Properties

Label 169.3.j.a
Level $169$
Weight $3$
Character orbit 169.j
Analytic conductor $4.605$
Analytic rank $0$
Dimension $720$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(5,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(52))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.j (of order \(52\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(30\) over \(\Q(\zeta_{52})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{52}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 720 q - 22 q^{2} - 22 q^{3} - 26 q^{4} - 34 q^{5} - 10 q^{6} - 14 q^{7} - 62 q^{8} - 202 q^{9} - 26 q^{10} - 22 q^{11} - 26 q^{12} - 34 q^{13} - 38 q^{14} + 2 q^{15} + 242 q^{16} - 26 q^{17} - 58 q^{18}+ \cdots - 178 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1 −3.89687 0.714127i 2.81830 + 1.47916i 10.9355 + 4.14730i 0.339194 5.60754i −9.92622 7.77670i −4.28826 2.59234i −26.0910 15.7726i 0.642307 + 0.930542i −5.32629 + 21.6096i
5.2 −3.78845 0.694260i −1.17333 0.615809i 10.1303 + 3.84193i −0.572829 + 9.46999i 4.01756 + 3.14756i 8.28718 + 5.00977i −22.5267 13.6179i −4.11511 5.96177i 8.74477 35.4789i
5.3 −3.42537 0.627723i −4.84261 2.54160i 7.59907 + 2.88195i 0.344854 5.70112i 14.9923 + 11.7457i 2.55543 + 1.54481i −12.2998 7.43551i 11.8786 + 17.2091i −4.75997 + 19.3120i
5.4 −3.10651 0.569289i −1.62486 0.852791i 5.58624 + 2.11858i 0.0346066 0.572115i 4.56215 + 3.57422i −3.36545 2.03449i −5.33658 3.22607i −3.19967 4.63553i −0.433204 + 1.75758i
5.5 −2.93123 0.537168i 5.07171 + 2.66184i 4.56351 + 1.73071i −0.310582 + 5.13453i −13.4365 10.5268i 3.68439 + 2.22729i −2.24597 1.35774i 13.5243 + 19.5933i 3.66850 14.8837i
5.6 −2.69019 0.492995i 2.56341 + 1.34538i 3.25399 + 1.23408i −0.00435722 + 0.0720334i −6.23279 4.88308i 3.00776 + 1.81826i 1.21674 + 0.735545i −0.351552 0.509311i 0.0472339 0.191635i
5.7 −2.68961 0.492890i 1.35223 + 0.709706i 3.25102 + 1.23295i −0.320821 + 5.30380i −3.28717 2.57534i −11.1706 6.75288i 1.22394 + 0.739895i −3.78774 5.48748i 3.47707 14.1070i
5.8 −2.57743 0.472331i 1.36177 + 0.714710i 2.67997 + 1.01638i 0.593540 9.81239i −3.17227 2.48532i 6.35016 + 3.83881i 2.54243 + 1.53695i −3.76899 5.46032i −6.16450 + 25.0104i
5.9 −2.20853 0.404728i −5.21056 2.73471i 0.973721 + 0.369284i −0.505290 + 8.35344i 10.4009 + 8.14855i −5.98887 3.62040i 5.68493 + 3.43666i 14.5587 + 21.0920i 4.49681 18.2443i
5.10 −2.19267 0.401821i −1.90733 1.00104i 0.906258 + 0.343698i −0.00411255 + 0.0679886i 3.77990 + 2.96136i 8.11874 + 4.90795i 5.78175 + 3.49519i −2.47676 3.58821i 0.0363367 0.147424i
5.11 −1.23702 0.226692i −2.71137 1.42303i −2.26124 0.857574i 0.283366 4.68460i 3.03142 + 2.37497i −6.51442 3.93811i 6.90778 + 4.17590i 0.213894 + 0.309879i −1.41249 + 5.73071i
5.12 −0.992467 0.181876i 3.21951 + 1.68973i −2.78815 1.05741i 0.233707 3.86364i −2.88794 2.26255i −10.1385 6.12897i 6.02875 + 3.64450i 2.39748 + 3.47334i −0.934651 + 3.79203i
5.13 −0.721008 0.132130i −2.08690 1.09529i −3.23767 1.22789i −0.294570 + 4.86982i 1.35995 + 1.06546i 1.95877 + 1.18412i 4.68135 + 2.82997i −1.95708 2.83532i 0.855834 3.47226i
5.14 −0.701607 0.128574i 1.48553 + 0.779668i −3.26434 1.23800i −0.293027 + 4.84432i −0.942016 0.738022i 3.36050 + 2.03150i 4.57280 + 2.76435i −3.51366 5.09041i 0.828446 3.36114i
5.15 −0.667348 0.122296i 3.56324 + 1.87013i −3.30967 1.25519i 0.182452 3.01630i −2.14921 1.68380i 4.18348 + 2.52900i 4.37765 + 2.64638i 4.08670 + 5.92061i −0.490640 + 1.99061i
5.16 0.0434563 + 0.00796367i −4.38060 2.29911i −3.73824 1.41773i 0.460887 7.61938i −0.172055 0.134797i 4.16575 + 2.51828i −0.302394 0.182803i 8.79112 + 12.7361i 0.0807067 0.327440i
5.17 0.660471 + 0.121036i 4.71303 + 2.47359i −3.31849 1.25854i −0.433924 + 7.17362i 2.81343 + 2.20418i −2.64517 1.59906i −4.33797 2.62239i 10.9814 + 15.9093i −1.15486 + 4.68545i
5.18 0.819752 + 0.150225i 0.116058 + 0.0609121i −3.09064 1.17212i 0.237708 3.92979i 0.0859885 + 0.0673677i 2.52537 + 1.52664i −5.21032 3.14975i −5.10282 7.39272i 0.785215 3.18574i
5.19 1.03775 + 0.190175i −0.355968 0.186826i −2.69930 1.02371i −0.450909 + 7.45441i −0.333877 0.261576i −8.43109 5.09677i −6.21803 3.75893i −5.02077 7.27385i −1.88557 + 7.65007i
5.20 1.21813 + 0.223230i −4.33208 2.27365i −2.30606 0.874574i −0.247110 + 4.08522i −4.76948 3.73665i 8.44262 + 5.10374i −6.85309 4.14284i 8.48485 + 12.2924i −1.21296 + 4.92116i
See next 80 embeddings (of 720 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.30
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
169.j odd 52 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.3.j.a 720
169.j odd 52 1 inner 169.3.j.a 720
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.3.j.a 720 1.a even 1 1 trivial
169.3.j.a 720 169.j odd 52 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(169, [\chi])\).