Properties

Label 169.3.f.e
Level 169169
Weight 33
Character orbit 169.f
Analytic conductor 4.6054.605
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 169.f (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.604916467694.60491646769
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: 8.0.77720518656.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8121x4+14641 x^{8} - 121x^{4} + 14641 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+3β4q3+7β2q4+(β5+β1)q5+3β5q6+(3β73β3)q7+3β3q8+(11β6+11β2)q10++(50β7+50β3)q98+O(q100) q + \beta_1 q^{2} + 3 \beta_{4} q^{3} + 7 \beta_{2} q^{4} + ( - \beta_{5} + \beta_1) q^{5} + 3 \beta_{5} q^{6} + (3 \beta_{7} - 3 \beta_{3}) q^{7} + 3 \beta_{3} q^{8} + ( - 11 \beta_{6} + 11 \beta_{2}) q^{10}+ \cdots + ( - 50 \beta_{7} + 50 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+12q3264q14+20q16+88q22+216q27+168q29132q35+264q40396q4260q48192q5388q55120q61+528q66+84q68+660q74+44q94+O(q100) 8 q + 12 q^{3} - 264 q^{14} + 20 q^{16} + 88 q^{22} + 216 q^{27} + 168 q^{29} - 132 q^{35} + 264 q^{40} - 396 q^{42} - 60 q^{48} - 192 q^{53} - 88 q^{55} - 120 q^{61} + 528 q^{66} + 84 q^{68} + 660 q^{74}+ \cdots - 44 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8121x4+14641 x^{8} - 121x^{4} + 14641 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/11 ( \nu^{2} ) / 11 Copy content Toggle raw display
β3\beta_{3}== (ν3)/11 ( \nu^{3} ) / 11 Copy content Toggle raw display
β4\beta_{4}== (ν4)/121 ( \nu^{4} ) / 121 Copy content Toggle raw display
β5\beta_{5}== (ν5)/121 ( \nu^{5} ) / 121 Copy content Toggle raw display
β6\beta_{6}== (ν6)/1331 ( \nu^{6} ) / 1331 Copy content Toggle raw display
β7\beta_{7}== (ν7)/1331 ( \nu^{7} ) / 1331 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 11β2 11\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 11β3 11\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 121β4 121\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 121β5 121\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 1331β6 1331\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 1331β7 1331\beta_{7} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/169Z)×\left(\mathbb{Z}/169\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.858406 3.20361i
0.858406 + 3.20361i
−3.20361 0.858406i
3.20361 + 0.858406i
−0.858406 + 3.20361i
0.858406 3.20361i
−3.20361 + 0.858406i
3.20361 0.858406i
−0.858406 3.20361i 1.50000 2.59808i −6.06218 + 3.50000i 2.34521 2.34521i −9.61084 2.57522i 2.57522 9.61084i 7.03562 + 7.03562i 0 −9.52628 5.50000i
19.2 0.858406 + 3.20361i 1.50000 2.59808i −6.06218 + 3.50000i −2.34521 + 2.34521i 9.61084 + 2.57522i −2.57522 + 9.61084i −7.03562 7.03562i 0 −9.52628 5.50000i
80.1 −3.20361 0.858406i 1.50000 + 2.59808i 6.06218 + 3.50000i −2.34521 + 2.34521i −2.57522 9.61084i 9.61084 2.57522i −7.03562 7.03562i 0 9.52628 5.50000i
80.2 3.20361 + 0.858406i 1.50000 + 2.59808i 6.06218 + 3.50000i 2.34521 2.34521i 2.57522 + 9.61084i −9.61084 + 2.57522i 7.03562 + 7.03562i 0 9.52628 5.50000i
89.1 −0.858406 + 3.20361i 1.50000 + 2.59808i −6.06218 3.50000i 2.34521 + 2.34521i −9.61084 + 2.57522i 2.57522 + 9.61084i 7.03562 7.03562i 0 −9.52628 + 5.50000i
