Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,2,Mod(3,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(78))
chi = DirichletCharacter(H, H._module([62]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.3");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.i (of order \(39\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.34947179416\) |
Analytic rank: | \(0\) |
Dimension: | \(336\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{39})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{39}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −2.19950 | + | 1.65282i | −0.237088 | + | 1.16133i | 1.54956 | − | 5.34971i | 2.23759 | + | 1.17438i | −1.39800 | − | 2.94622i | 1.15088 | + | 0.187036i | 3.48258 | + | 9.18281i | 1.46745 | + | 0.625223i | −6.86262 | + | 1.11528i |
3.2 | −2.03393 | + | 1.52840i | 0.603355 | − | 2.95543i | 1.24444 | − | 4.29630i | −1.41359 | − | 0.741908i | 3.28990 | + | 6.93331i | −0.790704 | − | 0.128502i | 2.23100 | + | 5.88267i | −5.61059 | − | 2.39045i | 4.00907 | − | 0.651538i |
3.3 | −1.59194 | + | 1.19627i | −0.271241 | + | 1.32863i | 0.546788 | − | 1.88773i | −0.978405 | − | 0.513506i | −1.15759 | − | 2.43957i | −3.69364 | − | 0.600275i | −0.0244856 | − | 0.0645632i | 1.06827 | + | 0.455145i | 2.17185 | − | 0.352960i |
3.4 | −1.33556 | + | 1.00361i | 0.253347 | − | 1.24098i | 0.220054 | − | 0.759713i | 1.62091 | + | 0.850719i | 0.907094 | + | 1.91166i | −0.617530 | − | 0.100358i | −0.716255 | − | 1.88861i | 1.28410 | + | 0.547103i | −3.01861 | + | 0.490571i |
3.5 | −1.20477 | + | 0.905325i | 0.192647 | − | 0.943646i | 0.0754199 | − | 0.260380i | −3.09172 | − | 1.62266i | 0.622212 | + | 1.31128i | 4.19009 | + | 0.680956i | −0.923922 | − | 2.43618i | 1.90658 | + | 0.812319i | 5.19384 | − | 0.844081i |
3.6 | −0.600398 | + | 0.451170i | −0.605141 | + | 2.96418i | −0.399511 | + | 1.37927i | 2.19021 | + | 1.14951i | −0.974023 | − | 2.05271i | 0.324401 | + | 0.0527202i | −0.915052 | − | 2.41279i | −5.66022 | − | 2.41159i | −1.83362 | + | 0.297993i |
3.7 | −0.108893 | + | 0.0818278i | 0.662843 | − | 3.24682i | −0.551273 | + | 1.90322i | 2.52336 | + | 1.32436i | 0.193501 | + | 0.407795i | 3.39567 | + | 0.551850i | −0.192308 | − | 0.507076i | −7.34253 | − | 3.12836i | −0.383146 | + | 0.0622673i |
3.8 | −0.0796839 | + | 0.0598785i | −0.377738 | + | 1.85028i | −0.553671 | + | 1.91149i | −2.61855 | − | 1.37432i | −0.0806927 | − | 0.170056i | −1.55454 | − | 0.252638i | −0.141029 | − | 0.371862i | −0.520928 | − | 0.221947i | 0.290949 | − | 0.0472838i |
3.9 | 0.282507 | − | 0.212290i | −0.0177954 | + | 0.0871674i | −0.521692 | + | 1.80109i | −0.416761 | − | 0.218733i | 0.0134775 | + | 0.0284032i | 2.24768 | + | 0.365284i | 0.485593 | + | 1.28040i | 2.75266 | + | 1.17280i | −0.164173 | + | 0.0266807i |
3.10 | 0.470185 | − | 0.353321i | 0.0357404 | − | 0.175068i | −0.460197 | + | 1.58878i | 3.13432 | + | 1.64502i | −0.0450506 | − | 0.0949422i | −4.24484 | − | 0.689853i | 0.762089 | + | 2.00946i | 2.73057 | + | 1.16339i | 2.05493 | − | 0.333958i |
