
−0.441398 + 0.897311i 0.645517π0.645517\pi
110110 2.22905e9 1.45162
111111 2.61119e9 1.63262
112112 −5.21716e7 −0.0313295
113113 −1.02461e9 −0.591160 −0.295580 0.955318i 0.595513π-0.595513\pi
−0.295580 + 0.955318i 0.595513π0.595513\pi
114114 −1.99903e9 −1.10853
115115 4.17747e8 0.222727
116116 1.35243e9 0.693512
117117 0 0
118118 5.94128e9 2.82105
119119 4.01844e9 1.83694
120120 2.18104e9 0.960171
121121 −5.21602e8 −0.221210
122122 −3.09519e9 −1.26493
123123 4.47749e9 1.76385
124124 2.71293e9 1.03048
125125 −2.68878e9 −0.985054
126126 −7.64821e8 −0.270329
127127 −4.76239e9 −1.62446 −0.812228 0.583339i 0.801746π-0.801746\pi
−0.812228 + 0.583339i 0.801746π0.801746\pi
128128 4.97335e9 1.63759
129129 −4.07985e8 −0.129715
130130 0 0
131131 −3.55676e9 −1.05520 −0.527599 0.849494i 0.676908π-0.676908\pi
−0.527599 + 0.849494i 0.676908π0.676908\pi
132132 4.64965e9 1.33302
133133 3.14565e9 0.871721
134134 −1.79606e9 −0.481226
135135 4.13969e9 1.07267
136136 6.33325e9 1.58746
137137 −5.28532e9 −1.28183 −0.640913 0.767614i 0.721444π-0.721444\pi
−0.640913 + 0.767614i 0.721444π0.721444\pi
138138 1.40605e9 0.330023
139139 9.34790e8 0.212397 0.106198 0.994345i 0.466132π-0.466132\pi
0.106198 + 0.994345i 0.466132π0.466132\pi
140140 −8.88126e9 −1.95388
141141 7.57851e9 1.61472
142142 1.21804e9 0.251400
143143 0 0
144144 −1.92910e7 −0.00373873
145145 2.29745e9 0.431609
146146 8.17213e9 1.48849
147147 −2.08241e9 −0.367823
148148 −1.67579e10 −2.87105
149149 6.55190e9 1.08900 0.544502 0.838760i 0.316719π-0.316719\pi
0.544502 + 0.838760i 0.316719π0.316719\pi
150150 2.68946e8 0.0433765
151151 1.99924e8 0.0312946 0.0156473 0.999878i 0.495019π-0.495019\pi
0.0156473 + 0.999878i 0.495019π0.495019\pi
152152 4.95769e9 0.753327
153153 1.48586e9 0.219213
154154 −1.18058e10 −1.69142
155155 4.60861e9 0.641324
156156 0 0
157157 −6.66154e9 −0.875036 −0.437518 0.899210i 0.644142π-0.644142\pi
−0.437518 + 0.899210i 0.644142π0.644142\pi
158158 −4.71725e8 −0.0602188
159159 3.17215e9 0.393610
160160 8.22675e9 0.992404
161161 −2.21253e9 −0.259522
162162 1.19282e10 1.36069
163163 5.88103e9 0.652543 0.326271 0.945276i 0.394208π-0.394208\pi
0.326271 + 0.945276i 0.394208π0.394208\pi
164164 −2.87352e10 −3.10182
165165 7.89863e9 0.829611
166166 4.87618e9 0.498418
167167 −5.12094e9 −0.509478 −0.254739 0.967010i 0.581990π-0.581990\pi
−0.254739 + 0.967010i 0.581990π0.581990\pi
168168 −1.15516e10 −1.11879
169169 0 0
170170 2.78406e10 2.55658
171171 1.16314e9 0.104028
172172 2.61833e9 0.228111
173173 1.31542e10 1.11650 0.558249 0.829674i 0.311474π-0.311474\pi
0.558249 + 0.829674i 0.311474π0.311474\pi
174174 7.73274e9 0.639532
175175 −4.23209e8 −0.0341102
176176 −2.97777e8 −0.0233929
177177 2.10529e10 1.61225
178178 −2.14685e10 −1.60292
179179 1.03360e10 0.752513 0.376256 0.926516i 0.377211π-0.377211\pi
0.376256 + 0.926516i 0.377211π0.377211\pi
180180 −3.28394e9 −0.233168
181181 2.73183e9 0.189191 0.0945956 0.995516i 0.469844π-0.469844\pi
0.0945956 + 0.995516i 0.469844π0.469844\pi
182182 0 0
183183 −1.09678e10 −0.722919
184184 −3.48706e9 −0.224274
185185 −2.84676e10 −1.78681
186186 1.55116e10 0.950274
187187 2.29358e10 1.37160
188188 −4.86366e10 −2.83957
189189 −2.19252e10 −1.24987
190190 2.17937e10 1.21322
191191 1.01627e10 0.552536 0.276268 0.961081i 0.410902π-0.410902\pi
0.276268 + 0.961081i 0.410902π0.410902\pi
192192 2.81521e10 1.49505
193193 −1.45341e10 −0.754015 −0.377007 0.926210i 0.623047π-0.623047\pi
−0.377007 + 0.926210i 0.623047π0.623047\pi
194194 3.78920e10 1.92061
195195 0 0
196196 1.33643e10 0.646836
197197 −2.45916e9 −0.116329 −0.0581645 0.998307i 0.518525π-0.518525\pi
−0.0581645 + 0.998307i 0.518525π0.518525\pi
198198 −4.36533e9 −0.201848
199199 2.50102e10 1.13052 0.565259 0.824913i 0.308776π-0.308776\pi
0.565259 + 0.824913i 0.308776π0.308776\pi
200200 −6.66998e8 −0.0294774
201201 −6.36434e9 −0.275024
202202 −2.69950e10 −1.14078
203203 −1.21681e10 −0.502911
204204 5.80738e10 2.34771
205205 −4.88142e10 −1.93043
206206 −4.25798e9 −0.164741
207207 −8.18109e8 −0.0309703
208208 0 0
209209 1.79543e10 0.650892
210210 −5.07800e10 −1.80180
211211 −2.95626e10 −1.02677 −0.513383 0.858160i 0.671608π-0.671608\pi
−0.513383 + 0.858160i 0.671608π0.671608\pi
212212 −2.03579e10 −0.692185
213213 4.31614e9 0.143677
214214 1.54628e10 0.503994
215215 4.44791e9 0.141965
216216 −3.45552e10 −1.08012
217217 −2.44088e10 −0.747271
218218 4.77395e10 1.43161
219219 2.89580e10 0.850687
220220 −5.06911e10 −1.45891
221221 0 0
222222 −9.58159e10 −2.64758
223223 4.59229e10 1.24353 0.621767 0.783203i 0.286415π-0.286415\pi
0.621767 + 0.783203i 0.286415π0.286415\pi
224224 −4.35717e10 −1.15635
225225 −1.56486e8 −0.00407057
226226 3.75973e10 0.958669
227227 −6.10441e9 −0.152590 −0.0762952 0.997085i 0.524309π-0.524309\pi
−0.0762952 + 0.997085i 0.524309π0.524309\pi
228228 4.54604e10 1.11410
229229 −2.74503e10 −0.659610 −0.329805 0.944049i 0.606983π-0.606983\pi
−0.329805 + 0.944049i 0.606983π0.606983\pi
230230 −1.53289e10 −0.361191
231231 −4.18339e10 −0.966662
232232 −1.91775e10 −0.434607
233233 2.55024e10 0.566864 0.283432 0.958992i 0.408527π-0.408527\pi
0.283432 + 0.958992i 0.408527π0.408527\pi
234234 0 0
235235 −8.26220e10 −1.76722
236236 −1.35112e11 −2.83523
237237 −1.67156e9 −0.0344155
238238 −1.47454e11 −2.97892
239239 −2.55166e10 −0.505863 −0.252931 0.967484i 0.581395π-0.581395\pi
−0.252931 + 0.967484i 0.581395π0.581395\pi
240240 −1.28082e9 −0.0249195
241241 −7.55461e10 −1.44256 −0.721282 0.692641i 0.756447π-0.756447\pi
−0.721282 + 0.692641i 0.756447π0.756447\pi
242242 1.91398e10 0.358731
243243 −1.52121e10 −0.279873
244244 7.03881e10 1.27129
245245 2.27027e10 0.402560
246246 −1.64298e11 −2.86039
247247 0 0
248248 −3.84695e10 −0.645779
249249 1.72788e10 0.284850
250250 9.86628e10 1.59744
251251 3.66333e10 0.582565 0.291283 0.956637i 0.405918π-0.405918\pi
0.291283 + 0.956637i 0.405918π0.405918\pi
252252 1.73929e10 0.271688
253253 −1.26284e10 −0.193778
254254 1.74753e11 2.63434
255255 9.86534e10 1.46110
256256 −7.16401e10 −1.04250
257257 −2.81000e10 −0.401797 −0.200899 0.979612i 0.564386π-0.564386\pi
−0.200899 + 0.979612i 0.564386π0.564386\pi
258258 1.49707e10 0.210355
259259 1.50774e11 2.08199
260260 0 0
261261 −4.49930e9 −0.0600154
262262 1.30513e11 1.71119
263263 −4.07904e10 −0.525723 −0.262861 0.964834i 0.584666π-0.584666\pi
−0.262861 + 0.964834i 0.584666π0.584666\pi
264264 −6.59323e10 −0.835373
265265 −3.45832e10 −0.430784
266266 −1.15427e11 −1.41365
267267 −7.60739e10 −0.916083
268268 4.08445e10 0.483645
269269 8.05413e10 0.937849 0.468925 0.883238i 0.344642π-0.344642\pi
0.468925 + 0.883238i 0.344642π0.344642\pi
270270 −1.51903e11 −1.73952
271271 1.65101e11 1.85947 0.929733 0.368235i 0.120038π-0.120038\pi
0.929733 + 0.368235i 0.120038π0.120038\pi
272272 −3.71922e9 −0.0411995
273273 0 0
274274 1.93941e11 2.07870
275275 −2.41553e9 −0.0254692
276276 −3.19752e10 −0.331682
277277 −9.50226e10 −0.969768 −0.484884 0.874578i 0.661138π-0.661138\pi
−0.484884 + 0.874578i 0.661138π0.661138\pi
278278 −3.43015e10 −0.344438
279279 −9.02544e9 −0.0891763
280280 1.25937e11 1.22445
281281 1.86053e11 1.78016 0.890078 0.455809i 0.150650π-0.150650\pi
0.890078 + 0.455809i 0.150650π0.150650\pi
282282 −2.78088e11 −2.61855
283283 1.03792e11 0.961885 0.480942 0.876752i 0.340295π-0.340295\pi
0.480942 + 0.876752i 0.340295π0.340295\pi
284284 −2.76997e10 −0.252664
285285 7.72262e10 0.693367
286286 0 0
287287 2.58537e11 2.24933
288288 −1.61111e10 −0.137994
289289 1.67879e11 1.41565
290290 −8.43035e10 −0.699930
291291 1.34271e11 1.09765
292292 −1.85844e11 −1.49598
293293 1.07967e11 0.855825 0.427913 0.903820i 0.359249π-0.359249\pi
0.427913 + 0.903820i 0.359249π0.359249\pi
294294 7.64126e10 0.596488
295295 −2.29522e11 −1.76452
296296 2.37628e11 1.79922
297297 −1.25142e11 −0.933250
298298 −2.40417e11 −1.76601
299299 0 0
300300 −6.11615e9 −0.0435946
301301 −2.35577e10 −0.165418
302302 −7.33607e9 −0.0507496
303303 −9.56568e10 −0.651965
304304 −2.91142e9 −0.0195512
305305 1.19573e11 0.791193
306306 −5.45227e10 −0.355493
307307 1.18337e11 0.760326 0.380163 0.924920i 0.375868π-0.375868\pi
0.380163 + 0.924920i 0.375868π0.375868\pi
308308 2.68478e11 1.69993
309309 −1.50882e10 −0.0941506
310310 −1.69110e11 −1.04002
311311 1.19220e11 0.722647 0.361323 0.932441i 0.382325π-0.382325\pi
0.361323 + 0.932441i 0.382325π0.382325\pi
312312 0 0
313313 −3.12948e11 −1.84299 −0.921495 0.388389i 0.873032π-0.873032\pi
−0.921495 + 0.388389i 0.873032π0.873032\pi
314314 2.44440e11 1.41902
315315 2.95464e10 0.169086
316316 1.07276e10 0.0605216
317317 −2.96387e10 −0.164851 −0.0824257 0.996597i 0.526267π-0.526267\pi
−0.0824257 + 0.996597i 0.526267π0.526267\pi
318318 −1.16400e11 −0.638308
319319 −6.94514e10 −0.375511
320320 −3.06918e11 −1.63624
321321 5.47923e10 0.288036
322322 8.11874e10 0.420859
323323 2.24247e11 1.14635
324324 −2.71262e11 −1.36753
325325 0 0
326326 −2.15800e11 −1.05821
327327 1.69165e11 0.818175
328328 4.07467e11 1.94384
329329 4.37595e11 2.05916
330330 −2.89835e11 −1.34536
331331 3.51155e11 1.60795 0.803976 0.594662i 0.202714π-0.202714\pi
0.803976 + 0.594662i 0.202714π0.202714\pi
332332 −1.10890e11 −0.500923
333333 5.57505e10 0.248456
334334 1.87909e11 0.826207
335335 6.93850e10 0.300998
336336 6.78368e9 0.0290361
337337 5.10205e10 0.215481 0.107741 0.994179i 0.465638π-0.465638\pi
0.107741 + 0.994179i 0.465638π0.465638\pi
338338 0 0
339339 1.33226e11 0.547887
340340 −6.33129e11 −2.56943
341341 −1.39317e11 −0.557968
342342 −4.26805e10 −0.168699
343343 1.82730e11 0.712831
344344 −3.71280e10 −0.142952
345345 −5.43181e10 −0.206423
346346 −4.82685e11 −1.81059
347347 4.01637e11 1.48714 0.743569 0.668659i 0.233131π-0.233131\pi
0.743569 + 0.668659i 0.233131π0.233131\pi
348348 −1.75852e11 −0.642747
349349 −1.22048e10 −0.0440368 −0.0220184 0.999758i 0.507009π-0.507009\pi
−0.0220184 + 0.999758i 0.507009π0.507009\pi
350350 1.55294e10 0.0553156
351351 0 0
352352 −2.48692e11 −0.863417
353353 −1.09056e11 −0.373822 −0.186911 0.982377i 0.559848π-0.559848\pi
−0.186911 + 0.982377i 0.559848π0.559848\pi
354354 −7.72523e11 −2.61455
355355 −4.70552e10 −0.157246
356356 4.88220e11 1.61098
357357 −5.22503e11 −1.70248
358358 −3.79272e11 −1.22033
359359 −1.39991e11 −0.444812 −0.222406 0.974954i 0.571391π-0.571391\pi
−0.222406 + 0.974954i 0.571391π0.571391\pi
360360 4.65665e10 0.146121
361361 −1.47146e11 −0.456001
362362 −1.00243e11 −0.306806
363363 6.78220e10 0.205017
364364 0 0
365365 −3.15704e11 −0.931026
366366 4.02456e11 1.17234
367367 −5.14356e11 −1.48002 −0.740008 0.672599i 0.765178π-0.765178\pi
−0.740008 + 0.672599i 0.765178π0.765178\pi
368368 2.04779e9 0.00582062
369369 9.55969e10 0.268426
370370 1.04460e12 2.89762
371371 1.83165e11 0.501949
372372 −3.52752e11 −0.955051
373373 −2.90587e11 −0.777297 −0.388649 0.921386i 0.627058π-0.627058\pi
−0.388649 + 0.921386i 0.627058π0.627058\pi
374374 −8.41614e11 −2.22429
375375 3.49612e11 0.912947
376376 6.89671e11 1.77949
377377 0 0
378378 8.04531e11 2.02689
379379 −4.46749e10 −0.111221 −0.0556106 0.998453i 0.517711π-0.517711\pi
−0.0556106 + 0.998453i 0.517711π0.517711\pi
380380 −4.95615e11 −1.21932
381381 6.19236e11 1.50555
382382 −3.72914e11 −0.896033
383383 −9.54757e10 −0.226725 −0.113362 0.993554i 0.536162π-0.536162\pi
−0.113362 + 0.993554i 0.536162π0.536162\pi
384384 −6.46667e11 −1.51771
385385 4.56079e11 1.05795
386386 5.33318e11 1.22277
387387 −8.71071e9 −0.0197403
388388 −8.61709e11 −1.93027
389389 2.40025e11 0.531476 0.265738 0.964045i 0.414384π-0.414384\pi
0.265738 + 0.964045i 0.414384π0.414384\pi
390390 0 0
391391 −1.57728e11 −0.341281
392392 −1.89507e11 −0.405356
393393 4.62473e11 0.977957
394394 9.02370e10 0.188648
395395 1.82236e10 0.0376658
396396 9.92727e10 0.202862
397397 −3.20260e11 −0.647061 −0.323531 0.946218i 0.604870π-0.604870\pi
−0.323531 + 0.946218i 0.604870π0.604870\pi
398398 −9.17730e11 −1.83333
399399 −4.09017e11 −0.807911
400400 3.91697e8 0.000765032 0
401401 −1.37703e10 −0.0265946 −0.0132973 0.999912i 0.504233π-0.504233\pi
−0.0132973 + 0.999912i 0.504233π0.504233\pi
402402 2.33535e11 0.446000
403403 0 0
404404 6.13897e11 1.14651
405405 −4.60809e11 −0.851086
406406 4.46500e11 0.815558
407407 8.60568e11 1.55457
408408 −8.23490e11 −1.47125
409409 −4.52919e11 −0.800323 −0.400161 0.916445i 0.631046π-0.631046\pi
−0.400161 + 0.916445i 0.631046π0.631046\pi
410410 1.79120e12 3.13052
411411 6.87231e11 1.18800
412412 9.68314e10 0.165569
413413 1.21563e12 2.05601
414414 3.00199e10 0.0502237
415415 −1.88376e11 −0.311751
416416 0 0
417417 −1.21547e11 −0.196849
418418 −6.58819e11 −1.05553
419419 8.66707e11 1.37375 0.686877 0.726774i 0.258981π-0.258981\pi
0.686877 + 0.726774i 0.258981π0.258981\pi
420420 1.15480e12 1.81086
421421 −9.07071e11 −1.40725 −0.703626 0.710570i 0.748437π-0.748437\pi
−0.703626 + 0.710570i 0.748437π0.748437\pi
422422 1.08478e12 1.66508
423423 1.61806e11 0.245732
424424 2.88677e11 0.433776
425425 −3.01698e10 −0.0448562
426426 −1.58378e11 −0.232997
427427 −6.33298e11 −0.921897
428428 −3.51641e11 −0.506527
429429 0 0
430430 −1.63213e11 −0.230222
431431 −1.18566e11 −0.165506 −0.0827528 0.996570i 0.526371π-0.526371\pi
−0.0827528 + 0.996570i 0.526371π0.526371\pi
432432 2.02927e10 0.0280325
433433 −2.65940e11 −0.363570 −0.181785 0.983338i 0.558187π-0.558187\pi
−0.181785 + 0.983338i 0.558187π0.558187\pi
434434 8.95664e11 1.21183
435435 −2.98730e11 −0.400015
436436 −1.08565e12 −1.43880
437437 −1.23470e11 −0.161955
438438 −1.06259e12 −1.37954
