Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,3,Mod(19,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.19");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 169.f (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.77720518656.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−0.858406 | − | 3.20361i | 1.50000 | − | 2.59808i | −6.06218 | + | 3.50000i | 2.34521 | − | 2.34521i | −9.61084 | − | 2.57522i | 2.57522 | − | 9.61084i | 7.03562 | + | 7.03562i | 0 | −9.52628 | − | 5.50000i | ||||||||||||||||||||||||||
19.2 | 0.858406 | + | 3.20361i | 1.50000 | − | 2.59808i | −6.06218 | + | 3.50000i | −2.34521 | + | 2.34521i | 9.61084 | + | 2.57522i | −2.57522 | + | 9.61084i | −7.03562 | − | 7.03562i | 0 | −9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
80.1 | −3.20361 | − | 0.858406i | 1.50000 | + | 2.59808i | 6.06218 | + | 3.50000i | −2.34521 | + | 2.34521i | −2.57522 | − | 9.61084i | 9.61084 | − | 2.57522i | −7.03562 | − | 7.03562i | 0 | 9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
80.2 | 3.20361 | + | 0.858406i | 1.50000 | + | 2.59808i | 6.06218 | + | 3.50000i | 2.34521 | − | 2.34521i | 2.57522 | + | 9.61084i | −9.61084 | + | 2.57522i | 7.03562 | + | 7.03562i | 0 | 9.52628 | − | 5.50000i | |||||||||||||||||||||||||||
89.1 | −0.858406 | + | 3.20361i | 1.50000 | + | 2.59808i | −6.06218 | − | 3.50000i | 2.34521 | + | 2.34521i | −9.61084 | + | 2.57522i | 2.57522 | + | 9.61084i | 7.03562 | − | 7.03562i | 0 | −9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
89.2 | 0.858406 | − | 3.20361i | 1.50000 | + | 2.59808i | −6.06218 | − | 3.50000i | −2.34521 | − | 2.34521i | 9.61084 | − | 2.57522i | −2.57522 | − | 9.61084i | −7.03562 | + | 7.03562i | 0 | −9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
150.1 | −3.20361 | + | 0.858406i | 1.50000 | − | 2.59808i | 6.06218 | − | 3.50000i | −2.34521 | − | 2.34521i | −2.57522 | + | 9.61084i | 9.61084 | + | 2.57522i | −7.03562 | + | 7.03562i | 0 | 9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
150.2 | 3.20361 | − | 0.858406i | 1.50000 | − | 2.59808i | 6.06218 | − | 3.50000i | 2.34521 | + | 2.34521i | 2.57522 | − | 9.61084i | −9.61084 | − | 2.57522i | 7.03562 | − | 7.03562i | 0 | 9.52628 | + | 5.50000i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.d | odd | 4 | 2 | inner |
13.e | even | 6 | 1 | inner |
13.f | odd | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.3.f.e | 8 | |
13.b | even | 2 | 1 | inner | 169.3.f.e | 8 | |
13.c | even | 3 | 1 | 169.3.d.b | ✓ | 4 | |
13.c | even | 3 | 1 | inner | 169.3.f.e | 8 | |
13.d | odd | 4 | 2 | inner | 169.3.f.e | 8 | |
13.e | even | 6 | 1 | 169.3.d.b | ✓ | 4 | |
13.e | even | 6 | 1 | inner | 169.3.f.e | 8 | |
13.f | odd | 12 | 2 | 169.3.d.b | ✓ | 4 | |
13.f | odd | 12 | 2 | inner | 169.3.f.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.3.d.b | ✓ | 4 | 13.c | even | 3 | 1 | |
169.3.d.b | ✓ | 4 | 13.e | even | 6 | 1 | |
169.3.d.b | ✓ | 4 | 13.f | odd | 12 | 2 | |
169.3.f.e | 8 | 1.a | even | 1 | 1 | trivial | |
169.3.f.e | 8 | 13.b | even | 2 | 1 | inner | |
169.3.f.e | 8 | 13.c | even | 3 | 1 | inner | |
169.3.f.e | 8 | 13.d | odd | 4 | 2 | inner | |
169.3.f.e | 8 | 13.e | even | 6 | 1 | inner | |
169.3.f.e | 8 | 13.f | odd | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .