Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,3,Mod(5,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(52))
chi = DirichletCharacter(H, H._module([3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.5");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.j (of order \(52\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.60491646769\) |
Analytic rank: | \(0\) |
Dimension: | \(720\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{52})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{52}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −3.89687 | − | 0.714127i | 2.81830 | + | 1.47916i | 10.9355 | + | 4.14730i | 0.339194 | − | 5.60754i | −9.92622 | − | 7.77670i | −4.28826 | − | 2.59234i | −26.0910 | − | 15.7726i | 0.642307 | + | 0.930542i | −5.32629 | + | 21.6096i |
5.2 | −3.78845 | − | 0.694260i | −1.17333 | − | 0.615809i | 10.1303 | + | 3.84193i | −0.572829 | + | 9.46999i | 4.01756 | + | 3.14756i | 8.28718 | + | 5.00977i | −22.5267 | − | 13.6179i | −4.11511 | − | 5.96177i | 8.74477 | − | 35.4789i |
5.3 | −3.42537 | − | 0.627723i | −4.84261 | − | 2.54160i | 7.59907 | + | 2.88195i | 0.344854 | − | 5.70112i | 14.9923 | + | 11.7457i | 2.55543 | + | 1.54481i | −12.2998 | − | 7.43551i | 11.8786 | + | 17.2091i | −4.75997 | + | 19.3120i |
5.4 | −3.10651 | − | 0.569289i | −1.62486 | − | 0.852791i | 5.58624 | + | 2.11858i | 0.0346066 | − | 0.572115i | 4.56215 | + | 3.57422i | −3.36545 | − | 2.03449i | −5.33658 | − | 3.22607i | −3.19967 | − | 4.63553i | −0.433204 | + | 1.75758i |
5.5 | −2.93123 | − | 0.537168i | 5.07171 | + | 2.66184i | 4.56351 | + | 1.73071i | −0.310582 | + | 5.13453i | −13.4365 | − | 10.5268i | 3.68439 | + | 2.22729i | −2.24597 | − | 1.35774i | 13.5243 | + | 19.5933i | 3.66850 | − | 14.8837i |
5.6 | −2.69019 | − | 0.492995i | 2.56341 | + | 1.34538i | 3.25399 | + | 1.23408i | −0.00435722 | + | 0.0720334i | −6.23279 | − | 4.88308i | 3.00776 | + | 1.81826i | 1.21674 | + | 0.735545i | −0.351552 | − | 0.509311i | 0.0472339 | − | 0.191635i |
5.7 | −2.68961 | − | 0.492890i | 1.35223 | + | 0.709706i | 3.25102 | + | 1.23295i | −0.320821 | + | 5.30380i | −3.28717 | − | 2.57534i | −11.1706 | − | 6.75288i | 1.22394 | + | 0.739895i | −3.78774 | − | 5.48748i | 3.47707 | − | 14.1070i |
5.8 | −2.57743 | − | 0.472331i | 1.36177 | + | 0.714710i | 2.67997 | + | 1.01638i | 0.593540 | − | 9.81239i | −3.17227 | − | 2.48532i | 6.35016 | + | 3.83881i | 2.54243 | + | 1.53695i | −3.76899 | − | 5.46032i | −6.16450 | + | 25.0104i |
5.9 | −2.20853 | − | 0.404728i | −5.21056 | − | 2.73471i | 0.973721 | + | 0.369284i | −0.505290 | + | 8.35344i | 10.4009 | + | 8.14855i | −5.98887 | − | 3.62040i | 5.68493 | + | 3.43666i | 14.5587 | + | 21.0920i | 4.49681 | − | 18.2443i |
5.10 | −2.19267 | − | 0.401821i | −1.90733 | − | 1.00104i | 0.906258 | + | 0.343698i | −0.00411255 | + | 0.0679886i | 3.77990 | + | 2.96136i | 8.11874 | + | 4.90795i | 5.78175 | + | 3.49519i | −2.47676 | − | 3.58821i | 0.0363367 | − | 0.147424i |
5.11 | −1.23702 | − | 0.226692i | −2.71137 | − | 1.42303i | −2.26124 | − | 0.857574i | 0.283366 | − | 4.68460i | 3.03142 | + | 2.37497i | −6.51442 | − | 3.93811i | 6.90778 | + | 4.17590i | 0.213894 | + | 0.309879i | −1.41249 | + | 5.73071i |
5.12 | −0.992467 | − | 0.181876i | 3.21951 | + | 1.68973i | −2.78815 | − | 1.05741i | 0.233707 | − | 3.86364i | −2.88794 | − | 2.26255i | −10.1385 | − | 6.12897i | 6.02875 | + | 3.64450i | 2.39748 | + | 3.47334i | −0.934651 | + | 3.79203i |
5.13 | −0.721008 | − | 0.132130i | −2.08690 | − | 1.09529i | −3.23767 | − | 1.22789i | −0.294570 | + | 4.86982i | 1.35995 | + | 1.06546i | 1.95877 | + | 1.18412i | 4.68135 | + | 2.82997i | −1.95708 | − | 2.83532i | 0.855834 | − | 3.47226i |
5.14 | −0.701607 | − | 0.128574i | 1.48553 | + | 0.779668i | −3.26434 | − | 1.23800i | −0.293027 | + | 4.84432i | −0.942016 | − | 0.738022i | 3.36050 | + | 2.03150i | 4.57280 | + | 2.76435i | −3.51366 | − | 5.09041i | 0.828446 | − | 3.36114i |
5.15 | −0.667348 | − | 0.122296i | 3.56324 | + | 1.87013i | −3.30967 | − | 1.25519i | 0.182452 | − | 3.01630i | −2.14921 | − | 1.68380i | 4.18348 | + | 2.52900i | 4.37765 | + | 2.64638i | 4.08670 | + | 5.92061i | −0.490640 | + | 1.99061i |
5.16 | 0.0434563 | + | 0.00796367i | −4.38060 | − | 2.29911i | −3.73824 | − | 1.41773i | 0.460887 | − | 7.61938i | −0.172055 | − | 0.134797i | 4.16575 | + | 2.51828i | −0.302394 | − | 0.182803i | 8.79112 | + | 12.7361i | 0.0807067 | − | 0.327440i |
5.17 | 0.660471 | + | 0.121036i | 4.71303 | + | 2.47359i | −3.31849 | − | 1.25854i | −0.433924 | + | 7.17362i | 2.81343 | + | 2.20418i | −2.64517 | − | 1.59906i | −4.33797 | − | 2.62239i | 10.9814 | + | 15.9093i | −1.15486 | + | 4.68545i |
5.18 | 0.819752 | + | 0.150225i | 0.116058 | + | 0.0609121i | −3.09064 | − | 1.17212i | 0.237708 | − | 3.92979i | 0.0859885 | + | 0.0673677i | 2.52537 | + | 1.52664i | −5.21032 | − | 3.14975i | −5.10282 | − | 7.39272i | 0.785215 | − | 3.18574i |
5.19 | 1.03775 | + | 0.190175i | −0.355968 | − | 0.186826i | −2.69930 | − | 1.02371i | −0.450909 | + | 7.45441i | −0.333877 | − | 0.261576i | −8.43109 | − | 5.09677i | −6.21803 | − | 3.75893i | −5.02077 | − | 7.27385i | −1.88557 | + | 7.65007i |
5.20 | 1.21813 | + | 0.223230i | −4.33208 | − | 2.27365i | −2.30606 | − | 0.874574i | −0.247110 | + | 4.08522i | −4.76948 | − | 3.73665i | 8.44262 | + | 5.10374i | −6.85309 | − | 4.14284i | 8.48485 | + | 12.2924i | −1.21296 | + | 4.92116i |
See next 80 embeddings (of 720 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.j | odd | 52 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.3.j.a | ✓ | 720 |
169.j | odd | 52 | 1 | inner | 169.3.j.a | ✓ | 720 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.3.j.a | ✓ | 720 | 1.a | even | 1 | 1 | trivial |
169.3.j.a | ✓ | 720 | 169.j | odd | 52 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(169, [\chi])\).