439439 −7.76288e10 −0.0997545 −0.0498772 0.998755i 0.515883π-0.515883\pi
−0.0498772 + 0.998755i 0.515883π0.515883\pi
440440 7.18803e11 0.914267
441441 −4.44607e10 −0.0559761
442442 0 0
443443 1.22924e12 1.51642 0.758212 0.652008i 0.226073π-0.226073\pi
0.758212 + 0.652008i 0.226073π0.226073\pi
444444 2.17897e12 2.66089
445445 8.29368e11 1.00260
446446 −1.68511e12 −2.01661
447447 −8.51920e11 −1.00929
448448 1.62555e12 1.90655
449449 −7.73914e11 −0.898637 −0.449319 0.893372i 0.648333π-0.648333\pi
−0.449319 + 0.893372i 0.648333π0.648333\pi
450450 5.74216e9 0.00660114
451451 1.47564e12 1.67952
452452 −8.55006e11 −0.963488
453453 −2.59954e10 −0.0290038
454454 2.23997e11 0.247452
455455 0 0
456456 −6.44631e11 −0.698183
457457 3.75223e11 0.402407 0.201204 0.979549i 0.435515π-0.435515\pi
0.201204 + 0.979549i 0.435515π0.435515\pi
458458 1.00727e12 1.06967
459459 −1.56301e12 −1.64363
460460 3.48598e11 0.363007
461461 9.94424e11 1.02546 0.512728 0.858551i 0.328635π-0.328635\pi
0.512728 + 0.858551i 0.328635π0.328635\pi
462462 1.53507e12 1.56761
463463 −1.76404e12 −1.78400 −0.891999 0.452038i 0.850697π-0.850697\pi
−0.891999 + 0.452038i 0.850697π0.850697\pi
464464 1.12621e10 0.0112794
465465 −5.99241e11 −0.594379
466466 −9.35792e11 −0.919269
467467 7.36402e10 0.0716455 0.0358227 0.999358i 0.488595π-0.488595\pi
0.0358227 + 0.999358i 0.488595π0.488595\pi
468468 0 0
469469 −3.67487e11 −0.350723
470470 3.03176e12 2.86585
471471 8.66176e11 0.810983
472472 1.91589e12 1.77677
473473 −1.34459e11 −0.123514
474474 6.13368e10 0.0558108
475475 −2.36170e10 −0.0212865
476476 3.35327e12 2.99390
477477 6.77273e10 0.0599005
478478 9.36315e11 0.820345
479479 1.72474e12 1.49697 0.748485 0.663151i 0.230781π-0.230781\pi
0.748485 + 0.663151i 0.230781π0.230781\pi
480480 −1.06969e12 −0.919760
481481 0 0
482482 2.77211e12 2.33937
483483 2.87688e11 0.240524
484484 −4.35262e11 −0.360534
485485 −1.46384e12 −1.20131
486486 5.58197e11 0.453863
487487 −1.91462e12 −1.54242 −0.771210 0.636580i 0.780348π-0.780348\pi
−0.771210 + 0.636580i 0.780348π0.780348\pi
488488 −9.98108e11 −0.796688
489489 −7.64688e11 −0.604776
490490 −8.33061e11 −0.652821
491491 −1.79635e12 −1.39484 −0.697418 0.716664i 0.745668π-0.745668\pi
−0.697418 + 0.716664i 0.745668π0.745668\pi
492492 3.73633e12 2.87477
493493 −8.67443e11 −0.661348
494494 0 0
495495 1.68640e11 0.126252
496496 2.25913e10 0.0167600
497497 2.49221e11 0.183223
498498 −6.34032e11 −0.461933
499499 1.29654e12 0.936122 0.468061 0.883696i 0.344953π-0.344953\pi
0.468061 + 0.883696i 0.344953π0.344953\pi
500500 −2.24371e12 −1.60547
501501 6.65857e11 0.472184
502502 −1.34423e12 −0.944731
503503 1.08278e12 0.754193 0.377097 0.926174i 0.376922π-0.376922\pi
0.377097 + 0.926174i 0.376922π0.376922\pi
504504 −2.46633e11 −0.170260
505505 1.04286e12 0.713537
506506 4.63389e11 0.314245
507507 0 0
508508 −3.97408e12 −2.64758
509509 −1.45339e12 −0.959734 −0.479867 0.877341i 0.659315π-0.659315\pi
−0.479867 + 0.877341i 0.659315π0.659315\pi
510510 −3.62002e12 −2.36944
511511 1.67208e12 1.08483
512512 8.24265e10 0.0530093
513513 −1.22353e12 −0.779985
514514 1.03111e12 0.651584
515515 1.64493e11 0.103042
516516 −3.40452e11 −0.211413
517517 2.49764e12 1.53752
518518 −5.53256e12 −3.37631
519519 −1.71040e12 −1.03477
520520 0 0
521521 −9.18754e11 −0.546298 −0.273149 0.961972i 0.588065π-0.588065\pi
−0.273149 + 0.961972i 0.588065π0.588065\pi
522522 1.65099e11 0.0973254
523523 2.89678e12 1.69300 0.846501 0.532386i 0.178705π-0.178705\pi
0.846501 + 0.532386i 0.178705π0.178705\pi
524524 −2.96802e12 −1.71979
525525 5.50284e10 0.0316133
526526 1.49677e12 0.852551
527527 −1.74006e12 −0.982690
528528 3.87189e10 0.0216806
529529 −1.71431e12 −0.951784
530530 1.26901e12 0.698590
531531 4.49492e11 0.245356
532532 2.62495e12 1.42075
533533 0 0
534534 2.79148e12 1.48559
535535 −5.97354e11 −0.315239
536536 −5.79177e11 −0.303089
537537 −1.34395e12 −0.697428
538538 −2.95540e12 −1.52089
539539 −6.86297e11 −0.350238
540540 3.45445e12 1.74827
541541 −6.88869e11 −0.345739 −0.172870 0.984945i 0.555304π-0.555304\pi
−0.172870 + 0.984945i 0.555304π0.555304\pi
542542 −6.05827e12 −3.01545
543543 −3.55211e11 −0.175342
544544 −3.10615e12 −1.52064
545545 −1.84426e12 −0.895445
546546 0 0
547547 −3.12007e12 −1.49012 −0.745061 0.666996i 0.767580π-0.767580\pi
−0.745061 + 0.666996i 0.767580π0.767580\pi
548548 −4.41045e12 −2.08915
549549 −2.34169e11 −0.110015
550550 8.86362e10 0.0413028
551551 −6.79037e11 −0.313842
552552 4.53410e11 0.207857
553553 −9.65185e10 −0.0438882