3.11 | 1.18774 | − | 0.892529i | 0.500302 | − | 2.45064i | 0.0576840 | − | 0.199148i | −1.46041 | − | 0.766482i | −1.59304 | − | 3.35726i | −0.935624 | − | 0.152054i | 0.944448 | + | 2.49030i | −2.99541 | − | 1.27623i | −2.41869 | + | 0.393076i |
3.12 | 1.43066 | − | 1.07507i | −0.532083 | + | 2.60631i | 0.334579 | − | 1.15510i | −0.657900 | − | 0.345292i | 2.04075 | + | 4.30078i | 2.44433 | + | 0.397242i | 0.506036 | + | 1.33431i | −3.74982 | − | 1.59765i | −1.31245 | + | 0.213294i |
3.13 | 1.62971 | − | 1.22465i | 0.199780 | − | 0.978589i | 0.599756 | − | 2.07060i | −0.493428 | − | 0.258971i | −0.872842 | − | 1.83948i | −0.169663 | − | 0.0275730i | −0.112560 | − | 0.296796i | 1.84221 | + | 0.784894i | −1.12129 | + | 0.182228i |
3.14 | 2.07621 | − | 1.56017i | −0.286924 | + | 1.40545i | 1.32008 | − | 4.55745i | 1.11471 | + | 0.585047i | 1.59702 | + | 3.36565i | −4.08991 | − | 0.664676i | −2.52777 | − | 6.66517i | 0.866985 | + | 0.369388i | 3.22715 | − | 0.524463i |
9.1 | −0.714316 | + | 2.46611i | 2.17505 | + | 0.926703i | −3.88105 | − | 2.45423i | 1.06811 | + | 1.54743i | −3.83902 | + | 4.70195i | −2.68431 | − | 0.896153i | 4.98112 | − | 4.41289i | 1.79390 | + | 1.86765i | −4.57909 | + | 1.52872i |
9.2 | −0.710076 | + | 2.45147i | −1.50435 | − | 0.640943i | −3.81511 | − | 2.41253i | −0.878874 | − | 1.27327i | 2.63945 | − | 3.23274i | 1.06738 | + | 0.356344i | 4.80250 | − | 4.25464i | −0.225916 | − | 0.235203i | 3.74545 | − | 1.25041i |
9.3 | −0.516682 | + | 1.78379i | −2.17665 | − | 0.927386i | −1.22458 | − | 0.774377i | 2.29226 | + | 3.32092i | 2.77890 | − | 3.40354i | −3.94229 | − | 1.31613i | −0.766097 | + | 0.678703i | 1.79961 | + | 1.87359i | −7.10820 | + | 2.37307i |
9.4 | −0.431904 | + | 1.49111i | 2.71969 | + | 1.15875i | −0.346475 | − | 0.219098i | −2.18511 | − | 3.16567i | −2.90247 | + | 3.55488i | 2.71121 | + | 0.905134i | −1.84763 | + | 1.63686i | 3.97585 | + | 4.13930i | 5.66411 | − | 1.89096i |
9.5 | −0.386628 | + | 1.33479i | 1.08858 | + | 0.463801i | 0.0581875 | + | 0.0367956i | 0.442938 | + | 0.641707i | −1.03995 | + | 1.27371i | 0.633960 | + | 0.211647i | −2.15196 | + | 1.90647i | −1.10828 | − | 1.15384i | −1.02780 | + | 0.343129i |
9.6 | −0.318349 | + | 1.09907i | −2.14880 | − | 0.915520i | 0.583776 | + | 0.369158i | −0.125099 | − | 0.181237i | 1.69029 | − | 2.07023i | 4.07007 | + | 1.35879i | −2.30453 | + | 2.04164i | 1.70101 | + | 1.77094i | 0.239017 | − | 0.0797956i |
See next 80 embeddings (of 336 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.i | even | 39 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.2.i.a | ✓ | 336 |
169.i | even | 39 | 1 | inner | 169.2.i.a | ✓ | 336 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.2.i.a | ✓ | 336 | 1.a | even | 1 | 1 | trivial |
169.2.i.a | ✓ | 336 | 169.i | even | 39 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(169, [\chi])\).