Properties

Label 169.3.f.a
Level $169$
Weight $3$
Character orbit 169.f
Analytic conductor $4.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12} - 1) q^{2} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} - \zeta_{12}) q^{3} + (\zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{4} + ( - 4 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 4) q^{5} + (2 \zeta_{12}^{3} + 3 \zeta_{12}^{2} + \cdots - 1) q^{6}+ \cdots + ( - 78 \zeta_{12}^{3} + 52 \zeta_{12}^{2} + \cdots - 78) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 2 q^{3} + 6 q^{4} + 14 q^{5} + 2 q^{6} + 20 q^{7} + 6 q^{8} + 10 q^{9} - 24 q^{10} - 28 q^{11} - 40 q^{14} - 34 q^{15} - 2 q^{16} + 12 q^{17} + 2 q^{18} + 14 q^{19} + 4 q^{20} - 40 q^{21}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.133975 0.500000i 0.366025 0.633975i 3.23205 1.86603i 2.63397 2.63397i −0.366025 0.0980762i 1.53590 5.73205i −2.83013 2.83013i 4.23205 + 7.33013i −1.66987 0.964102i
80.1 −1.86603 0.500000i −1.36603 2.36603i −0.232051 0.133975i 4.36603 4.36603i 1.36603 + 5.09808i 8.46410 2.26795i 5.83013 + 5.83013i 0.767949 1.33013i −10.3301 + 5.96410i
89.1 −0.133975 + 0.500000i 0.366025 + 0.633975i 3.23205 + 1.86603i 2.63397 + 2.63397i −0.366025 + 0.0980762i 1.53590 + 5.73205i −2.83013 + 2.83013i 4.23205 7.33013i −1.66987 + 0.964102i
150.1 −1.86603 + 0.500000i −1.36603 + 2.36603i −0.232051 + 0.133975i 4.36603 + 4.36603i 1.36603 5.09808i 8.46410 + 2.26795i 5.83013 5.83013i 0.767949 + 1.33013i −10.3301 5.96410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.f odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.3.f.a 4
13.b even 2 1 169.3.f.c 4
13.c even 3 1 169.3.d.c 4
13.c even 3 1 169.3.f.b 4
13.d odd 4 1 13.3.f.a 4
13.d odd 4 1 169.3.f.b 4
13.e even 6 1 13.3.f.a 4
13.e even 6 1 169.3.d.a 4
13.f odd 12 1 169.3.d.a 4
13.f odd 12 1 169.3.d.c 4
13.f odd 12 1 inner 169.3.f.a 4
13.f odd 12 1 169.3.f.c 4
39.f even 4 1 117.3.bd.b 4
39.h odd 6 1 117.3.bd.b 4
52.f even 4 1 208.3.bd.d 4
52.i odd 6 1 208.3.bd.d 4
65.f even 4 1 325.3.w.b 4
65.g odd 4 1 325.3.t.a 4
65.k even 4 1 325.3.w.a 4
65.l even 6 1 325.3.t.a 4
65.r odd 12 1 325.3.w.a 4
65.r odd 12 1 325.3.w.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.3.f.a 4 13.d odd 4 1
13.3.f.a 4 13.e even 6 1
117.3.bd.b 4 39.f even 4 1
117.3.bd.b 4 39.h odd 6 1
169.3.d.a 4 13.e even 6 1
169.3.d.a 4 13.f odd 12 1
169.3.d.c 4 13.c even 3 1
169.3.d.c 4 13.f odd 12 1
169.3.f.a 4 1.a even 1 1 trivial
169.3.f.a 4 13.f odd 12 1 inner
169.3.f.b 4 13.c even 3 1
169.3.f.b 4 13.d odd 4 1
169.3.f.c 4 13.b even 2 1
169.3.f.c 4 13.f odd 12 1
208.3.bd.d 4 52.f even 4 1
208.3.bd.d 4 52.i odd 6 1
325.3.t.a 4 65.g odd 4 1
325.3.t.a 4 65.l even 6 1
325.3.w.a 4 65.k even 4 1
325.3.w.a 4 65.r odd 12 1
325.3.w.b 4 65.f even 4 1
325.3.w.b 4 65.r odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 4T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1 \) acting on \(S_{3}^{\mathrm{new}}(169, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{4} - 14 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$7$ \( T^{4} - 20 T^{3} + \cdots + 2704 \) Copy content Toggle raw display
$11$ \( T^{4} + 28 T^{3} + \cdots + 10816 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots + 45369 \) Copy content Toggle raw display
$19$ \( T^{4} - 14 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$23$ \( T^{4} + 18 T^{3} + \cdots + 39204 \) Copy content Toggle raw display
$29$ \( T^{4} - 2 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$31$ \( T^{4} - 20 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$37$ \( T^{4} - 38 T^{3} + \cdots + 1868689 \) Copy content Toggle raw display
$41$ \( T^{4} - 62 T^{3} + \cdots + 833569 \) Copy content Toggle raw display
$43$ \( (T^{2} + 90 T + 2700)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 68 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$53$ \( (T^{2} - 64 T - 1163)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 32 T^{3} + \cdots + 16613776 \) Copy content Toggle raw display
$61$ \( T^{4} + 124 T^{3} + \cdots + 6355441 \) Copy content Toggle raw display
$67$ \( T^{4} - 170 T^{3} + \cdots + 9721924 \) Copy content Toggle raw display
$71$ \( T^{4} + 106 T^{3} + \cdots + 2208196 \) Copy content Toggle raw display
$73$ \( T^{4} + 58 T^{3} + \cdots + 3463321 \) Copy content Toggle raw display
$79$ \( (T^{2} + 20 T - 5192)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 188 T^{3} + \cdots + 11587216 \) Copy content Toggle raw display
$89$ \( T^{4} + 190 T^{3} + \cdots + 8702500 \) Copy content Toggle raw display
$97$ \( T^{4} - 146 T^{3} + \cdots + 18028516 \) Copy content Toggle raw display
show more
show less