554554 3.48679e12 1.57265
555555 3.70154e12 1.65601
556556 7.80055e11 0.346169
557557 2.65417e12 1.16837 0.584185 0.811621i 0.301414π-0.301414\pi
0.584185 + 0.811621i 0.301414π0.301414\pi
558558 3.31182e11 0.144615
559559 0 0
560560 −7.39567e10 −0.0317783
561561 −2.98226e12 −1.27120
562562 −6.82708e12 −2.88683
563563 1.37050e12 0.574900 0.287450 0.957796i 0.407193π-0.407193\pi
0.287450 + 0.957796i 0.407193π0.407193\pi
564564 6.32405e12 2.63172
565565 −1.45245e12 −0.599630
566566 −3.80856e12 −1.55986
567567 2.44061e12 0.991686
568568 3.92784e11 0.158338
569569 2.71253e12 1.08485 0.542425 0.840104i 0.317506π-0.317506\pi
0.542425 + 0.840104i 0.317506π0.317506\pi
570570 −2.83376e12 −1.12441
571571 3.89232e12 1.53231 0.766153 0.642658i 0.222168π-0.222168\pi
0.766153 + 0.642658i 0.222168π0.222168\pi
572572 0 0
573573 −1.32142e12 −0.512090
574574 −9.48683e12 −3.64769
575575 1.66114e10 0.00633724
576576 6.01064e11 0.227520
577577 −4.61600e12 −1.73370 −0.866851 0.498567i 0.833860π-0.833860\pi
−0.866851 + 0.498567i 0.833860π0.833860\pi
578578 −6.16021e12 −2.29573
579579 1.88982e12 0.698821
580580 1.91716e12 0.703448
581581 9.97703e11 0.363252
582582 −4.92697e12 −1.78003
583583 1.04544e12 0.374793
584584 2.63528e12 0.937493
585585 0 0
586586 −3.96176e12 −1.38787
587587 1.49574e12 0.519979 0.259990 0.965611i 0.416281π-0.416281\pi
0.259990 + 0.965611i 0.416281π0.416281\pi
588588 −1.73771e12 −0.599487
589589 −1.36213e12 −0.466335
590590 8.42215e12 2.86147
591591 3.19755e11 0.107814
592592 −1.39547e11 −0.0466954
593593 −2.12351e12 −0.705192 −0.352596 0.935776i 0.614701π-0.614701\pi
−0.352596 + 0.935776i 0.614701π0.614701\pi
594594 4.59198e12 1.51343
595595 5.69640e12 1.86326
596596 5.46738e12 1.77489
597597 −3.25198e12 −1.04776
598598 0 0
599599 1.24442e12 0.394954 0.197477 0.980308i 0.436725π-0.436725\pi
0.197477 + 0.980308i 0.436725π0.436725\pi
600600 8.67274e10 0.0273197
601601 7.25714e11 0.226898 0.113449 0.993544i 0.463810π-0.463810\pi
0.113449 + 0.993544i 0.463810π0.463810\pi
602602 8.64432e11 0.268254
603603 −1.35882e11 −0.0418539
604604 1.66831e11 0.0510047
605605 −7.39405e11 −0.224379
606606 3.51006e12 1.05727
607607 −3.16893e12 −0.947467 −0.473734 0.880668i 0.657094π-0.657094\pi
−0.473734 + 0.880668i 0.657094π0.657094\pi
608608 −2.43151e12 −0.721621
609609 1.58218e12 0.466098
610610 −4.38763e12 −1.28306
611611 0 0
612612 1.23991e12 0.357280
613613 −8.87008e11 −0.253720 −0.126860 0.991921i 0.540490π-0.540490\pi
−0.126860 + 0.991921i 0.540490π0.540490\pi
614614 −4.34231e12 −1.23300
615615 6.34713e12 1.78912
616616 −3.80703e12 −1.06530
617617 −1.91841e12 −0.532914 −0.266457 0.963847i 0.585853π-0.585853\pi
−0.266457 + 0.963847i 0.585853π0.585853\pi
618618 5.53650e11 0.152682
619619 −3.56519e12 −0.976057 −0.488028 0.872828i 0.662284π-0.662284\pi
−0.488028 + 0.872828i 0.662284π0.662284\pi
620620 3.84576e12 1.04525
621621 8.60587e11 0.232211
622622 −4.37468e12 −1.17190
623623 −4.39262e12 −1.16823
624624 0 0
625625 −3.92161e12 −1.02803
626626 1.14834e13 2.98873
627627 −2.33453e12 −0.603247
628628 −5.55886e12 −1.42616
629629 1.07484e13 2.73790
630630 −1.08418e12 −0.274202
631631 −1.21408e12 −0.304870 −0.152435 0.988314i 0.548711π-0.548711\pi
−0.152435 + 0.988314i 0.548711π0.548711\pi
632632 −1.52118e11 −0.0379274
633633 3.84392e12 0.951607
634634 1.08757e12 0.267335
635635 −6.75100e12 −1.64773
636636 2.64707e12 0.641517
637637 0 0
638638 2.54847e12 0.608957
639639 9.21521e10 0.0218651
640640 7.05005e12 1.66105
641641 −2.78119e12 −0.650684 −0.325342 0.945596i 0.605479π-0.605479\pi
−0.325342 + 0.945596i 0.605479π0.605479\pi
642642 −2.01057e12 −0.467101
643643 5.06784e12 1.16916 0.584580 0.811336i 0.301259π-0.301259\pi
0.584580 + 0.811336i 0.301259π0.301259\pi
644644 −1.84630e12 −0.422975
645645 −5.78345e11 −0.131574
646646 −8.22860e12 −1.85900
647647 −6.59226e12 −1.47899 −0.739494 0.673163i 0.764935π-0.764935\pi
−0.739494 + 0.673163i 0.764935π0.764935\pi
648648 3.84651e12 0.856998
649649 6.93839e12 1.53517
650650 0 0
651651 3.17379e12 0.692570
652652 4.90755e12 1.06353
653653 −8.90755e11 −0.191712 −0.0958560 0.995395i 0.530559π-0.530559\pi
−0.0958560 + 0.995395i 0.530559π0.530559\pi
654654 −6.20740e12 −1.32681
655655 −5.04195e12 −1.07032
656656 −2.39286e11 −0.0504487
657657 6.18270e11 0.129459
658658 −1.60572e13 −3.33929
659659 −1.31355e12 −0.271308 −0.135654 0.990756i 0.543314π-0.543314\pi
−0.135654 + 0.990756i 0.543314π0.543314\pi
660660 6.59118e12 1.35212