89.2 0.858406 3.20361i 1.50000 + 2.59808i −6.06218 3.50000i −2.34521 2.34521i 9.61084 2.57522i −2.57522 9.61084i −7.03562 + 7.03562i 0 −9.52628 + 5.50000i
150.1 −3.20361 + 0.858406i 1.50000 2.59808i 6.06218 3.50000i −2.34521 2.34521i −2.57522 + 9.61084i 9.61084 + 2.57522i −7.03562 + 7.03562i 0 9.52628 + 5.50000i
150.2 3.20361 0.858406i 1.50000 2.59808i 6.06218 3.50000i 2.34521 + 2.34521i 2.57522 9.61084i −9.61084 2.57522i 7.03562 7.03562i 0 9.52628 + 5.50000i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.d odd 4 2 inner
13.e even 6 1 inner
13.f odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.3.f.e 8
13.b even 2 1 inner 169.3.f.e 8
13.c even 3 1 169.3.d.b 4
13.c even 3 1 inner 169.3.f.e 8
13.d odd 4 2 inner 169.3.f.e 8
13.e even 6 1 169.3.d.b 4
13.e even 6 1 inner 169.3.f.e 8
13.f odd 12 2 169.3.d.b 4
13.f odd 12 2 inner 169.3.f.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.3.d.b 4 13.c even 3 1
169.3.d.b 4 13.e even 6 1
169.3.d.b 4 13.f odd 12 2
169.3.f.e 8 1.a even 1 1 trivial
169.3.f.e 8 13.b even 2 1 inner
169.3.f.e 8 13.c even 3 1 inner
169.3.f.e 8 13.d odd 4 2 inner
169.3.f.e 8 13.e even 6 1 inner
169.3.f.e 8 13.f odd 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28121T24+14641 T_{2}^{8} - 121T_{2}^{4} + 14641 acting on S3new(169,[χ])S_{3}^{\mathrm{new}}(169, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8121T4+14641 T^{8} - 121 T^{4} + 14641 Copy content Toggle raw display
33 (T23T+9)4 (T^{2} - 3 T + 9)^{4} Copy content Toggle raw display
55 (T4+121)2 (T^{4} + 121)^{2} Copy content Toggle raw display
77 T89801T4+96059601 T^{8} - 9801 T^{4} + 96059601 Copy content Toggle raw display
1111 T81936T4+3748096 T^{8} - 1936 T^{4} + 3748096 Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
1919 T8++24591257856 T^{8} + \cdots + 24591257856 Copy content Toggle raw display
2323 (T4144T2+20736)2 (T^{4} - 144 T^{2} + 20736)^{2} Copy content Toggle raw display
2929 (T242T+1764)4 (T^{2} - 42 T + 1764)^{4} Copy content Toggle raw display
3131 (T4+2509056)2 (T^{4} + 2509056)^{2} Copy content Toggle raw display
3737 T8++37523281640625 T^{8} + \cdots + 37523281640625 Copy content Toggle raw display
4141 T8++21607027568896 T^{8} + \cdots + 21607027568896 Copy content Toggle raw display
4343 (T42401T2+5764801)2 (T^{4} - 2401 T^{2} + 5764801)^{2} Copy content Toggle raw display
4747 (T4+121)2 (T^{4} + 121)^{2} Copy content Toggle raw display
5353 (T+24)8 (T + 24)^{8} Copy content Toggle raw display
5959 T8++62882616180736 T^{8} + \cdots + 62882616180736 Copy content Toggle raw display
6161 (T2+30T+900)4 (T^{2} + 30 T + 900)^{4} Copy content Toggle raw display
6767 T8++6295362011136 T^{8} + \cdots + 6295362011136 Copy content Toggle raw display
7171 T8++84402451441 T^{8} + \cdots + 84402451441 Copy content Toggle raw display
7373 (T4+2509056)2 (T^{4} + 2509056)^{2} Copy content Toggle raw display
7979 (T54)8 (T - 54)^{8} Copy content Toggle raw display
8383 (T4+4648336)2 (T^{4} + 4648336)^{2} Copy content Toggle raw display
8989 T8++57 ⁣ ⁣00 T^{8} + \cdots + 57\!\cdots\!00 Copy content Toggle raw display
9797 T8++24591257856 T^{8} + \cdots + 24591257856 Copy content Toggle raw display
show more
show less