661661 4.44228e12 0.905106 0.452553 0.891737i 0.350513π-0.350513\pi
0.452553 + 0.891737i 0.350513π0.350513\pi
662662 −1.28854e13 −2.60757
663663 0 0
664664 1.57243e12 0.313917
665665 4.45916e12 0.884211
666666 −2.04573e12 −0.402915
667667 4.77610e11 0.0934345
668668 −4.27328e12 −0.830361
669669 −5.97119e12 −1.15251
670670 −2.54603e12 −0.488121
671671 −3.61464e12 −0.688358
672672 5.66548e12 1.07170
673673 5.51945e12 1.03712 0.518559 0.855042i 0.326469π-0.326469\pi
0.518559 + 0.855042i 0.326469π0.326469\pi
674674 −1.87216e12 −0.349441
675675 1.64611e11 0.0305206
676676 0 0
677677 −5.16749e12 −0.945432 −0.472716 0.881215i 0.656726π-0.656726\pi
−0.472716 + 0.881215i 0.656726π0.656726\pi
678678 −4.88864e12 −0.888494
679679 7.75299e12 1.39977
680680 8.97780e12 1.61020
681681 7.93734e11 0.141421
682682 5.11214e12 0.904843
683683 −2.52311e12 −0.443652 −0.221826 0.975086i 0.571202π-0.571202\pi
−0.221826 + 0.975086i 0.571202π0.571202\pi
684684 9.70605e11 0.169547
685685 −7.49229e12 −1.30019
686686 −6.70515e12 −1.15598
687687 3.56926e12 0.611326
688688 2.18035e10 0.00371004
689689 0 0
690690 1.99317e12 0.334751
691691 1.13796e12 0.189878 0.0949392 0.995483i 0.469734π-0.469734\pi
0.0949392 + 0.995483i 0.469734π0.469734\pi
692692 1.09768e13 1.81970
693693 −8.93179e11 −0.147109
694694 −1.47378e13 −2.41165
695695 1.32513e12 0.215440
696696 2.49359e12 0.402794
697697 1.84306e13 2.95796
698698 4.47846e11 0.0714134
699699 −3.31598e12 −0.525370
700700 −3.53156e11 −0.0555937
701701 1.08353e13 1.69476 0.847382 0.530984i 0.178178π-0.178178\pi
0.847382 + 0.530984i 0.178178π0.178178\pi
702702 0 0
703703 8.41391e12 1.29927
704704 9.27805e12 1.42357
705705 1.07430e13 1.63786
706706 4.00175e12 0.606218
707707 −5.52337e12 −0.831413
708708 1.75681e13 2.62769
709709 3.85848e12 0.573466 0.286733 0.958011i 0.407431π-0.407431\pi
0.286733 + 0.958011i 0.407431π0.407431\pi
710710 1.72666e12 0.255002
711711 −3.56888e10 −0.00523744
712712 −6.92299e12 −1.00956
713713 9.58070e11 0.138833
714714 1.91729e13 2.76087
715715 0 0
716716 8.62509e12 1.22646
717717 3.31784e12 0.468834
718718 5.13688e12 0.721339
719719 3.09231e12 0.431522 0.215761 0.976446i 0.430777π-0.430777\pi
0.215761 + 0.976446i 0.430777π0.430777\pi
720720 −2.73463e10 −0.00379230
721721 −8.71214e11 −0.120065
722722 5.39942e12 0.739486
723723 9.82298e12 1.33697
724724 2.27964e12 0.308349
725725 9.13564e10 0.0122806
726726 −2.48868e12 −0.332471
727727 5.87291e11 0.0779737 0.0389869 0.999240i 0.487587π-0.487587\pi
0.0389869 + 0.999240i 0.487587π0.487587\pi
728728 0 0
729729 8.37634e12 1.09845
730730 1.15845e13 1.50982
731731 −1.67938e12 −0.217531
732732 −9.15232e12 −1.17823
733733 2.05752e12 0.263255 0.131627 0.991299i 0.457980π-0.457980\pi
0.131627 + 0.991299i 0.457980π0.457980\pi
734734 1.88739e13 2.40010
735735 −2.95195e12 −0.373093
736736 1.71023e12 0.214835
737737 −2.09749e12 −0.261876
738738 −3.50786e12 −0.435300
739739 −3.58288e11 −0.0441909 −0.0220954 0.999756i 0.507034π-0.507034\pi
−0.0220954 + 0.999756i 0.507034π0.507034\pi
740740 −2.37554e13 −2.91219
741741 0 0
742742 −6.72110e12 −0.813997
743743 −8.58825e12 −1.03384 −0.516922 0.856033i 0.672922π-0.672922\pi
−0.516922 + 0.856033i 0.672922π0.672922\pi
744744 5.00205e12 0.598508
745745 9.28776e12 1.10461
746746 1.06629e13 1.26052
747747 3.68912e11 0.0433491
748748 1.91393e13 2.23547
749749 3.16379e12 0.367316
750750 −1.28288e13 −1.48050
751751 −2.96471e12 −0.340097 −0.170049 0.985436i 0.554392π-0.554392\pi
−0.170049 + 0.985436i 0.554392π0.554392\pi
752752 −4.05011e11 −0.0461834
753753 −4.76330e12 −0.539921
754754 0 0
755755 2.83406e11 0.0317429
756756 −1.82960e13 −2.03708
757757 −1.18699e13 −1.31376 −0.656881 0.753994i 0.728125π-0.728125\pi
−0.656881 + 0.753994i 0.728125π0.728125\pi
758758 1.63931e12 0.180364
759759 1.64202e12 0.179594
760760 7.02785e12 0.764120
761761 5.09033e12 0.550193 0.275097 0.961417i 0.411290π-0.411290\pi
0.275097 + 0.961417i 0.411290π0.411290\pi
762762 −2.27224e13 −2.44150
763763 9.76786e12 1.04337
764764 8.48051e12 0.900537
765765 2.10631e12 0.222354
766766 3.50341e12 0.367673
767767 0 0
768768 9.31510e12 0.966189
769769 −4.36770e12 −0.450385 −0.225192 0.974314i 0.572301π-0.572301\pi
−0.225192 + 0.974314i 0.572301π0.572301\pi
770770 −1.67355e13 −1.71566
771771 3.65374e12 0.372385
772772 −1.21283e13 −1.22891
773773 −1.44562e13 −1.45629 −0.728144 0.685424i 0.759617π-0.759617\pi
−0.728144 + 0.685424i 0.759617π0.759617\pi
774774 3.19634e11 0.0320124
775775 1.83258e11 0.0182476
776776 1.22191e13 1.20965
777777 −1.96046e13 −1.92959
778778 −8.80756e12 −0.861881
779779 1.44276e13 1.40370
780780 0 0
781781 1.42246e12 0.136808
782782 5.78770e12 0.553446
783783 4.73291e12 0.449987
784784 1.11288e11 0.0105203
785785 −9.44317e12 −0.887574
786786 −1.69701e13 −1.58593
787787 −1.48558e13 −1.38042 −0.690209 0.723610i 0.742482π-0.742482\pi
−0.690209 + 0.723610i 0.742482π0.742482\pi
788788 −2.05210e12 −0.189596
789789 5.30383e12 0.487240
790790 −6.68702e11 −0.0610816
791791 7.69268e12 0.698688
792792 −1.40769e12 −0.127129
793793 0 0
794794 1.17517e13 1.04932
795795 4.49673e12 0.399250
796796 2.08703e13 1.84255
797797 3.06631e11 0.0269187 0.0134594 0.999909i 0.495716π-0.495716\pi
0.0134594 + 0.999909i 0.495716π0.495716\pi
798798 1.50086e13 1.31017
799799 3.11953e13 2.70788
800800 3.27130e11 0.0282368
801801 −1.62422e12 −0.139412
802802 5.05291e11 0.0431278
803803 9.54364e12 0.810017
804804 −5.31086e12 −0.448242
805805 −3.13641e12 −0.263240
806806 0 0
807807 −1.04725e13 −0.869199
808808 −8.70510e12 −0.718493
809809 −9.13599e12 −0.749872 −0.374936 0.927051i 0.622335π-0.622335\pi
−0.374936 + 0.927051i 0.622335π0.622335\pi
810810 1.69091e13 1.38018
811811 −1.24574e13 −1.01119 −0.505594 0.862771i 0.668727π-0.668727\pi
−0.505594 + 0.862771i 0.668727π0.668727\pi
812812 −1.01539e13 −0.819658
813813 −2.14675e13 −1.72335
814814 −3.15779e13 −2.52100
815815 8.33674e12 0.661892
816816 4.83596e11 0.0381836
817817 −1.31463e12 −0.103229
818818 1.66195e13 1.29786
819819 0 0
820820 −4.07340e13 −3.14626
821821 1.41959e12 0.109048 0.0545241 0.998512i 0.482636π-0.482636\pi
0.0545241 + 0.998512i 0.482636π0.482636\pi
822822 −2.52175e13 −1.92654
823823 −6.90254e12 −0.524457 −0.262228 0.965006i 0.584457π-0.584457\pi
−0.262228 + 0.965006i 0.584457π0.584457\pi
824824 −1.37308e12 −0.103758
825825 3.14083e11 0.0236049
826826 −4.46066e13 −3.33418
827827 −3.79690e12 −0.282263 −0.141132 0.989991i 0.545074π-0.545074\pi
−0.141132 + 0.989991i 0.545074π0.545074\pi
828828 −6.82689e11 −0.0504761
829829 −8.19356e12 −0.602528 −0.301264 0.953541i 0.597409π-0.597409\pi
−0.301264 + 0.953541i 0.597409π0.597409\pi
830830 6.91231e12 0.505559
831831 1.23554e13 0.898781
832832 0 0
833833 −8.57180e12 −0.616836
834834 4.46009e12 0.319225
835835 −7.25927e12 −0.516778
836836 1.49823e13 1.06084
837837 9.49405e12 0.668632
838838 −3.18032e13 −2.22778
839839 −8.11293e11 −0.0565261 −0.0282630 0.999601i 0.508998π-0.508998\pi
−0.0282630 + 0.999601i 0.508998π0.508998\pi
840840 −1.63751e13 −1.13482
841841 −1.18805e13 −0.818939
842842 3.32843e13 2.28211
843843 −2.41918e13 −1.64985
844844 −2.46691e13 −1.67345
845845 0 0
846846 −5.93734e12 −0.398497
847847 3.91615e12 0.261447
848848 −1.69526e11 −0.0112578
849849 −1.34956e13 −0.891474
850850 1.10706e12 0.0727422
851851 −5.91804e12 −0.386807
852852 3.60169e12 0.234169
853853 1.79193e13 1.15891 0.579455 0.815004i 0.303266π-0.303266\pi
0.579455 + 0.815004i 0.303266π0.303266\pi
854854 2.32384e13 1.49502
855855 1.64883e12 0.105518
856856 4.98629e12 0.317428
857857 −1.89206e13 −1.19818 −0.599090 0.800681i 0.704471π-0.704471\pi
−0.599090 + 0.800681i 0.704471π0.704471\pi
858858 0 0
859859 −2.52359e13 −1.58143 −0.790716 0.612184i 0.790291π-0.790291\pi
−0.790716 + 0.612184i 0.790291π0.790291\pi
860860 3.71165e12 0.231379
861861 −3.36166e13 −2.08468
862862 4.35070e12 0.268396
863863 2.98253e13 1.83036 0.915179 0.403048i 0.132049π-0.132049\pi
0.915179 + 0.403048i 0.132049π0.132049\pi
864864 1.69477e13 1.03466
865865 1.86470e13 1.13249
866866 9.75848e12 0.589592
867867 −2.18287e13 −1.31203
868868 −2.03685e13 −1.21792
869869 −5.50894e11 −0.0327702
870870 1.09617e13 0.648695
871871 0 0
872872 1.53946e13 0.901665
873873 2.86676e12 0.167042
874874 4.53063e12 0.262638
875875 2.01871e13 1.16423
876876 2.41646e13 1.38647
877877 5.87014e12 0.335081 0.167541 0.985865i 0.446417π-0.446417\pi
0.167541 + 0.985865i 0.446417π0.446417\pi
878878 2.84853e12 0.161769
879879 −1.40385e13 −0.793179
880880 −4.22119e11 −0.0237281
881881 2.07929e13 1.16285 0.581426 0.813599i 0.302495π-0.302495\pi
0.581426 + 0.813599i 0.302495π0.302495\pi
882882 1.63145e12 0.0907750
883883 2.40223e13 1.32981 0.664907 0.746926i 0.268471π-0.268471\pi
0.664907 + 0.746926i 0.268471π0.268471\pi
884884 0 0
885885 2.98439e13 1.63535
886886 −4.51062e13 −2.45914
887887 −2.33740e12 −0.126788 −0.0633938 0.997989i 0.520192π-0.520192\pi
−0.0633938 + 0.997989i 0.520192π0.520192\pi
888888 −3.08979e13 −1.66752
889889 3.57557e13 1.91994
890890 −3.04331e13 −1.62589
891891 1.39301e13 0.740467
892892 3.83213e13 2.02674
893893 2.44198e13 1.28502
894894 3.12606e13 1.63674
895895 1.46520e13 0.763294
896896 −3.73395e13 −1.93545
897897 0 0
898898 2.83982e13 1.45730
899899 5.26903e12 0.269037
900900 −1.30583e11 −0.00663432
901901 1.30575e13 0.660082
902902 −5.41475e13 −2.72364
903903 3.06312e12 0.153309
904904 1.21240e13 0.603795
905905 3.87256e12 0.191902
906906 9.53883e11 0.0470347
907907 −1.84460e13 −0.905041 −0.452520 0.891754i 0.649475π-0.649475\pi
−0.452520 + 0.891754i 0.649475π0.649475\pi
908908 −5.09395e12 −0.248696
909909 −2.04233e12 −0.0992175
910910 0 0
911911 1.63941e13 0.788595 0.394298 0.918983i 0.370988π-0.370988\pi
0.394298 + 0.918983i 0.370988π0.370988\pi
912912 3.78561e11 0.0181200
913913 5.69454e12 0.271231
914914 −1.37685e13 −0.652574
915915 −1.55476e13 −0.733277
916916 −2.29065e13 −1.07505
917917 2.67039e13 1.24713
918918 5.73536e13 2.66544
919919 −1.11733e13 −0.516729 −0.258365 0.966047i 0.583184π-0.583184\pi
−0.258365 + 0.966047i 0.583184π0.583184\pi
920920 −4.94314e12 −0.227488
921921 −1.53870e13 −0.704670
922922 −3.64897e13 −1.66296
923923 0 0
924924 −3.49092e13 −1.57549
925925 −1.13199e12 −0.0508400
926926 6.47302e13 2.89306
927927 −3.22141e11 −0.0143281
928928 9.40565e12 0.416316
929929 −2.32482e12 −0.102404 −0.0512022 0.998688i 0.516305π-0.516305\pi
−0.0512022 + 0.998688i 0.516305π0.516305\pi
930930 2.19887e13 0.963889
931931 −6.71004e12 −0.292719
932932 2.12810e13 0.923890
933933 −1.55017e13 −0.669749
934934 −2.70217e12 −0.116186
935935 3.25131e13 1.39125
936936 0 0
937937 −3.73094e12 −0.158121 −0.0790606 0.996870i 0.525192π-0.525192\pi
−0.0790606 + 0.996870i 0.525192π0.525192\pi
938938 1.34847e13 0.568758
939939 4.06915e13 1.70808
940940 −6.89457e13 −2.88026
941941 −1.79721e12 −0.0747213 −0.0373607 0.999302i 0.511895π-0.511895\pi
−0.0373607 + 0.999302i 0.511895π0.511895\pi
942942 −3.17837e13 −1.31515
943943 −1.01478e13 −0.417898
944944 −1.12511e12 −0.0461128
945945 −3.10805e13 −1.26778
946946 4.93388e12 0.200299
947947 3.01107e13 1.21660 0.608298 0.793709i 0.291853π-0.291853\pi
0.608298 + 0.793709i 0.291853π0.291853\pi
948948 −1.39487e12 −0.0560914
949949 0 0
950950 8.66611e11 0.0345198
951951 3.85381e12 0.152784
952952 −4.75496e13 −1.87620
953953 −2.29753e13 −0.902286 −0.451143 0.892452i 0.648983π-0.648983\pi
−0.451143 + 0.892452i 0.648983π0.648983\pi
954954 −2.48520e12 −0.0971392
955955 1.44063e13 0.560452
956956 −2.12929e13 −0.824469
957957 9.03051e12 0.348024
958958 −6.32880e13 −2.42760
959959 3.96818e13 1.51498
960960 3.99075e13 1.51647
961961 −1.58701e13 −0.600240
962962 0 0
963963 1.16985e12 0.0438340
964964 −6.30410e13 −2.35113
965965 −2.06030e13 −0.764818
966966 −1.05565e13 −0.390052
967967 9.41605e11 0.0346298 0.0173149 0.999850i 0.494488π-0.494488\pi
0.0173149 + 0.999850i 0.494488π0.494488\pi
968968 6.17204e12 0.225938
969969 −2.91581e13 −1.06243
970970 5.37145e13 1.94813
971971 −1.86297e13 −0.672542 −0.336271 0.941765i 0.609166π-0.609166\pi
−0.336271 + 0.941765i 0.609166π0.609166\pi
972972 −1.26941e13 −0.456145
973973 −7.01833e12 −0.251030
974974 7.02557e13 2.50130
975975 0 0
976976 5.86141e11 0.0206766
977977 1.37438e13 0.482592 0.241296 0.970452i 0.422427π-0.422427\pi
0.241296 + 0.970452i 0.422427π0.422427\pi
978978 2.80597e13 0.980750
979979 −2.50716e13 −0.872286
980980 1.89448e13 0.656103
981981 3.61178e12 0.124512
982982 6.59156e13 2.26197
983983 −2.97895e13 −1.01759 −0.508794 0.860888i 0.669909π-0.669909\pi
−0.508794 + 0.860888i 0.669909π0.669909\pi
984984 −5.29814e13 −1.80155
985985 −3.48602e12 −0.117996
986986 3.18302e13 1.07249
987987 −5.68989e13 −1.90843
988988 0 0
989989 9.24661e11 0.0307326
990990 −6.18814e12 −0.204740
991991 −2.95962e13 −0.974774 −0.487387 0.873186i 0.662050π-0.662050\pi
−0.487387 + 0.873186i 0.662050π0.662050\pi
992992 1.88674e13 0.618600
993993 −4.56594e13 −1.49025
994994 −9.14497e12 −0.297128
995995 3.54536e13 1.14672
996996 1.44186e13 0.464256
997997 1.29524e13 0.415167 0.207584 0.978217i 0.433440π-0.433440\pi
0.207584 + 0.978217i 0.433440π0.433440\pi
998998 −4.75755e13 −1.51809
999999 −5.86452e13 −1.86289
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.3 20
13.6 odd 12 13.10.e.a.10.9 yes 20
13.11 odd 12 13.10.e.a.4.9 20
13.12 even 2 inner 169.10.a.f.1.18 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.9 20 13.11 odd 12
13.10.e.a.10.9 yes 20 13.6 odd 12
169.10.a.f.1.3 20 1.1 even 1 trivial
169.10.a.f.1.18 20 13.12 even 2 inner